


Lecture Notes in Computer Science 3348
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Anne Canteaut
Kapaleeswaran Viswanathan (Eds.)

Progress in Cryptology –
INDOCRYPT 2004

5th International Conference on Cryptology in India
Chennai, India, December 20-22, 2004
Proceedings

13



Volume Editors

Anne Canteaut
Institut National de Recherche en Informatique et Automatique (INRIA)
Projet CODES, Domaine de Voluceau, Rocquencourt
78153 Le Chesnay Cedex, France
E-mail: anne.canteaut@inria.fr

Kapaleeswaran Viswanathan
SETS, 21 Mangadu Swamy Street, Nungambakkam
Chennai 600 034, India
E-mail: kapali@sets.org.in

Library of Congress Control Number: 2004116723

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, F.2.1, C.2

ISSN 0302-9743
ISBN 3-540-24130-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11369165 06/3142 5 4 3 2 1 0



Preface

The INDOCRYPT series of conferences started in 2000. INDOCRYPT 2004 was
the fifth one in this series. The popularity of this series is increasing every year.
The number of papers submitted to INDOCRYPT 2004 was 181, out of which
147 papers conformed to the specifications in the call for papers and, therefore,
were accepted to the review process. Those 147 submissions were spread over
22 countries.

Only 30 papers were accepted to this proceedings. We should note that many
of the papers that were not accepted were of good quality but only the top 30
papers were accepted. Each submission received at least three independent re-
views. The selection process also included a Web-based discussion phase. We
made efforts to compare the submissions with other ongoing conferences around
the world in order to ensure detection of double-submissions, which were not al-
lowed by the call for papers. We wish to acknowledge the use of the Web-based
review software developed by Bart Preneel, Wim Moreau, and Joris Claessens in
conducting the review process electronically. The software greatly facilitated the
Program Committee in completing the review process on time. We would like to
thank Cédric Lauradoux and the team at INRIA for their total support in con-
figuring and managing the Web-based submission and review softwares. We are
unable to imagine the outcome of the review process without their participation.

This year the invited talks were presented by Prof. Colin Boyd and Prof.
Amit Sahai. Colin provided a talk on the design of key establishment protocols
while Amit presented a talk on secure protocols for complex tasks in complex
environments. They presented two sides of the same coin so that the audience
can gain a more comprehensive view of the analysis and design of cryptographic
protocols. We hope that the invited talks contributed their share to promoting
such an exciting area in cryptology research in India. At the same time, the
invited talks were of great value for international researchers, as well, because
Colin and Amit shared the latest results of their research activities.

The smooth and successful progress of INDOCRYPT 2004 was due to the
efforts of many individuals. The members of the Program Committee worked
hard throughout, and did an excellent job. Many external reviewers contributed
their time and expertise to aid our decision-making. The Organizing Committee
put its maximal effort into ensuring the successful progress of this conference.
We wish to thank Prof. R. Balasubramaniam and Dr. M.S. Vijayaraghavan for
being the general co-chairs of this conference. We also thank the Cryptology
Research Society of India and ISI, Calcutta.

We hope that the INDOCRYPT series of conferences remains a forum for
discussing high-quality results in the area of cryptology and its applications to
information security in the years to come.

December 2004 Anne Canteaut
Kapaleeswaran Viswanathan



Organization

The INDOCRYPT Conferences are the annual events of the Cryptology Re-
search Society of India. INDOCRYPT 2004 was organized by IMSc, Chennai,
and SETS, Chennai.

General Co-chairs

R. Balasubramanian Institute for Mathematical Sciences, India
M.S. Vijayaraghavan SETS, India

Program Co-chairs

Anne Canteaut INRIA, France
Kapaleeswaran Viswanathan SETS, India

Program Committee

Michael Backes IBM, Zurich, Switzerland
Colin Boyd Queensland University of Technology, Australia
Anne Canteaut INRIA, France
Cunsheng Ding Hong Kong University of Science and

Technology, China
Andreas Enge Ecole Polytechnique, France
Caroline Fontaine CNRS, France
Henri Gilbert France Telecom R&D, France
Juanma Gonzalez-Nieto Queensland University of Technology, Australia
Tor Helleseth University of Bergen, Norway
Thomas Johansson Lund University, Sweden
Kwangjo Kim Information and Communications University,

Korea
Tanja Lange University of Bochum, Germany
Arjen Lenstra Lucent Technologies, USA and Technische

Universiteit Eindhoven, The Netherlands
C.E. Veni Madhavan Indian Institute of Science, Bangalore, India
Keith Martin Royal Holloway University of London, UK
Anish Mathuria Dhirubhai Ambani, Institute of Information

and Communication Technology, India



VIII Organization

Alfred Menezes University of Waterloo, Canada
Shiho Moriai Sony Computer Entertainment Inc., Japan
Kenneth Paterson Royal Holloway University of London, UK
Kapil H. Paranjape IMSc, Chennai, India
Bart Preneel Katholieke Universiteit Leuven, Belgium
Bimal Roy ISI Kolkata, India
Amit Sahai Princeton University, USA
Palash Sarkar ISI Kolkata, India
Henk van Tilborg Technische Universiteit Eindhoven,

The Netherlands
D.G. Thomas Madras Christian College, India
Kapaleeswaran Viswanathan SETS, Chennai, India
Adam Young Cigital Labs, USA
Moti Yung Columbia University, USA

Organizing Committee

Dr. A.K. Chakravarthy Dept. of IT, MICT, Govt. of India
Mr. Cédric Lauradoux INRIA, France
Dr. K. Srinivas IMSc, India
Dr. N.Vijayarangan SETS, India

Organizing Sub-committee

Mr. G. Aswin SETS, India
Mr. C. Stephen Balasundaram SETS, India
Mr. Manish Chauhan SETS, India
Ms. R. Indra IMSc, India
Ms. K. Jayasri SETS, India
Mr. R. Harish Kumar SETS, India
Mr. Ramakrishna Manja IMSc, India
Dr. Paul Pandian IMSc, India
Mr. Vishnu Prasath IMSc, India
Ms. A. Suganya SETS, India
Mr. R. Vijayasarathy SETS, India

External Referees

P.J. Abisha
Avishek Adhikari
Riza Aditya
Toru Akishita

Sattam Al-Riyami
Lejla Batina
Côme Berbain
Thierry Berger

Florent Bersani
Alex Biryukov
Simon Blackburn
Emmanuel Bresson



Organization IX

Jan Camenisch
Liqun Chen
Olivier Chevassut
Matthijs Coster
Deepak Kumar Dalai
V. Rajkumar Dare
Christophe De Cannière
Alex Dent
Jeroen Doumen
Dang Nguyen Duc
Sylvain Duquesne
H̊akan Englund
Steven Galbraith
Pierrick Gaudry
Daniel Gottesman
Robert Granger
Kishan Chand Gupta
Darrel Hankerson
Guillaume Hanrot
Martin Hell
Clemens Heuberger
Shoichi Hirose
Yvonne Hitchcock
Dennis Hofheinz
Tetsu Iwata
Cees Jansen

Ellen Jochemsz
Stefan Katzenbeisser
Alexander Kholosha
Caroline Kudla
Joseph Lano
Hyunrok Lee
Kerstin Lemke
Benôıt Libert
Vo Duc Liem
Phil MacKenzie
John Malone-Lee
Alexander Maximov
Nele Mentens
Chris Mitchell
Suman K. Mitra
François Morain
Sumio Morioka
Joern Mueller-Quade
James Muir
Svetla Nikova
Luke O’Connor
Siddika Berna Ors
Daniel Page
Matthew Parker
Olivier Pereira
H̊avard Raddum

Zulfikar Ramzan
K. Rangarajan
François Recher
Akashi Satoh
Werner Schindler
Takeshi Shimoyama
Taizo Shirai
Jamshid Shokrollahi
Hervé Sibert
Francesco Sica
Andrey Sidorenko
Martijn Stam
Tsuyoshi Takagi
Gerard Tel
Yuuki Tokunaga
Ludo Tolhuizen
Emmanuel Thomé
Pim Tuyls
M.K. Viswanath
Brent Waters
Benne de Weger
Annegret Weng
Arne Winterhof
Christopher Wolf
Robbie Ye
Feng Zhu

Sponsoring Institutions

Bharat Electronics Limited
BRNS Secretariat, Bhabha Atomic Research Centre
Department of Information Technology, Government of India
Department of Science and Technology, Government of India
Electronics Corporation of India Limited
Hewlett Packard India Private Limited
Institute for Development and Research in Banking Technology
NASSCOM
SLN Technologies Private Limited
Sun Microsystems India Private Limited



Table of Contents

Invited Talks

Design of Secure Key Establishment Protocols: Successes, Failures and
Prospects

Colin Boyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Secure Protocols for Complex Tasks in Complex Environments
Amit Sahai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Cryptographic Protocols

Tripartite Key Exchange in the Canetti-Krawczyk Proof Model
Yvonne Hitchcock, Colin Boyd, Juan Manuel González Nieto . . . . . . . . 17

The Marriage Proposals Problem: Fair and Efficient Solution for
Two-Party Computations

Audrey Montreuil, Jacques Patarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Applications

On the Security of a Certified E-Mail Scheme
Guilin Wang, Feng Bao, Jianying Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Multiplicative Homomorphic E-Voting
Kun Peng, Riza Aditya, Colin Boyd, Ed Dawson,
Byoungcheon Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Stream Ciphers

Chosen Ciphertext Attack on a New Class of Self-Synchronizing Stream
Ciphers

Bin Zhang, Hongjun Wu, Dengguo Feng, Feng Bao . . . . . . . . . . . . . . . . 73

Algebraic Attacks Over GF (q)
Lynn Margaret Batten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



XII Table of Contents

Cryptographic Boolean Functions

Results on Algebraic Immunity for Cryptographically Significant
Boolean Functions

Deepak Kumar Dalai, Kishan Chand Gupta, Subhamoy Maitra . . . . . . 92

Generalized Boolean Bent Functions
Laurent Poinsot, Sami Harari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

On Boolean Functions with Generalized Cryptographic Properties
An Braeken, Ventzislav Nikov, Svetla Nikova, Bart Preneel . . . . . . . . . . 120

Foundations

Information Theory and the Security of Binary Data Perturbation
Poorvi L. Vora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Symmetric Authentication Codes with Secrecy and Unconditionally
Secure Authenticated Encryption

Luke McAven, Reihaneh Safavi–Naini, Moti Yung . . . . . . . . . . . . . . . . . 148

Block Ciphers

Faster Variants of the MESH Block Ciphers
Jorge Nakahara Júnior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Related-Key Attacks on Reduced Rounds of SHACAL-2
Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim,
Junghwan Song . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H
Youngdai Ko, Changhoon Lee, Seokhie Hong, Jaechul Sung,
Sangjin Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Cryptanalysis of Ake98
Jorge Nakahara Júnior, Daniel Santana de Freitas . . . . . . . . . . . . . . . . . 206

Public Key Encryption

Designing an Efficient and Secure Public-Key Cryptosystem Based on
Reducible Rank Codes

Thierry Berger, Pierre Loidreau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218



Table of Contents XIII

HEAD: Hybrid Encryption with Delegated Decryption Capability
Palash Sarkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A Provably Secure Elliptic Curve Scheme with Fast Encryption
David Galindo, Sebastià Mart́ın, Tsuyoshi Takagi,
Jorge L. Villar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Efficient Representations

Advances in Alternative Non-adjacent Form Representations
Gildas Avoine, Jean Monnerat, Thomas Peyrin . . . . . . . . . . . . . . . . . . . . 260

Public Key Cryptanalysis

Attacks on Public Key Cryptosystems Based on Free Partially
Commutative Monoids and Groups

Françoise Levy-dit-Vehel, Ludovic Perret . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Exact Analysis of Montgomery Multiplication
Hisayoshi Sato, Daniel Schepers, Tsuyoshi Takagi . . . . . . . . . . . . . . . . . . 290

Cryptography, Connections, Cocycles and Crystals: A p-Adic
Exploration of the Discrete Logarithm Problem

H. Gopalkrishna Gadiyar, KM Sangeeta Maini, R. Padma . . . . . . . . . . 305

Modes of Operation

EME∗: Extending EME to Handle Arbitrary-Length Messages with
Associated Data

Shai Halevi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Impossibility of Construction of OWHF and UOWHF from PGV
Model Based on Block Cipher Secure Against ACPCA

Donghoon Chang, Wonil Lee, Seokhie Hong, Jaechul Sung,
Sangjin Lee, Soohak Sung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

The Security and Performance of the Galois/Counter Mode (GCM) of
Operation

David A. McGrew, John Viega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343



XIV Table of Contents

Signatures

Revisiting Fully Distributed Proxy Signature Schemes
Javier Herranz, Germán Sáez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

New ID-Based Threshold Signature Scheme from Bilinear Pairings
Xiaofeng Chen, Fangguo Zhang, Divyan M. Konidala,
Kwangjo Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Separable Linkable Threshold Ring Signatures
Patrick P. Tsang, Victor K. Wei, Tony K. Chan, Man Ho Au,
Joseph K. Liu, Duncan S. Wong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Traitor Tracing and Visual Cryptography

A New Black and White Visual Cryptographic Scheme for General
Access Structures

Avishek Adhikari, Tridib Kumar Dutta, Bimal Roy . . . . . . . . . . . . . . . . . 399

Identification Algorithms for Sequential Traitor Tracing
Marcel Fernandez, Miguel Soriano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431



Design of Secure Key Establishment Protocols:
Successes, Failures and Prospects

Colin Boyd�

Information Security Research Centre,
Queensland University of Technology,

Brisbane Q4001, Australia
boyd@isrc.qut.edu.au

Abstract. Key establishment protocols form one of the most basic types
of cryptographic protocols and have been studied intensively for over 20
years. The current status of design and analysis methods is reviewed with
particular reference to formal appoaches. Likely future trends and open
issues are also discussed.

1 Introduction

Key establishment is a foundational element for secure communications. It con-
cerns how to set up a new key (a session key) to protect communications during
a subsequent session. In terms of modern cryptography it is a venerable problem
that has been widely studied from almost every conceivable angle. One may ask
how hard it can be to consider all ways of setting up a session key. Yet the
evidence is that this study has not yet been exhaustive. One reason for this is
that new requirements have become evident over time that were not previously
recognised. Another reason is that there is no well-defined method to explore
the space of possible secure protocols. Even until today most systematic or for-
mal techniques allow only protocol analysis and not design of protocols to meet
specific requirements. The purposes of this paper are:

– to explore current techniques to ensure the security of key establishment
protocols, particularly those with some formal basis;

– to consider to what extent these methods can be used to systematically
design new protocols;

– to summarise (and speculate on) prospects for the future of these methods.

In the rest of this introduction some background information is provided on
protocol types and potential security requirements. Section 2 looks at informal
design principles for key establishment. Sections 3 and 4 are devoted to the two
main formal approaches to protocol analysis: the formal methods approach which

� Research funded by Australian Research Council under Discovery Project
DP0345775.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 1–13, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 C. Boyd

comes from the computer security research community, and the computational
approach which comes from the cryptography research community. Section 5
discusses current trends and prospects for combining the benefits of both these
approaches.

1.1 Key Agreement and Key Transport

A common way of classifying key establishment is to consider protocols which
provide either key agreement or key transport. Key agreement protocols require
input to the session key from both parties in a two-party protocol, or more
generally from more than one party in a multi-party protocol. In a key transport
protocol one party (often a trusted third party) chooses the key and forwards it
to the other parties.

It is often stated that key agreement is preferable to key transport. Reasons
given are that key agreement is ‘fairer’ since no party is able to fix the key value.
However, this property does not correspond to any standard security property
and most models do not in any case take account of malicious insiders. Since
any party is free to give away the session key at will, what may be the benefit
of making the key some fixed value? In addition, it is often suggested that using
pseudo-random input from more than one party serves to increase the random-
ness of the final key. This may or may not be useful depending on how the values
are combined. In particular, suppose that two parties A and B provide values
gx and gy in the classic Diffie-Hellman key agreement protocol. If the random
number generator of A is very weak then it may be easy for an adversary to
obtain x and hence the shared key gxy, no matter how strong is the random
number generator of B1.

1.2 Adding Requirements

One reason that key establishment continues to be a challenging problem is the
addition of new properties that are desired in certain situations. These include
ways of strengthening the security properties such as the following.

Forward Secrecy is the property that compromise of long-term keys should
not compromise session keys that were previously accepted. Forward secrecy is
increasingly regarded as a very desirable property. It seems to be achievable
only through the use of ephemeral public keys, such as in Diffie-Hellman key
exchange. (Although it is not widely recognised, ephemeral keys from any public
key encryption scheme can be used to provide forward secrecy, including RSA
as noted by Wiener [Wie98].)

Resistance to Key Compromise Impersonation is a less widely discussed
property that is related to forward secrecy in that it concerns what may hap-
pen after long-term keys are compromised. It demands that the adversary who
has obtained the long-term key of entity A is unable to masquerade as other
principals to A.

1 This observation was made to me by Carsten Rudolph.



Design of Secure Key Establishment Protocols 3

Anonymity of Principals was often neglected in the past, but with the preva-
lence of communications on public (including wireless) networks it is more widely
recognised as an issue. For example, the Internet Key Exchange (IKE) proto-
col [HC98] explicitly addresses this requirement, although its provision is not so
robust as may have been initially expected [PK00].

Resistance to Denial of Service is a pressing practical need for protocols,
particularly those run on open networks. This is another property that was
considered in the design of IKE, although there has been much controversy over
the resulting solution [PK00].

As well as the above extra security features that can be relevant to any
security architecture, some protocols have extra fundamental assumptions about
the way that the network is set up and the security infrastructure in place.

Group Key Establishment protocols have become very popular in the recent
literature in line with the increase in collaborative communications applications.
There are many possible types of architecture. One of the most challenging is
the ad-hoc network where the security infrastructure may be minimal.

Low-Power Principals are as prevalent as ever, due to the inexorable minia-
turisation of devices. The most common example has been the mobile telephone,
and there are many protocols designed specifically for its use. New lightweight
technologies, such as RFID tags, open up new challenges.

Password-Based Protocols were first introduced around 15 years ago. These
protocols assume that shared keys have only a small amount of entropy, and
must therefore be robust against off-line guessing attacks in which the adversary
attempts to eliminate potential passwords using public information. Recently
such protocols have attracted extensive interest, and standards in both IEEE
[IEE04] and ISO are in preparation.

Identity-Based Protocols have been around for about 20 years but recent
techniques based on elliptic curve pairings have resulted in an explosion of inter-
est in this area. These protocols allow users to establish keys without the use of
an on-line server or a public key infrastructure. There is likely to be continuing
interest in this area and to date few key establishment protocols using the new
techniques come with a proof of security.

Notice that most combinations of the above requirements or scenarios are
possible, although some are in conflict with others. For example, protocols pro-
viding forward secrecy are typically more computationally expensive than those
that do not. Therefore protocols designed for low-power principals often sacrifice
forward secrecy for benefits in efficiency.

2 Design Principles

In 1994 Abadi and Needham gathered together the experience of many years
and produced a set of 11 rules of thumb to be used as principles for designers
of cryptographic protocols [AN94]. The following year Anderson and Needham



4 C. Boyd

[AN95] added a set of “robustness principles” aimed specifically at protocols in
the public-key setting.

The Abadi-Needham principles can be viewed as common sense rules that can
be applied in an informal protocol design process. Undoubtedly the informal
design of simple protocols has benefited from wide knowledge of these rules.
However, it is interesting to note that at least two, and arguably four, of the
rules are about clearly defining various aspects of the protocol specification. In
addition two of the seven principles of Anderson-Needham fall into this category.
In other words these informal rules can be regarded as promoting the use of
formality in protocol analysis.

One of the principles of Abadi and Needham can be roughly paraphrased
as ‘sign-before-encrypting’. In other words, when it is required to provide both
authentication and confidentiality to some data, the plaintext should be signed
and the result should then be encrypted. The idea behind this rule is intuitively
clear: a signature of a ciphertext does not imply that the signer ever knew the
plaintext. Indeed, there are several protocol attacks in which a signature on a
ciphertext is removed by the adversary and replaced with a new signature. It
is therefore somewhat surprising to find that many successful protocols, even
those with proofs of security, ignore this rule. Paradoxically, much later analysis
of the security of combining authenticity and encryption [ADR02] indicates that
signing before encryption tends to give security properties no stronger than
applying these operations the other way around.

3 Formal Specifications

Formal methods of specification and analysis, usually supported by software
tools, have been used to analyse key establishment protocols for over 15 years.
The typical analysis model uses a paradigm introduced by Dolev and Yao [DY83]
in which cryptography is treated as a ‘black-box’ operation. This means that the
adversary is able to encrypt and decrypt with any keys that it knows, but without
the necessary keys will be unable to do anything with a ciphertext. Numerous
formalisms and tools have been used over the years. Generally the tools search
the available state space and try to establish whether insecure states can be
reached. Various methods have been used to enhance the searching process.
Meadows [Mea03] provides a detailed introduction to the history and progress
of this research area.

3.1 Successes

There are some well-documented cases of new and unexpected attacks on pro-
tocols that have been found by machine analysis. The most celebrated is Lowe’s
discovery [Low96] of a flaw in the public-key protocol of Needham and Schroeder
[NS78] which was found in 1996, close to 20 years after the protocol’s first pub-
lication. The attack is surprisingly simple and once seen looks very obvious and
not at all something beyond the capacity of a systematic search by hand.



Design of Secure Key Establishment Protocols 5

In addition to finding flaws many protocols have been certified as free from
flaws using analysis of formal specifications. Model checkers can be used to check
protocols quickly and in an automated fashion. As one recent example, Basin et
al. [BMV03] report that their ‘on-the-fly model checker’ (OFMC) was able to
check all 36 protocols from the well known Clark–Jacob library [CJ97] in less
than one minute of processing time.

3.2 Failures

A major limitation of models based on Dolev-Yao is that there is no succinct
representation of the security property attained by a protocol that passes the
analysis. What we know is that there is no adversary that can gain the stated
secrets using the operations in the way specified. But that does not mean that
there are not other strategies for the adversary that may be successful. Backes
and Schunter [BS04] describe an example in which a mobile agent security pro-
tocol was formally verified to be secure with an automated theorem prover and
yet it turned out to be vulnerable to a simple attack. Backes and Schunter point
out that the reason for this failure was the omission of a critical action which the
adversary should be allowed. Once the attack is discovered it is easy to include
this action into the adversary’s repertoire. A possible conclusion is that you need
to already know about the potential types of attack in order to find them using
the this type of model. It is perhaps harsh to regard this example as a criticism
of formal methods, since protocols of the type used in this case have not yet
been modelled at all using the computational models described below.

A second, and more obvious, limitation of the Dolev-Yao approach is that
the cryptographic properties are not modelled faithfully. One aspect of this is
that partial information leakage and probabilistic behaviour is typically ignored.
A related, practically significant, issue is that different definitions of confiden-
tiality are not distinguished. In the cryptographic community there are several
different standard definitions of confidentiality including indistinguishability and
non-malleability, and protection against either known plaintext or chosen plain-
text attacks. Generally algorithms with stronger properties are less efficient and
require stronger assumptions, so it is a good principle to use the weakest assump-
tions possible regarding the cryptographic algorithm required. Having found the
attack on Needham-Schroeder protocol mentioned in Section 3.1, Lowe proposed
an improvement which showed no weaknesses using his technique. However, nei-
ther in the original definition, nor in his improved protocol, is there a specifica-
tion of the encryption algorithm to be used in terms of the standard definitions.
It is not hard to see that some form of non-malleability must be provided and
Lowe does point out that the adversary must not be able to alter an encrypted
message. Recently Warinschi [War03] has given a computational proof assuming
that the encryption algorithm has a strong security property.

3.3 Prospects

There is no doubt that research using formal methods for protocol analysis is as
active as it ever has been. The plethora of tools and formalisms that were ap-



6 C. Boyd

plied during the 1990s revealed new insights but it is now widely recognised that
advances are required to ‘go beyond Dolev-Yao’ by incorporating new properties
and exploring new requirements. Meadows [Mea03] provides a comprehensive
review of future trends. Some of the main directions that she mentions are cov-
erage of denial of service, anonymity, and more cryptographic properties. Mead-
ows remarks on the trend to analyse real-world protocols, particularly those in
standards. Backes and Schunter [BS04] provide a “cryptographers’ wish-list” of
Dolev-Yao extensions which overlaps with the issues identified by Meadows.

None of the current tools can really be used as design methods except in the
sense that there are some (relatively) automatic and quick analysis tools that
can be used to provide quick feedback on prototype designs. Meadows [Mea03]
remarks that a possible direction towards using animation to help designers
does not seem to be developing. There has been some work using tools to search
for good protocols in the set of all possible protocols [CJ02]. So far it is not
demonstrated that these can find useful new protocols with specified properties.

4 Provable Security

The cryptographic research community has evolved in the past 10-15 years to
embrace formal foundations based on computational definitions and reductionist
proofs. Acceptance of the approach is now widespread although there remain
controversies [KM04], particularly when the so-called random oracle model is
adopted. Initially the computational definitions concentrated on basic algorithms
such as encryption and signature schemes. Key establishment was first considered
in 1993 and interest has blossomed since the late 1990s.

4.1 Bellare–Rogaway Model

Bellare and Rogaway [BR93] initiated the computational study of key estab-
lishment in 1993. Their first paper covered only a two-party protocol between
two users who already share a long-term key. Two years later [BR95] this was
extended to a three-party protocol including a trusted server in the style of
Needham and Schroeder’s shared key protocol.

In models of this type the adversary runs the protocol in the sense that it
controls which parties send and receive messages. To do this the adversary issues
a Send query. The adversary has the ability to fabricate any messages that it can
compute and use these as messages. In addition the adversary can obtain any
session key that has been accepted by issuing a Reveal query regarding any party
instance. The adversary can also issue a Corrupt query regarding any party and
obtain and modify its long terms keys. These capabilities model the ability of a
protocol adversary to mount replay attacks and insider attacks. The adversary
eventually issues a Test query for a session that has not been opened by a Reveal
or Corrupt query. The adversary’s goal is to reliably distinguish between the
key accepted in the test session and a random key. This is a strong definition
of security but one which corresponds to the prevailing definition of security
for confidentiality in encryption algorithms. The adversary is restricted only in



Design of Secure Key Establishment Protocols 7

that it has bounded computational power; specifically it must be a probabilistic
polynomial time algorithm.

Successes. By now there have been quite a few protocols proven secure in the
Bellare–Rogaway model, or close variants. These include public key transport
protocols, key agreement protocols, password-based protocols, multi-party key
agreement and identity-based protocols. One may argue that the number of
proven secure protocols is nevertheless quite small in comparison with the range
of key establishment protocols currently known. Proving a protocol in this model
is no small undertaking and most of the relevant papers contain proofs for only
one or two protocols and require several pages of human-generated mathematical
reasoning.

Failures. One criticism of the provable security approach in general is inac-
cessibility of the proofs. This leads in turn to a lack of wide scrutiny of the
proofs [KM04]. There have been well-publicised failures in computational proofs
for encryption. Proofs have also been claimed for key establishment protocols
that were subsequently shown to be insecure. A protocol designed for low-power
devices by Jakobsson and Pointcheval was initially published in a pre-proceedings
version which was shown by Wong and Chan to be vulnerable to a simple mas-
querading attack [WC01]. Subsequently the protocol was fixed with a small
change.

Another issue is whether protocols proven secure can be implemented in a way
that they can be practically used. An important part of the security definition
requires the identification of the partner of any principal in a protocol run. This is
because the adversary must be forbidden from obtaining a session key in a trivial
way by revealing the key from a partner who has accepted. In different versions
of the Bellare–Rogaway model partnering has been defined in different ways.
The most recent versions [BPR00] used the natural idea of session identifiers.
This way of defining partners is not only intuitively clear (thus making the
proofs more transparent) but also gives a practical way for entities to identify
which key to use (for example on a particular communications socket). It turns
out that the 1995 protocol proven secure by Bellare and Rogaway [BR95] has
no reasonable way to define session identifiers. This means that although the
protocol is secure it does not seem very useful. Choo et al. [CBHM04b] showed
how a simple change to the protocol allows a natural session identifier to be
defined, which can also be used in the protocol proof.

Prospects. Over the ten years and more since Bellare and Rogaway introduced
their model there have been significant extensions. This has usually taken the
form of new capabilities made available to the adversary to fit new requirements.
For example, password-based protocols are accommodated by restricting the
adversary’s ability to use Send queries since each such query may be used to test
a single password. Instead a new Execute query allows the adversary to observe
protocol runs without trying a password guess.



8 C. Boyd

Although the basic model is now firmly established, it seems likely that new
variations will continue to evolve to cater for new requirements. Very recently
Abdalla et al. [AFP04] proposed a variation in the adversary capability which
allows multiple Test queries which consistently respond with the real key or a
random one. Looking back at some of the additional requirements mentioned
in Section 1.2 we can see that there is potential for some new additions to the
model. Forward secrecy is already catered for through use of the Corrupt query,
but key compromise impersonation and anonymity do not yet seem to have
been modelled. These two seem to be quite achievable in this type of model,
but denial of service is an area that seems to fall outside the scope of the usual
computational models.

It is clear that analysis in the Bellare–Rogaway model does not provide an
efficient way to design a new protocol. Varying an existing protocol is very likely
to break an existing proof and there seems no useful way to guess whether a
proof is possible for a new protocol.

4.2 Modular Proofs

In 1998, Bellare, Canetti and Krawczyk [BCK98] suggested a method for mod-
ular proofs of key establishment protocols. The basic idea is to first prove the
protocol secure in an ideal world where messages are automatically authenti-
cated. This ideal world is called the authenticated links model or simply the AM.
This roughly corresponds to the situation where the adversary is passive, so un-
able to alter or fabricate messages (although the adversary is able to effectively
delete messages). Having proved the protocol secure in the ideal world it can
then be transformed into a protocol in a more realistic model in which the ad-
versary does have the ability to fabricate messages — indeed the capabilities of
the adversary are basically the same as those in the Bellare–Rogaway model.

The initial model of Bellare et al. [BCK98] used a security definition based on
emulation between protocols in the two worlds. Later it was found that this defi-
nition is too strict to be useful and so, in 2001, Canetti and Krawczyk published
a revised model [CK01] with a definition of security based on indistinguishabil-
ity, similar to that of Bellare and Rogaway. Another significant benefit in the
new model is that it is proven that the agreed session key can be used safely to
provide secure channels, a property absent from the Bellare–Rogaway model.

Successes. The modular approach uses two types of components: the simplified
protocols in the ideal world (called AM protocols) and the compilers to trans-
form protocols into the real world (called authenticators). One of the significant
benefits of the modular approach is the ability to reuse any AM protocol with
any authenticator. Consequently, when one new component is proven secure, a
whole set of new protocols results whose members are all automatically proven
secure. As the number of components increases the multiplying effect of adding
other components becomes more significant.

The separation of concerns between session key confidentiality and authenti-
cation also allows a much easier way to select components suitable for different
applications. In other words, we may regard the modular approach as a step



Design of Secure Key Establishment Protocols 9

towards a design method for provably secure key establishment protocols. The
initial papers of Bellare et al. provided only a couple of examples of authenti-
cators and AM protocols. Subsequently a number of additional examples have
been provided including: a password-based authenticator [HTN+03] an authenti-
cator based on static secrets (including identity-based secrets) [BMP04]; an AM
protocol using ElGamal-type encryption [TBN03]; and an AM protocol mixing
symmetric and asymmetric encryption [TVBN04].

Failures. A significant limitation of the modular approach is that it may not
be possible to reach all desirable protocols by decomposing into AM protocols
and authenticators. In particular, despite the existence of password-based au-
thenticator when the server has a public key [HTN+03], password-based pro-
tocols that do not use server-public keys do not seem to allow any useful sep-
arate authenticator. This is not a limitation of the computational approach in
general, since such protocols have been proven secure in the Bellare–Rogaway
model [Mac02, EBP04].

A second limitation concerns the ‘post-processing’ of proven-secure protocols.
In order to derive efficient protocols using the modular approach, it is necessary
to perform some optimisation steps, particularly in the case where the AM proto-
col has more the one message. Currently this process is informal, so any resulting
protocol strictly no longer has a security proof.

Prospects. It seems likely that more protocol components can be added to
the library of existing proven secure components. This will lead to a significant
number of additional protocols due to the multiplying effect mentioned above.
Another likely development is the formalisation of the optimisation steps in order
to make the whole process of obtaining an efficient protocol fully formal.

One direction that has not been explored yet in the Canetti and Krawczyk
model is multi-party protocols (with the exception of the three-party case [HBN]).
However, Katz and Yung [KY03] have proven secure a protocol compiler which
works in a very similar way to an authenticator. Their compiler takes a protocol
secure against a passive Bellare–Rogaway adversary (one which does not use
Send queries) into one which is secure against an active adversary. It would be
useful to understand the precise relationship between these related models.

5 Joining Forces

The formal methods approach to protocol analysis and the computational ap-
proach are both strong and active. In a sense their strengths and weaknesses are
complementary. The formal methods approach uses an incomplete model of cryp-
tography and lacks a transparent definition of security, but tool support gives
strong assurance of analysis correctness and allows quick results to be obtained.
The computational approach uses the normal definitions of cryptography, but
the analysis results are slow to obtain and inaccessible to non-experts.

It is a natural goal to develop a complementary approach incorporating the
strengths of both the approaches. One simple way to do this is to perform the



10 C. Boyd

Dolev-Yao style of analysis using the same adversary definition as used in the
computational approach, but limited to deterministic actions. Surprisingly this
has only recently been explored [CBHM04a]. This process allows a hand-proven
computational proof to stand alongside an automatic Dolev-Yao style analysis
with a simplified model of cryptography. Going beyond this, it would be helpful
to specify and explore with tools the proof process used in the computational
approach. This need not take the form of a complete automatic proof checker;
even a modest analysis of a part of the proof could be very beneficial. Reduc-
tionist proofs typically work by plugging a problem instance into an adversary
assumed to have an advantage in breaking the protocol of interest. This requires
a simulation of the protocol in order to let the adversary operate normally. Cor-
rect specification of the simulation seems to be an area vulnerable to errors.
Therefore a formal specification and exploration of this part of the proof could
be a useful way to find errors in proofs.

An alternative direction is to provide cryptographically faithful abstractions
of cryptography and use these to replace the existing black-box version of cryp-
tography. Two large research efforts which provide the potential for this are
Canetti’s model for universal composability [Can01] and the reactive models
of Pfitzmann et al. [PW01]. At present these models are still too new to have
seen wide application. Recently Backes [Bac04] has illustrated the potential of
this approach with a hand analysis of a well-known protocol. Another effort in
this direction was initiated by Abadi and Rogaway [AR02] aimed at providing
a formal notion of encryption that provides a sound replacement for the usual
computational definitions. Lately this has been extended by others to incorpo-
rate active adversaries [MW04]. It will be interesting to see what new insights
will be gained once software tools are incorporated into this line of work.

Acknowledgements

I am grateful to Juan González and Yvonne Hitchcock for their helpful comments
and suggestions.

References

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of
joint signature and encryption. In Advances in Cryptology - EURO-
CRYPT 2002, pages 83–107. Springer-Verlag, 2002. Full version at
http://theory.lcs.mit.edu/~yevgen/ps/signcrypt.ps.

[AFP04] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-
based authenticated key exchange in the three-party setting. Cryptology
ePrint Archive, Report 2004/233, 2004. http://eprint.iacr.org/.

[AN94] Mart́ın Abadi and Roger Needham. Prudent engineering practice for
cryptographic protocols. In IEEE Symposium on Research in Security
and Privacy, pages 122–136. IEEE Computer Society Press, 1994.



Design of Secure Key Establishment Protocols 11

[AN95] Ross Anderson and Roger Needham. Robustness principles for public key
protocols. In D. Coppersmith, editor, Advances in Cryptology – Crypto
’95, pages 236–247. Springer-Verlag, 1995. Lecture Notes in Computer
Science Volume 963.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptog-
raphy (the computational soundness of formal encryption). Journal of
Cryptology, 15(2):103–127, 2002.

[Bac04] Michael Backes. A cryptographically sounds Dolev–Yao style security
proof on the Otway–Rees protocol. In ESORICS 2004, pages 89–108.
Springer-Verlag, 2004.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular ap-
proach to the design and analysis of authentication and key ex-
change protocols. In 30th ACM Symposium on Theory of Com-
puting, pages 419–428. ACM Press, 1998. Full version at http://
www-cse.ucsd.edu/users/mihir/papers/key-distribution.html.

[BMP04] Colin Boyd, Wenbo Mao, and Kenny Paterson. Key agree-
ment using statically keyed authenticators. In Applied Cryp-
tography and Network Security: Second International Confer-
ence, pages 248–262. Springer-Verlag, 2004. Corrected version at
http://sky.fit.qut.edu.au/~boydc/papers/acns04-corrected.pdf.

[BMV03] D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for
security protocol analysis. In Einar Snekkenes and Dieter Gollmann, ed-
itors, Proceedings of ESORICS’03, LNCS 2808, pages 253–270. Springer-
Verlag, 2003.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In B. Preneel, editor,
Advances in Cryptology – Eurocrypt 2000, pages 139–155. Springer-Verlag,
2000. Lecture Notes in Computer Science Volume 1807.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-
bution. In D. R. Stinson, editor, Advances in Cryptology – Crypto ’93,
pages 232–249. Springer-Verlag, 1993. Lecture Notes in Computer Science
Volume 773. Full version at http://www-cse.ucsd.edu/users/mihir.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distri-
bution – the three party case. In 27th ACM Symposium on Theory of
Computing, pages 57–66. ACM Press, 1995.

[BS04] Michael Backes and Matthias Schunter. From absence of certain vulner-
abilities towards security proofs. In New Security Paradigms Workshop,
pages 67–74. ACM Press, 2004.

[Can01] Ran Canetti. Universally composable security: a new paradigm for
cryptographic protocols (extended abstract). In IEEE, editor, 42nd
IEEE Symposium on Foundations of Computer Science, pages 136–
145. IEEE Computer Society Press, 2001. Full version available at:
http://eprint.iacr.org/2000/067.

[CBHM04a] Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg Maitland.
Complementing computational protocol analysis with formal specifica-
tions. In Formal Aspects in Security and Trust, Toulouse, 2004. To ap-
pear.

[CBHM04b] Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg Maitland. On
session identifiers in provably secure protocols: The bellare-rogaway three-
party key distribution protocol revisited. In Fourth Conference on Secu-
rity in Communication Networks. Springer-Verlag, 2004. To appear.



12 C. Boyd

[CJ97] John Clark and Jeremy Jacob. A survey of au-
thentication protocol literature: Version 1.0. http://
www-users.cs.york.ac.uk/~jac/papers/drareview.ps.gz, Novem-
ber 1997.

[CJ02] John Clark and Jeremy Jacob. Protocols are programs too: the meta-
heuristic search for security protocols. Information and Software Tech-
nology, 43:891–904, 2002.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange proto-
cols and their use for building secure channels. In B. Pfitzmann, edi-
tor, Advances in Cryptology – Eurocrypt 2001, pages 453–474. Springer-
Verlag, 2001. Lecture Notes in Computer Science Volume 2045.
http://eprint.iacr.org/2001/040/.

[DY83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

[EBP04] Olivier Chevassut Emmanuel Bresson and David Pointcheval. New
security results on encrypted key exchange. In International Work-
shop on Practice and Theory in Public Key Cryptography (PKC
2004), pages 145–158. Springer-Verlag, 2004. Also available at
http://www.di.ens.fr/~pointche/pub.php?reference=BrChPo04.

[HBN] Yvonne Hitchcock, Colin Boyd, and Juan Manuel González Nieto. A
password-based authenticator: Security proof and applications. In these
proceedings.

[HC98] D. Harkins and D. Carrel. The internet key exchange (IKE). In RFC
2409. The Internet Society, 1998.

[HTN+03] Yvonne Hitchcock, Yiu Shing Terry Tin, Juan Manuel González
Nieto, Colin Boyd, and Paul Montague. A password-based
authenticator: Security proof and applications. In Indocrypt
2003, pages 388–401. Springer-Verlag, 2003. Full version at
http://sky.fit.qut.edu.au/~boydc/papers/password.ps.gz.

[IEE04] IEEE. P1363.2: Password-Based Public-Key Cryptography, September
2004. http://grouper.ieee.org/groups/1363/passwdPK/index.html.

[KM04] Neal Koblitz and Alfred Menezes. Another look at “provable
security”. Cryptology ePrint Archive, Report 2004/152, 2004.
http://eprint.iacr.org/.

[KY03] Jonathan Katz and Moti Yung. Scalable protocols for authenti-
cated group key exchange. In Advances in Cryptology – Crypto
2003, pages 110–125. Springer-Verlag, 2003. Also available at
http://www.cs.umd.edu/~jkatz/papers/multi-auth.pdf.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public key pro-
tocol using FDR. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 147–166. Springer-Verlag, 1996.

[Mac02] Philip MacKenzie. The PAK suite: Protocols for password-authenticated
key exchange. Technical Report 2002-46, DIMACS, October 2002.
http://dimacs.rutgers.edu/TechnicalReports/abstracts/2002/
2002-46.html.

[Mea03] Catherine Meadows. Formal methods for cryptographic protocol analysis.
IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryp-
tion in the presence of active adversaries. In First Theory of Cryptography
Conference – TCC, pages 133–151. Springer-Verlag, 2004.



Design of Secure Key Establishment Protocols 13

[NS78] Roger Needham and Michael Schroeder. Using encryption for authen-
tication in large network of computers. Communications of the ACM,
21:993–999, December 1978.

[PK00] Radia Perlman and Charlie Kaufman. Key exchange in IPSec: Analysis of
IKE. IEEE Internet Computing, 4(6):50–56, November–December 2000.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reac-
tive systems and its application to secure message transmission. In IEEE
Symposium on Security and Privacy, pages 184–200, 2001.

[TBN03] Yiu Shing Terry Tin, Colin Boyd, and Juan Manuel González Nieto. Prov-
ably secure mobile key exchange: Applying the Canetti-Krawczyk ap-
proach. In Security and Privacy – ACISP 2003, pages 166–179. Springer-
Verlag, 2003.

[TVBN04] Yiu Shing Terry Tin, Harikrishna Vasanta, Colin Boyd, and Juan
Manuel González Nieto. Protocols with security proofs for mo-
bile applications. In Security and Privacy – ACISP 2004,
pages 358–369. Springer-Verlag, 2004. Full version available at
http://sky.fit.qut.edu.au/~boydc/papers/ACISP04Full.pdf.

[War03] B. Warinschi. A computational analysis of the needham-schroeder(-lowe)
protocol. In Proceedings of 16th Computer Science Foundation Workshop,
pages 248–262. ACM Press, 2003.

[WC01] Duncan S. Wong and Agnes H. Chan. Efficient and mutually authenti-
cated key exchange for low power computing devices. In C. Boyd, editor,
Advances in Cryptology – Asiacrypt 2001, pages 272–289. Springer-Verlag,
2001. Lecture Notes in Computer Science Volume 2248.

[Wie98] Michael J. Wiener. Performance comparison of public-key cryptosystems.
RSA Cryptobytes, 4(1), 1998.



Secure Protocols for Complex Tasks in Complex
Environments

Amit Sahai

University of California, Los Angeles
sahai@cs.ucla.edu

Over the last two decades, there has been tremendous success in placing cryptog-
raphy on a sound theoretical foundation, and building an amazingly successful
theory out of it. The key elements in this Modern Cryptographic Theory are
the definitions capturing the intuitive, yet elusive notions of security in various
cryptographic settings. The definitions of the early 80’s proved to be extremely
successful in this regard. But with time, as the theory started addressing more
and more complex concerns, further notions of security had to be introduced.
One of the most important concerns theory ventured into is of complex environ-
ments where different parties are communicating with each other concurrently
in many different protocols. A series of efforts in extending security definitions
led to the paradigm of Universally Composable (UC) Security [1], which along
with modeling a general complex network of parties and providing definitions
of security in that framework, provided powerful tools for building protocols
satisfying such definitions.1

The basic underlying notion of security in the UC framework and its many
predecessors is based on simulation. An “ideal” world is described, where all
requisite tasks get accomplished securely, as if by magic. The goal of the protocol
designer is to find a way to accomplish these tasks in the “real” world, so that no
malicious adversary can take advantage of this substitution of ideal magic by real
protocols. To formalize this, we say that for every malicious adversary A that
tries to take advantage of the real world, there is an adversary S that can achieve
essentially the same results in the ideal world. The “results” are reflected in the
behavior of an environment. In this survey we shall refer to this notion of security
as “Environmental Security.” If a real-life protocol “Environmentally Securely
realizes” a task, it ensures us that replacing the magic by reality does not open
up new unforeseen threats to the system. (There may already be threats to the
system even in the ideal world. But employing cryptographic primitives cannot
offer a solution if the ideal system itself is badly conceived.) The ideal-world
adversary S is called a simulator as it simulates the real-world behavior of A, in
the ideal world.

A major advantage of Environmentally Secure (ES) protocols, as shown in
[1], is that they are “Universally Composable,” i.e., roughly, if multiple copies

1 A similar framework to UC Security was independently proposed by Pfitzmann and
Waidner [5, 6]. These two frameworks are conceptually very similar, although there
are a number of technical differences. We choose to concentrate on the UC framework
in this survey.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 14–16, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Secure Protocols for Complex Tasks in Complex Environments 15

of an ES-protocol are present in the system (in fact they could be copies of
different protocols), then they collectively ES-realize the collection of the tasks
they individually ES-realize. Hence we shall often refer to the framework in [1]
as the ES/UC framework, or simply ES-framework or UC-framework.

Unfortunately, this notion of security turns out to be too strong to be achiev-
able in standard settings. It has been shown that much of the interesting crypto-
graphic tasks (including e.g. commitment, zero knowledge and secure multi-party
computation) cannot be ES-realized when the adversary can control at least half
the parties [1, 2, 3]. On the other hand, under a trusted set-up assumption –
that there is a public reference string chosen by a completely trusted party – it
is known how to build protocols for the most ambitious of cryptographic tasks
(general secure multiparty computation with dishonest majority) satisfying the
Environmental Security definition [4]. However, if no trusted party is assumed,
then we are left with the strong impossibility results mentioned above.

We recently overcame these impossibility results in [7]. In that work, we
develop secure protocols in the plain model (without any trusted set-up assump-
tions), by modifying the notion of security, while still retaining the composability.
The new direction taken by this work opens up many interesting new questions
and directions for the field of cryptographic protocols.

In this survey talk, we will outline the fundamental ideas and results leading
up to the recent work mentioned above, and the many open questions that
remain.

Acknowledgements. The author’s research in this area has been supported by
generous grants from the NSF ITR and Cybertrust programs, as well as an
Alfred P. Sloan Foundation Research Fellowship.

References

1. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) (016):
(2001) (Preliminary version in IEEE Symposium on Foundations of Computer Sci-
ence, pages 136–145, 2001.)

2. Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, pages 19–40, 2001.

3. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally compos-
able two-party computation without set-up assumptions. In EUROCRYPT, pages
68–86, 2003.

4. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In ACM Symposium on Theory of Com-
puting, pages 494–503, 2002.

5. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In ACM Conference on Computer and Communications Security
(CCS 2000), pp. 245–254, 2000.



16 A. Sahai

6. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and
its Application to Secure Message Transmission. In IEEE Symposium on Security
and Privacy, 2001.

7. Manoj Prabhakaran and Amit Sahai. New Notions of Security: Achieving Universal
Composability without Trusted Setup. In ACM Symposium on Theory of Com-
puting, 2004. Full version to appear in SIAM Journal of Computing, Special Issue
for STOC 2004. Preliminary full version available at the Cryptology ePrint Archive
http://eprint.iacr.org/.



Tripartite Key Exchange in the
Canetti-Krawczyk Proof Model�

Yvonne Hitchcock, Colin Boyd, and Juan Manuel González Nieto

Information Security Research Centre, Queensland University of Technology,
GPO Box 2434, Brisbane Q 4001, Australia

{y.hitchcock, c.boyd, j.gonzaleznieto}@qut.edu.au

Abstract. A definition of secure multi-party key exchange in the
Canetti-Krawczyk proof model is proposed, followed by a proof of the
security of the Joux tripartite key agreement protocol according to that
definition. The Joux protocol is then combined with two authentication
mechanisms to produce a variety of provably secure key agreement pro-
tocols. The properties and efficiency of the Joux based protocols thus
derived are then compared with each other and other published tripar-
tite key agreement protocols. It is concluded that the Joux protocol can
be used to generate efficient yet provably secure protocols.

1 Introduction

A major goal of modern cryptography is to enable two or more users on an
insecure (adversary controlled) network to communicate in a confidential man-
ner and/or ensure that such communications are authentic. In order to real-
ize this goal, symmetric key cryptographic tools are often used due to their
efficiency compared to public key techniques. However, use of such tools re-
quires the creation of a secret key (which is typically at least 100 bits long)
known only to the users communicating with each other. Because of the im-
practicality of each possible pair of users sharing a long term secret key, public
key and/or password-based techniques are used to generate such a key when
it is required. An advantage of this method of key generation is to keep dif-
ferent sessions independent, which enables the avoiding of replay attacks (since
the wrong key will have been used for the replay) and lessens the impact of
key compromise (since only one session will be exposed, not all previous
communications).

Although recent progress has been made on the use of formal proof models
to prove the security of key exchange protocols, one area where further work
is required is the use of formal proof models in conjunction with tripartite key
agreement protocols. Tripartite key agreement enables three parties to exchange
a key so that they can all participate in a session. It can also be used to enable
two parties to communicate in the presence of a third party who may provide

� Full version of this paper is available at http://sky.fit.qut.edu.au/∼boydc/papers/.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 17–32, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



18 Y. Hitchcock, C. Boyd, and J.M. González Nieto

chairing, auditing, data recovery or escrow services [1]. In 2000, Joux [13] pro-
posed a tripartite key exchange protocol based on pairings on an elliptic curve
(such as the Weil or Tate pairing) that required only one round, but was subject
to a man-in-the-middle attack due to its lack of any authentication mechanism.
Al-Riyami and Paterson [1] have modified the Joux protocol in a variety of ways
to overcome this problem, yet without adding to the number of rounds required
by the protocol. However, only one of their protocols was accompanied by any
sort of formal security proof, and that proof did not allow adaptive adversaries.
In fact, flaws were found in preliminary versions of their protocols, demonstrat-
ing the difficulty of ensuring protocols are not flawed without the use of formal
security proofs.

In this paper, we provide security proofs for Joux-based tripartite key agree-
ment protocols that provide (implicit) key authentication. To do this, we adopt
the Canetti-Krawczyk proof model [9] (hereafter referred to as the ck-model),
which was based on the model of Bellare, Canetti and Krawczyk [3]. The ck-
model offers the advantage of allowing modular proofs, thus allowing different
components to be proven secure separately, and then joined together to produce
a secure key exchange protocol. It also leads to simpler, less error-prone proofs
and the ability to construct a large number of secure protocols from a much
smaller number of basic secure components.

The modularity of the ck-model is gained by applying a protocol translation
tool, called an authenticator, to protocols proven secure in a much simplified
adversarial setting where authentication of the communication links is not re-
quired. The result of such an application is secure protocols in the unsimplified
adversarial setting where the full capabilities of the adversary are modelled.

Unfortunately, the definition of secure key exchange provided by the original
ck-model only caters for two parties, and so a modification of the definition is
required to cater for tripartite key exchange. Such a modification is proposed
in this paper, in conjunction with the analysis of the security and efficiency of
the Joux [13] protocol. It transpires that the Joux based protocols proposed and
proven secure in this paper require the same number of messages as an ordi-
nary discrete logarithm based tripartite Diffie-Hellman protocol. However, the
Joux based protocols have smaller messages and require a comparable amount
of computation.

2 Overview of the Canetti-Krawczyk Approach

Here a description of the ck-model is given. Further details can be found in [3]
and [9]. The ck-model defines protocol principals who may simultaneously run
multiple local copies of a message driven protocol. Each local copy is called a
session and has its own local state. Two sessions are matching if each session
has the same session identifier and the purpose of each session is to establish
a key between the particular two parties running the sessions. A session is ex-
pired if the session key agreed by the session has been erased from the session
owner’s memory. A powerful adversary attempts to break the protocol by in-



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 19

teracting with the principals. In addition to controlling all communications be-
tween principals, the adversary is able to corrupt any principal, thereby learning
all information in the memory of that principal (e.g. long-term keys, session
states and session keys). The adversary may impersonate a corrupted princi-
pal, although the corrupted principal itself is not activated again and produces
no further output or messages. The adversary may also reveal internal session
states or agreed session keys. The adversary must be efficient in the sense of
being a probabilistic polynomial time algorithm. An unexposed session is one
such that neither it nor a matching session has had its internal state or agreed
session key revealed, and if the owner of the session or a matching session is
corrupted, the corruption occurred after the key had expired at the corrupted
party.

Definition 1 (Informal). An ake protocol is called session key (sk-) secure
if the following two conditions are met. Firstly, if two uncorrupted parties com-
plete matching sessions, then they both accept the same key. Secondly, suppose
the adversary chooses as a “test session” one that is completed, unexpired and
unexposed. Then if the adversary is given either the session key (in this case let
b = 0) or a random string (in this case let b = 1), each with probability 1/2, the
probability of the adversary correctly guessing which one it received (i.e. correctly
guessing the value of b) is not greater than 1/2 plus a negligible function in the
security parameter.

Two adversarial models are defined: the unauthenticated-links adversarial
model (um) and the authenticated-links adversarial model (am). The um corre-
sponds to the “real world” where the adversary completely controls the network
in use, and may modify or create messages from any party to any other party.
The am is a restricted version of the um where the adversary may choose whether
or not to deliver a message, but if a message is delivered, it must have been cre-
ated by the specified sender and be delivered to the specified recipient without
alteration. In addition, any such message may only be delivered once. In this
way, authentication mechanisms can be separated from key agreement mecha-
nisms by proving the key agreement secure in the am, and then applying an
authentication mechanism to the key agreement messages so that the overall
protocol is secure in the um.

An authenticator is a protocol translator that takes an sk-secure protocol
in the am to an sk-secure protocol in the um. Authenticators can be con-
structed using one or more message transmission (mt-) authenticators. An mt-
authenticator is a protocol which delivers one message in the um in an authen-
ticated manner. To translate an sk-secure protocol in the am to an sk-secure
protocol in the um an mt-authenticator can be applied to each message and the
resultant sub-protocols combined to form one overall sk-secure protocol in the
um. However, if the sk-secure protocol in the am consists of more than one mes-
sage, the resultant protocol is usually optimized to reduce the number and size
of messages, involving reorder and reuse of message components. This practice
was used in the ck-model proposal [9], although without a formal security proof.



20 Y. Hitchcock, C. Boyd, and J.M. González Nieto

The ck-model automatically ensures that secure protocols also provide per-
fect forward secrecy [9] through the use of session expiration. The ck-model
also ensures that secure protocols are immune to unknown key share attacks [7–
pp. 139–140]. This can be shown by contradiction. Suppose that an unknown
key share attack exists on an sk-secure protocol. Then the two sessions knowing
the secret key are not matching, since the identities of the supposed participants
are different. Hence the adversary can choose one session as the test session and
reveal the key in the other session and so achieve a non-negligible advantage.
However, this contradicts the assumption of sk-security. Key compromise im-
personation attacks [7–p. 52] are not covered by the ck-model since parties are
unable to send or receive messages after corruption (it is only possible for the
adversary to send or receive on the behalf of the corrupted party).

3 Definition of Secure Tripartite Key Exchange

The definitions of key exchange protocols and sk-security in the am and um
provided by Canetti and Krawczyk in [9] are restricted to the case of two par-
ticipants. It is necessary to extend the existing definitions to cater for at least
three parties for use with tripartite key exchange. Therefore, the input to a
key exchange protocol running within each party with identity Pi is redefined
to be (D, sid, role), where sid is the session identifier, D = {Pi, Pj , Pk, . . .}
is the set of identities of participants in the key exchange and Pi ∈ D. We
make the new requirement that one and only one publicly available function,
f , be specified (for the purpose of linking party identities to session identi-
fiers). It is then required that for all inputs of the form (D, sid, role) to key
exchange protocols, f(D, s, d) = 1 for some d, and f(D′, s, d′) = 0 for any
set D′ �= D and any d′ (including d′ = d). It is also required that sid be
unique to each party using it. As an example, let D = {Pi, Pj , Pk}, let H be
a collision resistant hash function, and let Ni, Nj and Nk be nonces freshly
generated by Pi, Pj and Pk respectively, where the nonces are of a sufficient
length that the probability of any one of them previously having been gener-
ated is negligible. Defining s = H(Pi ‖ Pj ‖ Pk ‖ Ni ‖ Nj ‖ Nk) (where ‖
indicates concatenation) and defining f({Pi, Pj , Pk}, s, (Ni ‖ Nj ‖ Nk)) = 1 if
and only if s = H(Pi ‖ Pj ‖ Pk ‖ Ni ‖ Nj ‖ Nk) satisfies all of the above
requirements.

Definition 2 (Matching). Any u sessions (where each session is run by a
different party) are matching if each session has the same session identifier.
In particular, any two sessions with the same session identifier are said to be
matching.

Definition 3 (Session Key Security). A t-party ke protocol π is called ses-
sion key (sk-) secure in the am (respectively um) if the following two properties
hold for any adversary A (respectively U) in the am (respectively um).



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 21

1. Protocol π satisfies the property that if t uncorrupted parties complete a set
of t matching sessions then they all output the same key.

2. The probability that A (respectively U) guesses correctly the bit b from the
test-session (i.e. outputs b′ = b) is no more than 1/2 plus a negligible function
in the security parameter (i.e. no better than a random guess).

The two requirements of the definition of sk-security in the t party case
directly correspond to those in the two party case. The modified requirements
regarding the session identifier are the major change in the case of key exchange
involving more than two parties. The identities of the participants are linked
to the session identifier to make it easy to avoid scenarios where two or more
sessions have identical keys but are not matching due to different beliefs by the
sessions about who is participating in the protocol.

It is worth noting that in the ck-model, since uncorrupted protocol partici-
pants always follow the protocol, a protocol participant, say A, can trust another
participant, say B, to pass on correct input from a third party, say C. The first
party, A, does not need to receive an authenticated message from C, but only
an authenticated message from B. A trusts that B received an authenticated
message from C containing the information that B forwarded to A.

4 Tripartite Key Exchange Protocol in the AM

The notation used by the tripartite key exchange protocol is as follows:

A, B, C : Protocol participants exchanging a secret key.
P : Base point of the elliptic curve.
G1 : Points on an elliptic curve with a suitable pairing.
G2 : Group of the same size as G1.
n : Order of G1 and G2.
e : G1 × G1 −→ G2 : An admissible bilinear map (properties are below).

σY
X :

Signature by X intended for Y . Specifying the intended recipient clar-
ifies the purpose of each signature in protocol descriptions, although
in practice the intended recipient need not be specified.

XEY :
Encryption by X intended for Y . Specifying the sender clarifies the
purpose of each encryption in protocol descriptions, although in prac-
tice the sender does not necessarily need to be specified.

An admissible bilinear map must be bilinear, non-degenerate and com-
putable [5]. That is, the map must satisfy e([a]P, [b]Q) = e(P, Q)ab for all
P, Q ∈ G1 and all a, b ∈ Z, the map must not send all pairs in G1 × G1 to
the identity in G2, and there must be an efficient algorithm to compute e(P, Q)
for any P, Q ∈ G1. It is possible to construct an admissible bilinear map based
on either the Weil pairing or Tate pairing over an elliptic curve [12, 5].

Joux has described an unauthenticated broadcast tripartite key exchange pro-
tocol which requires only one round [13, 19]. In the protocol, each party chooses
a random value a ∈R Zn and broadcasts [a]P to the other two parties. The



22 Y. Hitchcock, C. Boyd, and J.M. González Nieto

shared key is computed as e(P, P )abc, where a, b and c are the random values
chosen by the three parties. Since no authenticators are available for broadcast
protocols, two unicast versions (Protocols 1 and 2) are examined in the am. A
session identifier, sid, has been added to all protocol messages, and Protocol 2
uses one party to act as messenger between the other two parties to reduce the
total number of message flows. The value of sid is not specified here, but the
ck-model assumes it to be known by protocol participants before the protocol
begins. In practice, the session identifier may be determined during protocol ex-
ecution [9, 20]. It is assumed that messages in the am implicitly specify sender
and receiver. If it is not possible to determine the identities of all protocol par-
ticipants from sid (e.g. the case where sid contains a hash of the identities), it
may be necessary to include the identities of the participants in the first two
messages from A. However, since all parties must ensure the correctness of sid,
such “hints” can be omitted from the formal protocol specification.

A on input (A, B, C, sid) : C on receipt of (sid, [a]P ) :
A → B : (sid, [a]P ), a ∈R Zn C → A : (sid, [c]P ), c ∈R Zn

A → C : (sid, [a]P ) C → B : (sid, [c]P )
B on receipt of (sid, [a]P ) : Shared Key : e(P, P )abc = e([b]P, [c]P )a

B → A : (sid, [b]P ), b ∈R Zn = e([a]P, [c]P )b

B → C : (sid, [b]P ) = e([a]P, [b]P )c

Protocol 1: Joux protocol in the am without broadcast messages

B → A : (sid, [b]P ) (where b ∈R Zn)
C → A : (sid, [c]P ) (where c ∈R Zn)
A → B : (sid, [a]P, [c]P ) (where a ∈R Zn)
A → C : (sid, [a]P, [b]P )
Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 2: Variant of Joux protocol in the am that can be used with authen-
ticators to create efficient um protocols

In order to prove the security of Protocols 1 and 2 in the am, it is necessary
to assume that the Decisional Bilinear Diffie-Hellman Problem (dbdh) is hard.
The assumption has been studied by Cheon and Lee [11], and can be described
similarly to the Decisional Diffie-Hellman assumption [9] as follows:

Definition 4 (DBDH assumption). Let e : G1 × G1 → G2 be an admissible
bilinear map that takes as input two elements of G1 and outputs an element of
G2. Let n be the order of G1 and G2, and let P be an element of G1. Let two
probability distributions of tuples of seven elements, Q0 and Q1, be defined as:



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 23

Q0 = {〈G1, G2, P, [a]P, [b]P, [c]P, e(P, P )abc〉 : a, b, c ∈R Zn} and
Q1 = {〈G1, G2, P, [a]P, [b]P, [c]P, e(P, P )d〉 : a, b, c, d ∈R Zn}.

Then the dbdh assumption states that Q0 and Q1 are computationally indistin-
guishable.

Theorem 1. Given the dbdh assumption, Protocols 1 and 2 are both sk-secure
in the am.

The proof of Theorem 1 is similar to that of two party Diffie-Hellman key
exchange [9] and is provided in the full version of this paper. It is possible to
modify the protocol so that the use of the dbdh assumption in the proof can
be replaced with the use of a random oracle. This also requires the proof to
use the assumption that the Bilinear Diffie-Hellman (bdh) problem is hard. Let
e : G1×G1 → G2 be an admissible bilinear map that takes as input two elements
of G1 and outputs an element of G2. Let n be the order of G1 and G2, and let
P be an element of G1. Then the bdh problem [5] is to find e(P, P )abc when
given (G1, G2, P, [a]P, [b]P, [c]P ), where a, b and c ∈R Zn. If the bdh problem
is hard, there is no polynomial time algorithm to solve the bdh problem with
non-negligible probability.

One way to modify the protocol to use this proof method is to combine
e(P, P )abc with some sort of hash function to produce the key (e.g. H

(
e (P, P )abc

)
or a keyed hash function He(P, P )abc ([a]P, [b]P, [c]P )). The logic of the proof
is based on the observation that since the hash function is completely random,
the adversary can only obtain information about the session key by querying the
hash function oracle with the input that would have been used to generate the
session key. However, if the adversary is able to produce such a value with which
to query the oracle, then the adversary is also able to break the bdh problem,
which was assumed to be hard. The formal proof proceeds in a similar fashion
to that of the proof using the dbdh assumption.

5 Applying Authenticators to the Joux Protocol

In order to create an sk-secure protocol in the um, it is necessary to apply one or
more authenticators to the Joux protocol. Here we focus on two authenticators
originally proposed by Bellare et al. [3], λsig (requiring the use of a signature
scheme secure against adaptive chosen message attacks [17]) and λenc (requiring
the use of an encryption scheme indistinguishable under chosen ciphertext at-
tacks [4] and a secure mac scheme). Their specifications are given by Protocols 3
and 4.

Applying λsig to each message of the Joux protocol (Protocol 1) results in an
eighteen message protocol. However, it is possible to optimize this protocol to
produce a much more efficient version. This can be done by replacing the nonce
denoted by rB in λsig with [a]P , [b]P or [c]P (depending on which party was
required to generate the nonce). In addition, in most cases, the two signatures



24 Y. Hitchcock, C. Boyd, and J.M. González Nieto

produced by each party can be combined to a single signature containing one
copy of each of the items originally contained in the two separate signatures.
Finally, only the session identifier needs to be included at the beginning of each
um message to determine to which session the messages belong. (In the specifica-
tion of the mt-authenticators, the messages were unique and the entire message
from the am was included at the start of each um message for this purpose since
there were no session identifiers.) The resultant protocol in the um is shown by
Protocol 5 and requires a total of five messages and four signatures.

Protocol 3: λenc

A B
m−→

NB ∈R {0, 1}k

m, BEA(NB)←−−−−−−−−−
m,macNB (m, B)−−−−−−−−−−−−→

Protocol 4: λsig

A B
m−→

rB ∈R {0, 1}k

m, rB←−−−
m, σB

A (m, rB , B)−−−−−−−−−−−→
Protocols 3 and 4: Encryption and signature-based mt-authenticators, λenc
and λsig

A → B : (sid, [a]P ) (where a ∈R Zn)
B → C :

(
sid, [a]P, [b]P, σA

B (A, sid, [a]P, [b]P )
)

(where b ∈R Zn)
C → A :

(
sid, [b]P, [c]P, σA,B

C (A, B, sid, [a]P, [b]P, [c]P ) , σA
B (A, sid, [a]P, [b]P )

)
(where c ∈R Zn)

A → B :
(
sid, [c]P, σB,C

A (B, C, sid, [a]P, [b]P, [c]P ) , σA,B
C (A, B, sid, [a]P, [b]P, [c]P )

)
B → C :

(
σC

B (C, sid, [b]P, [c]P ) , σB,C
A (B, C, sid, [a]P, [b]P, [c]P )

)
Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 5: Joux protocol authenticated with λsig

It is possible to combine σA
B(A, sid, [a]P, [b]P ) and σC

B(C, sid, [b]P, [c]P ) from
Protocol 5 into one signature at the expense of an extra message, as shown by
Protocol 6. Protocol 7 is another possible um protocol where some messages have
been combined after the authenticator has been applied to create a broadcast
protocol. It has five broadcasts and three signatures.

The λsig authenticator can be applied to Protocol 2 and then optimized to
produce Protocol 8 in the um. It requires five messages but only three signatures.

A protocol resulting from applying the λenc authenticator to the am Joux
protocol and optimizing it is described by Protocol 9. The optimized protocol
requires a total of five messages, six encryptions and six macs. Allowing messages
to be broadcast does not change these requirements.



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 25

A → B : (sid, [a]P ) (where a ∈R Zn)
B → C : (sid, [a]P, [b]P ) (where b ∈R Zn)
C → A :

(
sid, [b]P, [c]P, σA,B

C (A, B, sid, [a]P, [b]P, [c]P )
)

(where c ∈R Zn)

A → B :
(
sid, [c]P, σB,C

A (B, C, sid, [a]P, [b]P, [c]P ) , σA,B
C (A, B, sid, [a]P, [b]P, [c]P )

)
B → C :

(
σA,C

B (A, C, sid, [a]P, [b]P, [c]P ) , σB,C
A (B, C, sid, [a]P, [b]P, [c]P )

)
B/C → A : σA,C

B (A, C, sid, [a]P, [b]P, [c]P )
Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 6: Joux protocol authenticated with λsig using a minimal number of
signatures

A → B, C : (sid, [a]P ) (where a ∈R Zn)
B → C, A : (sid, [b]P ) (where b ∈R Zn)
C → A, B :

(
sid, [c]P, σA,B

C (sid, A, B, [a]P, [b]P, [c]P )
)

(where c ∈R Zn)

A → B, C :
(
sid, σB,C

A (B, C, sid, [a]P, [b]P, [c]P )
)

B → A, C :
(
σC,A

B (A, C, sid, [a]P, [b]P, [c]P )
)

Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 7: Joux protocol authenticated with λsig, broadcast version

A → B : (sid, [a]P ) (where a ∈R Zn)
B → C :

(
sid, [a]P, [b]P, σA

B (A, sid, [a]P, [b]P )
)

(where b ∈R Zn)
C → A :

(
sid, [b]P, [c]P, σA

C (A, sid, [a]P, [c]P ) , σA
B (A, sid, [a]P, [b]P )

)
(where c ∈R Zn)

A → B :
(
sid, [c]P, σB,C

A (B, C, sid, [a]P, [b]P, [c]P )
)

A or B → C :
(
sid, [c]P, σB,C

A (B, C, sid, [a]P, [b]P, [c]P )
)

Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 8: Variant of Joux protocol authenticated with λsig

A → B : sid, [a]P, AEB(NAB), AEC(NAC)
B → C : sid, [a]P, [b]P, BEC(NBC), BEA(NBA), MACNAB (sid, [b]P, A), AEC(NAC)
C → A : sid, [b]P, [c]P, CEA(NCA), CEB(NCB), MACNAC (sid, [c]P, A),

MACNBC (sid, [c]P, B), BEA(NBA), MACNAB (sid, [b]P, A)
A → B : sid, [c]P, MACNBA(sid, [a]P, B), MACNCA(sid, [a]P, C), CEB(NCB),

MACNBC (sid, [c]P, B)
B → C : sid, MACNCB (sid, [b]P, C), MACNCA(sid, [a]P, C)

Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 9: Joux protocol authenticated with λenc



26 Y. Hitchcock, C. Boyd, and J.M. González Nieto

Another protocol using λenc can be constructed in the um, by using the
variant of the Joux protocol in the am (Protocol 2). The optimized version is
shown by Protocol 10 and requires five messages, four encryptions and four macs.
In a broadcast version of the protocol, the last two messages can be combined
into one broadcast so that only four messages are required. However, the same
number of encryptions and macs are still required by the broadcast version.

A → B : sid, [a]P, AEB(NAB), AEC(NAC)
B → C : sid, [a]P, [b]P, BEA(NBA), MACNAB (sid, [b]P, A), AEC(NAC)
C → A : sid, [b]P, [c]P, CEA(NCA), MACNAC (sid, [c]P, A),

BEA(NBA), MACNAB (sid, [b]P, A)
A → B : sid, [c]P, MACNBA(sid, C, [a]P, [c]P, B), MACNCA(sid, [a]P, [b]P, C)

A/B → C : sid, MACNCA(sid, [a]P, [b]P, C)
Key : e(P, P )abc = e([b]P, [c]P )a = e([a]P, [c]P )b = e([a]P, [b]P )c

Protocol 10: Variant of Joux protocol authenticated with λenc

6 Efficiency of Joux Based Protocols in the UM

Table 1 shows the efficiency of each of the different optimized protocols in the
um described in Section 5. The table shows that the efficiency of each scheme
depends heavily on the signature or encryption scheme chosen for the imple-
mentation. Since the protocols will be executed using an elliptic curve where a
pairing is available that can be used as the basis of an admissible bilinear map
(as defined at the beginning of Section 4), the suitability of various pairing-based
signature and encryption schemes for the above protocols has been investigated.
A brief description of each scheme is included below, and the efficiency of each
scheme summarized in Tables 2 and 3.

Table 1. Operations and messages required by tripartite um protocols

Protocol number 5 6 8 8 7 9 10 10
Broadcast used N N N Y Y N/Y N Y
Messages 5 6 5 4 5 5 5 4
Signatures 4 3 3 3 3 - - -
Verifications 6 6 4 4 6 - - -
Encryptions - - - - - 6 4 4
Decryptions - - - - - 6 4 4
macs - - - - - 6 4 4
Scalar mults. 3 3 3 3 3 3 3 3
Exponentiations 3 3 3 3 3 3 3 3
Pairings 3 3 3 3 3 3 3 3



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 27

Table 2. Efficiency of signature schemes using pairings

Scheme Signature Verification
Pair. Exp. Sc. mul. Other Pair. Exp. Sc. mul. Other

Hess - 1 1 1+(1) 1 -
BLS - - 1 2 - -
CC - - 2 2 - 1
LQ (1) 2 1.4 symm. enc. 2+(2) 1 - symm. dec.
M-L (1) - 3 3+(1) 1 -
SOK - - 2 2 or 3 - -
(y) indicates an additional y operations required in a precomputation.

M-L. This identity-based signcryption scheme was proposed by Malone-Lee [16].
A summary of its efficiency is also provided by Nalla and Reddy [18]. The scheme
provides non-repudiation if the plaintext is surrendered to the party required to
perform an independent verification. The scheme can therefore be used in place
of a signature scheme if desired.

NR. This identity-based encryption scheme (requiring a trusted authority) was
proposed by Nalla and Reddy [18]. The trusted authority can also be used to
provide non-repudiation.

BLS. This scheme to provide short signatures was proposed by Boneh, Lynn and
Shacham [6]. The scheme is not identity-based and allows different signatures to
be combined, thus saving bandwidth (at the expense of extra computation). The
scheme can alse be used for batch verification, to increase verification efficiency
if several users sign the same message.

Lynn. This scheme to provide authenticated identity-based encryption was pro-
posed by Lynn [15]. The scheme does not provide non-repudiation [14] and so
can not be used in place of a signature scheme. It is noteworthy that this scheme
actually uses fewer pairings than the BF scheme which provides encryption only.
However, the Lynn scheme does require use of symmetric encryption and decryp-
tion algorithms.

CC. This scheme to provide an identity-based signature was proposed by Cha
and Cheon [10].

Hess. This scheme was proposed by Hess [12] and is an identity-based signature
scheme. The paper also includes a comparison with the cc and sok schemes.

SOK. This scheme was proposed by Sakai, Ohgishi and Kasahara and an effi-
ciency analysis is provided by Hess [12].

BF.This identity-based encryption scheme was proposed by Boneh and Franklin
[5].

LQ. This identity-based signcryption scheme was proposed by Libert and
Quisquater [14]. It can require the use of a symmetric encryption and decryp-
tion scheme, and can be used as either a signature or an encryption scheme



28 Y. Hitchcock, C. Boyd, and J.M. González Nieto

since it provides non-repudiation because any party can verify the origin of the
ciphertext. However, verification of the origin of the plaintext requires the key
used for the symmetric encryption to be provided to the party performing the
verification. Another property of the scheme is that the symmetric encryption
and decryption can be replaced by some extra modular multiplications if the
plaintext to be encrypted is only short. The signcryption requires a total of two
scalar multiplications, but these can be performed together in the time of about
1.4 scalar multiplications.

Although the signcryption schemes can be used as either a signature or en-
cryption schemes, care must be taken when performing an efficiency analysis of
the resulting um protocol, since extra signatures may need to be created if a
single signature was intended for use by more than one recipient in the original
um protocol.

Table 3. Efficiency of encryption schemes using pairings

Scheme Encryption Decryption
Pair. Exp. Sc. mul. Other Pair. Exp. Sc. mul. Other

Lynn (1) - - symm. enc. (1) - - symm. dec.
BF (1) 1 1 1 - 1
NR (1) 1 2 2+(1) 1 -

option option
LQ (1) 2 1.4 symm. enc. 2+(2) 1 - symm. dec.
M-L (1) - 3 3+(1) 1 -

(y) indicates an additional y operations required in a precomputation.

Since the pairing operation is the most expensive of those performed by
the signature and encryption schemes under consideration, the authenticated
identity-based encryption scheme of Lynn appears to be the most promising
from an efficiency viewpoint. Combining it with the protocol requiring the least
number of operations, Protocol 10, leads to an implementation of the Joux proto-
col in the um requiring three on-line pairings to compute the key (one per party)
and four off-line pairings. Four instead of eight off-line pairings are required since
some of the off-line pairings can be reused and need not be calculated twice.

Table 4 provides a comparison of the number of operations required by Pro-
tocol 10 and those required by the tripartite protocols proposed by Al-Riyami
and Paterson [1] and based on Joux’s protocol, tak-1 to tak-4 and takc. The
table shows that those protocols using broadcast messages (tak-1 to tak-4)
only require 3 messages, which is less than the most efficient of the protocols
proposed here. However, such protocols do not provide message authentication,
only implicit key authentication. Protocol 10 has the advantage that parties ac-
cepting a secret key can be sure that the messages upon which they acted were
not generated by a malicious party or replays of old messages; the other parties
actually participated in the key exchange.

The non-broadcast protocol from [1] (takc) is designed to provide key con-
firmation as well as key authentication. This protocol requires more messages



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 29

than Protocol 10 because it provides key confirmation, which is not provided by
Protocol 10. It can be seen that if the time for the precomputation of pairings
required by Protocol 10 is ignored (since the precomputation is reusable for any
key exchange involving the same participants), Protocol 10 is generally more
efficient in terms of number of operations than those of [1], and requires fewer
messages than the takc protocol, but more messages than the tak-1 to tak-4
protocols. In addition, Protocol 10 has an associated proof of security, whereas
the only tak protocol that currently has an associated proof of security is the
tak-1 protocol, but its proof is restricted because it does not allow the adversary
to make any Reveal queries, and therefore does not cater for known session-key
attacks.

Table 4. Operations and messages required by Al-Riyami and Paterson’s tripartite
protocols compared with Protocol 10

Protocol name TAK-1 TAK-2 TAK-3 TAK-4 TAKC 10 10
Broadcast used Y Y Y Y N N Y
Messages 3 3 3 3 6 5 4
Signatures - - - - 3 - -
Verifications - - - - 6 - -
Symmetric
encryptions - - - - 3 4 4

Symmetric
decryptions - - - - 6 4 4

macs - - - - - 4 4
Scalar mults. [3] [3] [3] 6 + [3] [3] [3] [3]
Exponentiations 3 + 〈3〉 6 3 + 〈3〉 3 3 3 3
Pairings 3 + 〈3〉 9 6 + 〈3〉 3 3 3 + (4) 3 + (4)

y + 〈x〉 indicates a total of y + x operations are required, but x operations may be
precomputed if identities and long term keys of participants known in advance. A
new precomputation is required for each key exchange.
y + (x) indicates a total of y + x operations are required, but x operations may be
precomputed if identities of participants known in advance. The precomputation is
reusable for any key exchange involving those participants.
[x] indicates that x operations may be precomputed, but a new precomputation is
required for each key exchange.

It is also possible to compare Protocol 10 with existing schemes for group
key exchange based on the ordinary use of discrete logarithms, such as that of
Bresson, Chevassut, Pointcheval and Quisquater [8], herein denoted the bcpq
scheme. This scheme can be converted to a tripartite key exchange protocol
requiring eight exponentiations (two of which can be precomputed), three sig-
natures and four verifications. If a signature scheme such as dsa is used, signing
takes one exponentiation (which can be precomputed) and verification takes
two simultaneous exponentiations, or about the time of 1.2 single exponentia-
tions. Thus the bcpq scheme takes the total time of 10.8 online exponentiations
and 5 offline exponentiations, whereas Protocol 10 requires 3 exponentiations



30 Y. Hitchcock, C. Boyd, and J.M. González Nieto

and 3 pairings online. Therefore, if a pairing can be computed in the time of
2.6 exponentiations, the Joux based scheme will be as efficient in terms of on-
line computation as the bcpq scheme. Figures due to Barreto, Kim, Lynn and
Scott [2] indicate that a 512 bit pairing takes about 2.5 times as long as a 1024
bit exponentiation with a 1007 bit exponent (20ms for a pairing compared to
7.9ms for an rsa signature) or 4.9 times as long as a 1024 bit exponentiation
with a 160 bit exponent (20ms for a pairing compared to 4.09ms for a dsa sig-
nature). Thus Protocol 10 compares favourably to the bcpq scheme if a large
exponent is used with that scheme, but not if a small exponent is used. However,
there has recently been a substantial amount of research on improving pairing
efficiency, and it is possible that the efficiency of pairings may improve to the ex-
tent that Protocol 10 is more efficient than the bcpq scheme for small exponents
also.

7 Conclusion

The ck-model has been used to examine the security of tripartite key exchange
protocols based on the Joux protocol. A new definition of security for key ex-
change protocols with more than two participants has been provided, and a
proof of security for the Joux protocol in the am given. The efficiency of the
um protocols created by combining the Joux am protocol with signature and
encryption based authenticators has been analysed, and the efficiency of var-
ious pairing based encryption and signature schemes which could be used in
the authentication mechanism has been summarized. It has been concluded that
a secure tripartite key exchange protocol can be formed that requires three on-
line and four off-line pairings. This protocol also compared favourably with other
published tripartite key agreement protocols.

Acknowledgements

This research is part of an ARC SPIRT project (C10024103) undertaken jointly
by Queensland University of Technology and Motorola.

References

1. Sattam S. Al-Riyami and Kenneth G. Paterson. Tripartite authenticated key agree-
ment protocols from pairings. In Cryptography and Coding, volume 2898 of Lecture
Notes in Computer Science, pages 332–359. Springer-Verlag, 2003.

2. Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Effi-
cient algorithms for pairing-based cryptosystems. In Advances in Cryptology—
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 354–368.
Springer-Verlag, 2002.



Tripartite Key Exchange in the Canetti-Krawczyk Proof Model 31

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols (extended ab-
stract). In Proceedings of the 30th Annual ACM Symposium on Theory of Com-
puting (STOC ’98), pages 419–428, New York, May 1998. ACM Press. [Full paper
online] http://www-cse.ucsd.edu/users/mihir/papers/modular.ps.gz.

4. Mihir Bellare, Anand Desai, David Pointcheval, and Phil Rogaway. Relations
among notions of security for public-key encryption schemes (extended ab-
stract). In Advances in Cryptology—CRYPTO ’98, volume 1462 of Lecture Notes
in Computer Science, pages 26–45. Springer-Verlag, 1998. [Full paper online]
http://www-cse.ucsd.edu/users/mihir/papers/relations.pdf.

5. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pair-
ing. In Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 213–229. Springer-Verlag, 2001. [Full paper online]
http://crypto.stanford.edu/~dabo/abstracts/ibe.html.

6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Advances in Cryptology—ASIACRYPT 2001, volume 2139 of Lecture
Notes in Computer Science, pages 514–532. Springer-Verlag, 2001. [Full paper
online] http://crypto.stanford.edu/~dabo/abstracts/weilsigs.html.

7. Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establish-
ment. Springer-Verlag, Berlin, 2003.

8. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably au-
thenticated group Diffie-Hellman key exchange. In P. Samarati, editor, Proc. of
ACM-CCS 01, pages 255–264, Philadelphia, Pennsylvania, USA, November 2001.
ACM, ACM Press.

9. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Advances in Cryptology—EUROCRYPT 2001, vol-
ume 2045 of Lecture Notes in Computer Science, pages 451–472. Springer-Verlag,
2001. [Full paper online] http://eprint.iacr.org/2001/040.ps.gz.

10. Jae Choon Cha and Jung Hee Cheon. An identity-based signature from gap Diffie-
Hellman groups. In Practice and Theory in Public Key Cryptography—PKC 2003,
volume 2567 of Lecture Notes in Computer Science, pages 18–30. Springer-Verlag,
2003.

11. Jung Hee Cheon and Dong Hoon Lee. Diffie-Hellman problems and bi-
linear maps. Cryptology ePrint Archive, Report 2002/117, 2002. [Online]
http://eprint.iacr.org/ [accessed 11/07/2003].

12. Florian Hess. Efficient identity based signature schemes based on pairings. In Se-
lected Areas in Cryptography—SAC 2002, volume 2595 of Lecture Notes in Com-
puter Science, pages 310–324. Springer-Verlag, 2002.

13. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorith-
mic Number Theory: Fourth International Symposium—ANTS-IV 2000, Proceed-
ings, volume 1838 of Lecture Notes in Computer Science, pages 385–393. Springer-
Verlag, 2000.

14. Benôit Libert and Jean-Jacques Quisquater. New identity based signcryption
schemes from pairings. Cryptology ePrint Archive, Report 2003/023, 2003. [Online]
http://eprint.iacr.org/ [accessed 11/07/2003].

15. Ben Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive,
Report 2002/072, 2002. [Online] http://eprint.iacr.org/ [accessed 11/07/2003].

16. John Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098, 2002. [Online] http://eprint.iacr.org/ [accessed 11/07/2003].



32 Y. Hitchcock, C. Boyd, and J.M. González Nieto

17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

18. Divya Nalla and K.C. Reddy. Signcryption scheme for identity-based cryp-
tosystems. Cryptology ePrint Archive, Report 2003/066, 2003. [Online]
http://eprint.iacr.org/ [accessed 11/07/2003].

19. K.G. Paterson. Cryptography from pairings: a snapshot of current research. In-
formation Security Technical Report, 7(3):41–54, 2002.

20. Yiu Shing Terry Tin, Colin Boyd, and Juan Manuel González Nieto. Provably
secure mobile key exchange: Applying the Canetti-Krawczyk approach. In In-
formation Security and Privacy—ACISP 2003, volume 2727 of Lecture Notes in
Computer Science, pages 166–179. Springer-Verlag, 2003.



The Marriage Proposals Problem:
Fair and Efficient Solution for Two-Party

Computations

Audrey Montreuil and Jacques Patarin

Université de Versailles,
45 avenue des Etats-Unis,

78035 Versailles Cedex - France

Abstract. In this paper we will present a fair and efficient solution to
The Marriage Proposals Problem (i.e. two-party computation of AND).
This solution uses many similar ideas with the solution to The Socialist
Millionaires’ Problem of [6] (we deal here with AND instead of EQUAL-
ITY and this introduces some practical small changes). Then we gener-
alize our algorithm in three directions : first, to compute the AND with
many players (not only two). Second, to compute any binary operators
(boolean function of two inputs). In all these solutions we do not use
Mix and Match techniques [20] but direct solutions based on the Diffie-
Hellman assumption (whereas the solution of The Socialist Millionaires’
Problem of [6], as Mix and Match techniques, requires the Decision Diffie-
Hellman assumption). Moreover, with our solutions we have to compute
less exponentiations compared with Mix and Match techniques (50 + 4k
instead of 78+4k or 96+4k, where k is the security parameter i.e. security
is in 1/2k, we reduce the overall security to the Diffie-Hellman problem
is difficult). Third, we will explain how to have a fair computation of any
boolean function with any number of inputs (i.e. any number of players)
by using Mix and Match techniques (here we will explain how to extend
the scheme of [20] for fair computations).

1 Introduction

Alice and Bob never met before and wish to find out whether they have some
particular mutual interest. But naturally each refuses to show interest first, be-
cause of the risk of getting an embarrassing “no” from the other. More formally,
Alice has a secret bit X and Bob has a secret bit Y and a protocol is needed
that reveals exactly the logical AND of the two bits. Consequently, if Bob’s bit
is one, he cannot fail to learn Alice’s bit because in that case her bit has the
same value as the AND.

We wish to find a protocol which:

– convinces the two parties of the correctness of the result.
– does not allow one party whose answer is “no” to get any additional infor-

mation about the other party’s answer.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 33–47, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



34 A. Montreuil and J. Patarin

– is fair, i.e. one party cannot get the result while preventing the other one
from getting it.

Alice and Bob can take one of several approaches. They might confide their
bits to a trusted third party charged with the task of determining honestly
whether AND(X, Y ) = 1. However this trusted party will know X and Y .

They might also use physical means such as a trusted common computer (they
can destroy it after obtaining the result in order to be sure that their inputs are
not stored) or use tamper proof devices, etc. However here the software used
must be trusted and Alice and Bob must be at the same place.

Another way to achieve the desired protocol is by using cards. For instance
The Five Card Trick [4] in which two parties may securely compute the AND
function based on the ability to make an oblivious cut on a deck of cards, or
Discreet Solitary Games [14] which provides a scenario of a single person using
cryptographic techniques as building blocks for playing sophisticated solitary
games with cards.

In this paper we look for pure algorithmic solutions based on cryptographic
tools (Alice and Bob do not have to be at the same place and do not need a
common computer, they can use their own computers and communications).

Yao [26] introduced the concept of secure computation, and demonstrated a
protocol that enables Alice and Bob to compute any function (here the AND) of
their respective inputs without leaking to each other any additional information.
Yao’s protocol is both generic and efficient. The protocol is applied to a circuit
that evaluates the function, and its overhead is linear in the size of the circuit.
However, this protocol does not guarantee fairness. Namely, one of the parties
might learn her output before the other party does, and can then terminate the
protocol prematurely, before the other party learns his output.

Constructions that achieve fairness for general two-party and multiparty pro-
tocols were introduced by Yao [26], Galil, Haber and Yung [15], Brickell, Chaum,
Damg̊ard and van de Graaf [8], Ben-Or, Goldreich, Micali and Rivest [3] and
Goldwasser and Levin [19]. These constructions concentrate on generic prop-
erties rather than on efficiency. The construction of [26] does not change the
computation of every gate, but rather works by
– the parties generating a trapdoor function
– the circuit computing an output encrypted by that function
– the parties gradually revealing the bit of the trapdoor function.

This solution is not very efficient due to overhead of secure distributed gen-
eration and computation of the trapdoor function. A more efficient construction
was given in [6] for a specific two-party function (testing the equality of two
inputs): the protocol we propose in section 2 uses many similar ideas with this
solution of The Socialist Millionaires’ Problem, due to F. Boudot, B. Schoen-
makers and J. Traoré, which is a variant of the Millionaires’ problem introduced
by Yao [25, 26]. In The Millionaires’ Problem we deal with the ≥ function, while
in The Socialist Millionaires’ Problem we deal with EQUALITY and for The
Marriage Proposals Problem we deal with AND. This introduces some practical
changes for the most efficient solutions.



The Marriage Proposals Problem 35

For solving the fairness issue, in all these constructions, the output of the
protocol is commitments to Alice’s and Bob’s respective outputs. The commit-
ment that becomes to Alice is made using a key known to Bob, and vice versa.
After exchanging the commitments the parties open them bit by bit, ensuring
that none of them gains a significant advantage over the other party. All the
constructions require such a final phase in which the outputs are revealed bit by
bit. Note that unlike Pinkas’ protocol [21] these constructions (and the one we
present in section 2) do not use the more recent timed commitments of Boneh and
Naor [5], or the variant suggested by Garay and Jakobsson [17], which prevent
a more powerful adversary from running a parallel attack for breaking commit-
ments (note that the first application of timed commitments to fair exchange
was in [24]).

We extend our protocol to n players in section 4. We propose solutions to
compute any functions with two inputs in section 5. And finally we present in
section 6 a fair solution based on the Diffie-Hellman assumption to compute any
boolean function using Mix and Match techniques. This extends the schemes of
[20] for fair computations. Another solution based on the quadratic residuosity
assumption was described in [7].

The tools needed for this paper are shortly recalled with small typeface
(Schnorr’s protocol, etc.), excepted the Mix and Match techniques which we
only recall in extended version of this paper. So all the proofs are given and this
paper is self-contained.

2 Protocol - Fair Computation of “AND”

2.1 Assumption

Our result requires the Diffie-Hellman assumption (which implies the Discrete
Logarithm assumption).

The Discrete Logarithm (DL) assumption for group Gq states that it is in-
feasible to compute loggy given random g, y ∈ Gq, g �= 1. Or, more formally,
for all constants c and for all sufficiently large q, there exists no probabilistic
polynomial time Turing machine which, on input Gq, g, y, outputs loggy with
probability greater than 1/|q|c.

The Diffie-Hellman (DH) assumption for group Gq states that it is infeasible
to compute gab given random generators g, y1, y2 ∈ Gq, where a = loggy1 and
b = loggy2. Or, more concisely, it is infeasible to compute gab given g, ga, gb for
random a, b ∈ Zq.

Remark. The protocol of [6] requires the Decision Diffie-Hellman assumption
(which implies the Diffie-Hellman assumption) because an adversary must not
be able to partially recover the secret value X (or Y ) which is in Zq. We do not
need the Decision Diffie-Hellman assumption in our protocol, we only require
the Diffie-Hellman assumption because X and Y are in {0, 1}.

The Decision Diffie-Hellman (DDH) assumption for group Gq states that it is
infeasible to decide whether y = gab given random generators g, y, y1, y2 ∈ Gq,



36 A. Montreuil and J. Patarin

where a = loggy1 and b = loggy2. Or, more concisely, it is infeasible to decide
whether c = ab (which is equivalent to gc = gab) given g, ga, gb, gc for random
a, b, c ∈ Zq.

2.2 Parameter Generation

Alice and Bob jointly generate a group Gq of a large prime order q. Gq must be
chosen such that Diffie-Hellman problems on Gq are assumed to be infeasible.
This implies that q ≥ 160 bits. For example Gq can be taken as a subgroup of Z∗

p

for a prime p of 1024 bits such that q/p− 1, or alternatively Gq can be taken as
a group of order q of points on an elliptic curve. They also decide on generators
g0, g1, g2 of Gq for which they do not know loggi

gj for i �= j, 0 ≤ i, j ≤ 2 (nobody
knows these values). Their inputs are X and Y respectively (X, Y ∈ {0, 1}, they
want to compute AND(X, Y )). Let k be a security parameter, such that it is
computationally infeasible to do 2k computations in a human-scale time and
with human-scale computation resources (nowadays k is generally taken ≥ 80).
We need that 2k ≤ q.

2.3 Development of the Protocol

Step 1: Alice randomly chooses xa ∈ Z∗
q and generates ga = gxa

1 and sends
it to Bob. Similarly, Bob generates gb = gxb

1 for a random xb ∈ Z∗
q and sends

it to Alice. They use Schnorr’s protocol [23] to prove knowledge of xa and xb

respectively. This protocol is shortly recalled here.

Schnorr’s protocol on our values:
This protocol allows Alice to prove to Bob that she knows xa ∈ Zq satisfying
ga = gxa

1 . Alice randomly selects an integer r ∈ Zq, computes W = gr
1, c = h(W )

(where h : {0, 1}∗ → Zq denote a cryptographic hash function) and D = r −
xac mod q. Then Alice sends (c, D) to Bob.
Bob is convinced if c = h(gD

1 gc
a).

They also check that ga �= 1 and gb �= 1. They both compute g3 = gxaxb
1

= gxb
a = gxa

b .

Step 2: Alice selects a random element a ∈ Zq and a random number e, 0 ≤ e <

2k, and computes: (Pa, Qa) = (ga
3ge

0, g
a
1gX̄

2 ) (1) where X̄ = ¬(X) = NOT (X)
and X is the input of Alice.

Remark: Here we use X̄ instead of X for The Socialist Millionaires’ Problem of
[6].

She sends this couple (Pa, Qa) to Bob and a proof that it is correctly formed
(i.e. that it satisfies (1)). For this proof she uses an extension of Chaum-Pedersen
protocol ([12]) to the case involving several generators and a proof that a coordi-
nate is equal to 0 or 1 (protocol constructed using the technique due to Cramer,
Damg̊ard and Schoenmakers [13]).



The Marriage Proposals Problem 37

Extension of Chaum-Pedersen protocol on our values:
This protocol allows Alice to prove to Bob that she knows a, e, X̄ satisfying
Pa = ga

3ge
0 and Qa = ga

1gX̄
2 . Alice randomly selects ra, re, rX̄ ∈ Zq, computes

W1 = gra
3 gre

0 , W2 = gra
1 g

rX̄
2 , c = h(W1, W2) (where h : {0, 1}∗ → Zq denote

a cryptographic hash function), Da = ra − ac mod q, De = re − ec mod q and
DX̄ = rX̄ − X̄c mod q. Then Alice sends (c, Da, De, DX̄) to Bob.
Bob is convinced if c = h(gDa

3 gDe
0 P c

a , gDa
1 g

DX̄
2 Qc

a).

Protocol constructed using the technique due to Cramer, Damg̊ard and Schoen-
makers on our values:
This protocol allows Alice to prove to Bob that she knows a ∈ Zq and X̄ ∈ {0, 1}
satisfying Qa = ga

1gX̄
2 (in particular no information on X̄ other than the fact that

it is in {0, 1}). Alice randomly selects r, c1−X̄ , D1−X̄ ∈ Zq, computes WX̄ = gr
1,

W1−X̄ = g
D1−X̄

1 (Qa/g1−X̄
2 )c1−X̄ , c = h(W0, W1) (where h : {0, 1}∗ → Zq denote

a cryptographic hash function), cX̄ = c−c1−X̄ mod q and DX̄ = r − acX̄ mod q.
Then Alice sends the proof (c0, c1, D0, D1) to Bob.
Bob is convinced if c0 + c1 = h(gD0

1 Qc0
a , gD1

1 (Qa/g2)c1) mod q.

– Version Without Fairness. Alice sets e = 0 and Pa = ga
3 .

– Fair Version. Alice chooses k random values ai ∈ Zq and k random bits
ei ∈ {0, 1}, i = 0, . . . , k − 1, subject to the condition that

a =
k−1∑
i=0

ai2i modq and e =
k−1∑
i=0

ei2i

and sets Ai = gai
3 gei

0 , i = 0, . . . , k − 1 (2). She sends Ai, i = 0, . . . , k − 1 to
Bob with a proof that these Ai values are correctly formed (i.e. that they
satisfy (2) with ei ∈ {0, 1}). For this proof she uses a proof that a coordinate
is equal to 0 or 1 (protocol constructed using the technique due to Cramer,
Damg̊ard and Schoenmakers [13]).

Protocol constructed using the technique due to Cramer, Damg̊ard and Schoen-
makers on our values:
This protocol allows Alice to prove to Bob that she knows ai ∈ Zq and ei ∈ {0, 1}
satisfying Ai = gai

3 gei
0 (in particular no information on ei other than the fact that

it is in {0, 1}). Alice randomly selects r, c1−ei
, D1−ei

∈ Zq, computes Wei
= gr

3,
W1−ei

= g
D1−ei
3 (Ai/g1−ei

0 )c1−ei , c = h(W0, W1) (where h : {0, 1}∗ → Zq denote a
cryptographic hash function), cei

= c− c1−ei
mod q and Dei

= r − aicei
mod q.

Then Alice sends the proof (c0, c1, D0, D1) to Bob. Bob is convinced if c0 + c1 =
h(gD0

3 Ac0
i , gD1

3 (Ai/g0)c1) mod q.

Bob verifies the proofs and checks that Pa =
∏k−1

i=0 A2i

i .

By symmetry, he does the same as Alice:
He computes (Pb, Qb) satisfying (Pb, Qb) = (gb

3g
f
0 , gb

1g
Ȳ
2 ) where b ∈ Zq and f ,

0 ≤ f < 2k, are randomly chosen.



38 A. Montreuil and J. Patarin

– Version Without Fairness. He sets f = 0 and Pb = gb
3.

– Fair Version. He chooses random bi ∈ Zq and fi ∈ {0, 1}, i = 0, . . . , k − 1,
subject to the condition that

b =
k−1∑
i=0

bi2i modq and f =
k−1∑
i=0

fi2i.

He sends Bi = gbi
3 gfi

0 to Alice who verifies the proofs and checks that Pb =∏k−1
i=0 B2i

i .

Step 3: Alice and Bob both compute (PaPb, QaQb)=(ga+b
3 ge+f

0 , ga+b
1 gX̄+Ȳ

2 ) (1)

Remark: Here we compute PaPb and QaQb instead of Pa/Pb and Qa/Qb for The
Socialist Millionaires’ Problem of [6].

Then Alice produces Ra = (QaQb)xa and sends Ra to Bob with a proof that
logg1ga = logQaQb

Ra to show that Ra is correctly formed (it is the same xa than
in step 1). For this proof she uses Chaum-Pedersen protocol [12].

Chaum-Pedersen protocol on our values:
This protocol allows Alice to prove to Bob that she knows xa ∈ Zq satisfying
Ra = (QaQb)xa and ga = gxa

1 . Alice randomly selects an integer r ∈ Zq, com-
putes W1 = (QaQb)r, W2 = gr

1, c = h(W1, W2) (where h : {0, 1}∗ → Zq denote
a cryptographic hash function) and D = r − xac mod q. Then Alice sends the
proof (c, D) to Bob.

Bob is convinced if c = h((QaQb)DRc
a, gD

1 gc
a).

Similarly Bob produces Rb = (QaQb)xb with the corresponding proof. Now
Alice and Bob both know on account of (3) and the definition of g3 that

Rab = Rxb
a = Rxa

b = (QaQb)xaxb = ga+b
3 g

(X̄+Ȳ )xaxb

2 . (4)

Step 4:

– Version Without Fairness. Alice and Bob test whether PaPb = Rab be-
cause, from (3) and (4), this equality is true if and only if X = Y = 1.

– Fair Version. Alice and Bob fairly disclose the values of e and f bit by
bit but without disclosing the values of a and b. They execute the following
step for i = k − 1, . . . , 1. They send each other the values of ai, ei and bi, fi,
respectively. Bob checks that Ai = gai

3 gei
0 and Alice does a similar check for

bi, fi. Subsequently, they respectively release only e0 and f0. Finally, Alice
proves that she knows logg3A0/ge0

0 and Bob gives a similar proof for f0.
This convinces the other party that the bits e0 and f0 are correct. Once the
values of e and f are released both Alice and Bob may determine whether
X = Y = 1 by testing whether PaPb = Rabg

e+f
0 .

This step can be regarded as fair, because if Bob (for example) deliberately
aborts the protocol at i = l say, he will be only at most one bit ahead of Alice
to test, by exhaustive search, the combinations for the missing bits e0, ...el.



The Marriage Proposals Problem 39

3 Security Analysis

3.1 Definitions

In this section, we will prove the security with respect to correctness, privacy
and fairness, against passive and active attacks, under the Diffie-Hellman
assumption. These proofs are similar with the proofs of [6]. However, there are
small changes due to the fact that we study the AND instead of The Socialist
Millionaires’ Problem of [6].

Correctness: At the end of the protocol Alice and Bob are convinced of the
validity of the result. We have achieved this in section 2 by the (non-interactive)
proofs of knowledge given by Alice and Bob, which show that the values ex-
changed in the various protocol steps are of the intended form. This implies that
test (of step 4) at the end of the protocol is correct.
Privacy (or Secrecy): The protocol hides the private inputs of Alice and Bob,
which are X and Y respectively (here X and Y are in {0, 1} so unlike in [6] we
cannot split these values in smaller parts).
Fairness: One party cannot get the result while preventing the other one from
getting it.
Passive Attacks: The (passive) adversary correctly follows the specifications of
the protocol. This is a modelisation of attacks that take place after the protocol
has been completed, and may involve either Alice or Bob.
Active Attacks (i.e. “Malleability-Style Attacks”): The adversary may
be active during the protocol and deviate from it. In particular, he does not
necessary make random choices when it is prescribed in the definition of the
protocol. Security against such an adversary means that there is no strategy
that increases the amount of information that this adversary learns about the
secret of the other party.

We will consider Bob as the adversary and Alice as the honest party. How-
ever, we could reverse these roles as our results are symmetric in nature and
hides information both ways.

3.2 Security Against Passive Attacks

We recall that, clearly, if Bob’s input is Y = 1, he will learn Alice’s secret. If
Y = 0, we have to show that Bob learns no information about Alice’s input
X. As the (non-interactive) proofs (of knowledge) used during this protocol are
zero-knowledge, the only information learnt by Bob are the following values
produced by Alice: ga = gxa

1 , Pa = ga
3ge

0, Qa = ga
1gX̄

2 , Ra = (QaQb)xa , e.
Since e is released by Alice, and Bob knows xb, b and Y , Bob essentially learns:

gxa
1 , T = gaxa

1 =
(

Pa

ge
0

)x−1
b

, ga
1gX̄+Ȳ

2 , g
(X̄+Ȳ )xa

2 = Ra

T

(
Pb

gf
0

)x−1
b

. Writing g1 = g,

gX̄+Ȳ
2 = gw, xa = u, a = v, and reordering, we may summarize this by saying

that for a generator g, Bob essentially learns gu, guv, gv+w, guw.



40 A. Montreuil and J. Patarin

To prove that the protocol is secure against passive attacks that recover the
value of X, we must prove that Bob is not able to compute X from these values.
For this, it is sufficient to prove that he is not able to compute gX̄+Ȳ

2 = gw from
gu, guv, gv+w, guw. By using the following lemma, we conclude that under the
Diffie-Hellman assumption, the protocol is secure against passive attacks that
recover the value of X.

Lemma 1. Under the DH assumption it is infeasible to compute gw from gu,
guv, gv+w, guw, for random u, v, w,∈ Zq.

Proof. Suppose we have an oracle computing gw given gu, guv, gv+w, guw, for
random u, v, w,∈ Zq. Then we show how to compute gb given α = ga, β = gab

for random a, b ∈ Zq, hence contradicting the DH assumption. The reduction is
as follows. Set γ = gac, for random c ∈ Zq, and give α, β, gc, γ

β to the oracle.
Since this tuple is equal to ga, gab, gc, ga(c−b), the oracle returns gc−b, from
which we obtain gc

gc−b = gb.

3.3 Security Against Active Attacks

Here we will extend the argument developed above to the case of active adver-
saries. We will show that our protocol remains secure even in this case, provided
that g2 is jointly computed by Alice and Bob. The random oracle model, formal-
ized by Bellare and Rogaway [2], will be used to model the behavior of the hash
function h underlying the various non-interactive zero-knowledge proofs of our
protocol. In this model, the hash function is replaced by an oracle which produces
a truly random value (in the range of the function) when queried. For identical
queries, the same answers are given. Various cryptographic schemes using hash
functions have been proved secure in this model. In particular, Pointcheval and
Stern [22] provided security proofs for signature schemes derived from honest-
verifier zero-knowledge identification schemes.

In our proof below, all parties (including the adversary) will be modelled
by probabilistic polynomial time interactive Turing machines with access to the
random oracle. We will prove the following result.

Lemma 2. Under the DH assumption and assuming the random oracle model,
the (modified) protocol for the Marriage Proposals Problem is secure against
active attacks that recover Alice’s secret.

To prove this lemma it suffices to consider the version of the protocol that
does not address fairness, as the additions to make the protocol fair are not
essential to our argument below.

For our proof, we need to slightly modify the original protocol. We require
that Alice and Bob, in addition to g3, jointly compute g2. So Alice generates
ga2 = g

xa2
1 for random xa2 ∈ Z∗

q . Similarly, Bob generates gb2 = g
xb2
1 for random

xb2 ∈ Z∗
q . They use Schnorr’s protocol to prove knowledge of xa2 and xb2 respec-

tively. They also check that ga2 �= 1 and gb2 �= 1. Let g2 = g
xa2xb2
1 = g

xb2
a2 = g

xa2
b2

,
which can be computed by both Alice and Bob.



The Marriage Proposals Problem 41

We are now assuming that Bob is the active adversary (the analysis of the
case in which Alice is the adversary is essentially the same). This means that Bob
will choose his values (xb, xb2 and b) in a ‘clever’ way rather than truly random
as specified in the protocol description. However, the messages he will send will
be in accordance with the protocol. Our security proof is based on a reduction
argument; we prove that if an active adversary Bob (viewed as a probabilistic
polynomial time interactive Turing machine) can find, with non-negligible prob-
ability, X, hence gX

2 , given the information ‘seen’ during the execution of the
protocol, then this adversary can be used to build a probabilistic polynomial
time interactive Turing machine which contradicts the DH assumption. Here the
probability is taken over the random tapes of Alice and Bob, the random ora-
cles, the public parameters Gq, g1 and X. For simplicity, we will not write in the
sequel the dependencies on the security parameter |q|, but when we say that an
expression f is non-negligible, this means that f depends on |q| and that there
exists a positive integer c such that f(|q|) is larger than 1/|q|c for all sufficiently
large |q|.

Proof. Let g1, α = gxa
1 , β = gaxa

1 (where xa and a are random and unknown) be
an instance of the DH problem (see also section 2.1). We want to obtain γ = ga

1 .
We will see how we can use Bob to compute this value. We will ‘convert’ this
instance to an input to our protocol, and exhibit a simulator S (probabilistic
polynomial time interactive Turing machine) capable of simulating the three
steps of our protocol in such a way that the adversary Bob cannot distinguish a
real interaction with Alice from a simulated one. Bob will be used as a resettable
black box. In other words, the simulator will have control over its tapes, and will
have the ability to bring Bob to a halt and restart it in its staring state at any
time it wishes. All the simulations will be performed under the random oracle
model. S will play Alice’s role and will speak first in the protocol.

Step 1. S sends α to Bob. Since S does not know xa, the proof required at
this step is simulated. In the random oracle model, where S has a full control
of the values returned by the oracle, this proof can easily be simulated. In order
to produce this proof, S randomly chooses c ∈ Zq and D ∈ Zq. S then defines
the output of the random oracle on the input (query) W = gD

1 αc to be c (which
means that c = h(W )). Then S produces tuples (c, D) with an distribution
identical to the one produced by a real prover knowing xa. This is due to the
honest-verifier zero-knowledge property (special honest-verifier zero-knowledge
in fact [13]) of Schnorr’s interactive protocol. Then Bob sends gb to Alice along
with a proof of knowledge (cb, Db) (in the random oracle model) of xb the discrete
logarithm of gb to the base g1; the proof (cb, Db) is correct if cb = h(gDb

1 gcb

b ),
where cb corresponds to the answer of the random oracle to the query gDb

1 gcb

b . If
this proof is not correct S aborts the protocol. At this point S needs to obtain
the discrete logarithm xb in order to carry on with its simulation. By using the
technique developed by Pointcheval and Stern [22] and known as the oracle replay
attack (forking lemma) one can easily obtain this value: if we replay Bob, with the
same random tape and a different oracle, Bob will produce, with non-negligible



42 A. Montreuil and J. Patarin

probability and in polynomial time, two valid proofs (cb, Db) and (c∗
b , D

∗
b ) with

cb �= c∗
b mod q such that gDb

1 gcb

b = g
D∗

b
1 g

c∗
b

b holds. From this equation, S can
compute xb = (D∗

b − Db)/(cb − c∗
b) mod q. Hence S can also compute g3 =

gxaxb
1 = αxb = gxa

b , even though it does not know xa. S then generates ga2 = g
xa2
1

for random xa2 ∈ Z∗
q and uses Schnorr’s protocol to prove knowledge of xa2 (since

S really knows xa2 this is a real proof not a simulated one). Bob then sends gb2

to Alice along with a proof of knowledge (in the random oracle model) of xb2

the discrete logarithm of gb2 to the base g1. Again, by using the oracle replay
attack, S can find the value xb2 . Let g2 = g

xa2xb2
1 = g

xb2
a2 = g

xa2
b2

. So at the end
of step 1, Alice knows xb and xb2 .

Step 2. S randomly selects an element d ∈ Zq and computes (Pa, Qa) =
(ga

3 , gd
1). So, we have Pa = ga

3 = gaxaxb
1 = βxb . Again, S can compute this

value since it extracted xb from Bob. Following the definition of g2, we have:

Qa = gd
1 = ga

1gd−a
1 = ga

1g
x−1

a2
x−1

b2
(d−a)

2 . We put X̄ = x−1
a2

x−1
b2

(d − a), where the
simulator does not know a. S sends (Pa, Qa) to Bob and must also prove that
it knows a and X̄ satisfying (Pa, Qa) = (ga

3 , ga
1gX̄

2 ). Since S does not know a,
the proof required at this step is simulated. In order to produce this proof, S
randomly choose c, D1, D2 ∈ Zq, and then defines the output of the random
oracle on input W1, W2 with W1 = gD1

3 P c
a and W2 = gD1

1 gD2
2 Qc

a to be c (hence
c = h(W1, W2)). With overwhelming probability, Bob has not yet already queried
the random oracle at this point. Then S sends the proof c, D1, D2 to Bob. Again
the special honest verifier zero-knowledge property of the interactive protocol
underlying this proof of knowledge ensures that S produces tuples (c, D1, D2)
with a distribution indistinguishable from one produced by a real prover know-
ing a and X̄. Next, Bob sends Pb, Qb to S along with a proof of knowledge of
b, Y ∈ Zq satisfying Pb = gb

3 and Qb = gb
1g

Ȳ
2 . Using the oracle replay attack, S

can find b and Y (note that S now knows xb, xb2 , b and Y ).

Step 3. In this step, S and Bob both first compute (PaPb, QaQb), which will
be of the form: (PaPb, QaQb) = (ga+b

3 , ga+b
1 gX̄+Ȳ

2 ). Then S computes: Ra =

(QaQb)xa = gdxa
1 gbxa

1 gȲ xa
2 = gdxa

1 gbxa
1 g

xa2xb2 Ȳ xa

1 . S can compute this value since
it knows d, b, Y , xa2 and xb2 . S sends Ra to Bob along with a proof that
logg1α = logQaQb

Ra. Since S does not know xa, the proof required at this step
is simulated. To produce this proof, S randomly chooses c, D ∈ Zq. S then
defines the output of the random oracle on input W1, W2 with W1 = gD

1 αc and
W2 = (QaQb)DRc

a to be c (hence c = h(W1, W2)). S then sends the proof (c, D)
to Bob. As before, the special honest verifier zero-knowledge property of the
interactive protocol underlying this proof of knowledge ensures that S produces
tuples (c, D) with a distribution indistinguishable from one produced by a real
prover knowing xa. The simulator’s part of the protocol is now complete.

Since the distribution of the simulated views is indistinguishable from that
produced by a ‘real’ Alice (not a simulated one), Bob, after the interaction with
S, will be able, as assumed, to find with non-negligible probability gX̄

2 , which is
equal to gd−a

1 . Since S knows d, S can find γ = ga
1 = gd

1/gd−a
1 hence contradicting



The Marriage Proposals Problem 43

the DH assumption. Consequently, such an adversary Bob cannot find gX̄
2 hence

cannot recover X.

4 Generalization to n Players (Fair Computation of
“AND”)

Consider the case where n players J1, . . . , Jn vote to know if they will play today.
A player can answer “yes” (1) if he wants to play or “no” (0) if he does not.
We note X1, . . . , Xn the answers of the n players. They will play if and only if
X1 = . . . = Xn = 1, i.e. if all of them want to play. We wish to find a protocol
which:

– convinces all the parties of the correctness of the result.
– does not allow one party whose answer is “no” to get any additional infor-

mation about the other parties’ answers.
– does not allow any party to know how many negative answers there are if

the final result is “no”.
– is fair, i.e. one party cannot get the result while preventing the others from

getting it.

Moreover the scheme will resist “coalition attacks”, i.e. there is no interest to
actively corrupt some players in order to get some additional information about
non-corrupt players.

All the proofs needed are the same as those described in paragraph 2.3.

Step 1:

J1 randomly chooses x1 ∈ Z∗
q and publishes y1 = gx1

1 .
J2 randomly chooses x2 ∈ Z∗

q and publishes y2 = yx2
1 .

. . .
Jn randomly chooses xn ∈ Z∗

q and publishes yn = yxn
n−1.

Every player Ji, i = 1, . . . , n, publishes a proof (Schnorr [23]) that he knows
xi and verifies the other players’ proofs. All the players know g3 = yn = gx1...xn

1 .

Step 2: Every player Ji, i = 1, . . . , n, selects a random element ai ∈ Zq and a
random number ei, 0 ≤ ei < 2k, and publishes: (Pi, Qi) = (gai

3 gei
0 , gai

1 gX̄i
2 ) and

shows that it is correctly formed.

– Version Without Fairness. The players set ei = 0,i = 1, . . . , n and Pi =
gai
3 .

– Fair Version. Every player Ji, i = 1, . . . , n, chooses random ai,j ∈ Zq

and ei,j ∈ {0, 1}, j = 0, . . . , k − 1, subject to the condition that ai =∑k−1
j=0 ai,j2j mod q and ei =

∑k−1
j=0 ei,j2j and sets Ai,j = g

ai,j

3 g
ei,j

0 , j =
0, . . . , k − 1 . Then he publishes Ai,j with a proof that they are correctly
formed. Every player Ji, i = 1, . . . , n, verifies the other players’ proofs
and checks that Pl =

∏k−1
j=0 A2j

l,j , l �= i, l = 1, . . . , n. All the players know
(P1, Q1), . . . , (Pn, Qn).



44 A. Montreuil and J. Patarin

Step 3: Every player Ji, i = 1, . . . , n, computes (P, Q) = (P1 . . . Pn, Q1 . . . Qn).

J1 publishes R1 = Qx1 .
J2 publishes R2 = Rx2

1 .
. . .
Jn publishes Rn = Rxn

n−1.

Every player Ji, i = 1, . . . , n, publishes a proof that Ri is correctly formed and
verifies the other players’ proofs ([12]). All the players know R = Rn = Qx1...xn .

Step 4:

– Version Without Fairness. The players may determine whether X1 =
. . . = Xn = 1 by testing whether P = R.

– Fair Version. Finally, the players fairly disclose the values of ei, i = 1, . . . , n,
bit by bit without disclose the values of ai. They publish (ai,j , ei,j), for
j = k−1, . . . , 1, in turn and verify that Al,j = g

al,j

3 g
el,j

0 , l �= i. Subsequently,
they respectively release only ei,0 and fi,0. Finally, every Ji proves that
he knows logg3Ai,0/g

ei,0
0 . This convinces all the players that the bit ei,0 is

correct. Once the values of ei, i = 1, . . . , n are released, the players may
determine whether X1 = . . . = Xn = 1 by testing whether P = Rge1+...+en

0 .

Coalitions: Each player receives the same values from one player, each player
gives a proof of his constructed values and each player must answer “1” to get
the AND of the other players (if he answers “0”, the total AND is always “0”).
So if m players form an active coalition they will not get more than the AND of
the other players (and they get this only if they all answer “1”). So we can say
that collusion does not help, i.e. provides no additional information.

5 Fair Computation of Any Binary Operators

– To get a NOR gate, we can use exactly the same algorithm as in section 2,
except that in step 2 we take: {

Qa = ga
1gX

2
Qb = gb

1g
Y
2

Remark: These values Qa and Qb are the same as for the Socialist Millionaires’
Problem [6] however here we compute in step 3 PaPb and QaQb as for the AND.

In that case, we obtain: Rab = (QaQb)xaxb = ga+b
3 g

(X+Y )xaxb

2 . Then the test
of step 4 is still: PaPb = Rabg

e+f
0 ? This equality is true if and only if X + Y = 0

i.e. if and only if X = 0 and Y = 0, that is NOR(X, Y ) = 1.
– To get an EQUALITY gate (X = Y ), see the Socialist Millionaires’ Problem

[6]
– For the two following gates A(X, Y ) = AND(X, Ȳ ) and B(X, Y ) = AND

(X̄, Y ):



The Marriage Proposals Problem 45

X Y A(X, Y )
0 0 0
0 1 0
1 0 1
1 1 0

X Y B(X, Y )
0 0 0
0 1 1
1 0 0
1 1 0

it is sufficient to take :{
Qa = ga

1gX−1
2

Qb = gb
1g

Y
2

and

{
Qa = ga

1gX+1
2

Qb = gb
1g

Y
2

respectively.

Then : Rab =
(

Qa

Qb

)xaxb

= ga−b
3 g

(X−Y ±1)xaxb

2 . Then the test is : PaPb =

Rabg
e+f
0 ? For the first case, this equality is true if and only if X−Y −1 = 0,

i.e. if and only if X = 1 and Y = 0, that is A(X, Y ) = 1 (for the second case
X − Y + 1 = 0 that is B(X, Y ) = 1).

– To get a NAND gate it is sufficient to answer “no” at the end of step
4 when PaPb = Rabg

e+f
0 instead of “yes”. It is the same thing (we answer

“no” instead of “yes” at the end of step 4) with the other gates (OR,XOR,
¬A and ¬B).

Remark: Since

NAND(X, Y ) = 1 ⇔ X · Y = 0
OR(X, Y ) = 1 ⇔ X̄ · Y = 0
¬A(X, Y ) = 1 ⇔ X · Ȳ = 0
¬B(X, Y ) = 1 ⇔ X̄ · Ȳ = 0

we can also use a protocol based on [18] where they compute gab without reveal-
ing a and b. However the scheme of [18] as initially presented is not necessary
fair.

Efficiency: The binary operators presented so far can also be computed by Mix
and Match techniques [20]. These two techniques use different ideas but for both
solutions the basic operations are group exponentiations. With our solutions
we need 50 + 4k exponentiations (step 1: 8, step 2: 28+2k, step 3: 12, step 4:
4 + 2(k− 1)) and with Mix and Match, 78 + 4k or 96 + 4k exponentiations (step
1: 8, step 2: 24, step 3: 36 or 54, step 4: 10 + 4k).
We can look at the number of rounds too. Our protocol needs 34 + 14k rounds
(step 1: 6, step 2: 20 + 10k, step 3: 6, step 4: 2 + 4k) and the Mix and Match
72+14k or 90+14k rounds (step 1: 8, step 2: 24, step 3: 36 or 54, step 4: 4+14k).
We think that both solutions are interesting and comparable but the efficiency
is slightly better with our solution.

6 Fair Computation of Any Boolean Functions

In this section we rapidly explain how to obtain a fair and efficient algorithm
to compute any boolean function (more details are available in the extended



46 A. Montreuil and J. Patarin

version of this paper). It is sufficient to combine the Mix and Match protocol
due to M. Jakobsson and A. Juels [20] and the Socialist Millionaires Problem’s
solution [6].

We suppose that n players wish to compute the output of a binary multiparty
function f on secret inputs. The players follow the Mix and Match protocol and
jointly decrypt fairly the obtained ciphertext value to reveal the output of the
function f . To do that, they release bit by bit the values of their private key like
in the protocol of the Socialist Millionaires’ Problem [6] (step 2 and 4).
Like this if one player stops the protocol at any time he will get at most an
advantage of one bit (i.e. 50% computations) compared with the other players.

7 Conclusion

In this paper we have shown that the solution of [6] to The Socialist Millionaires’
Problem can be modified in order to get a fair and efficient solution to compute
any boolean function with two inputs without using Mix and Match techniques
(i.e. we do not have to crypt all the input table). We first show a solution for
the AND (The Marriage Proposals Problem) and then to any function of two
inputs. Compared with Mix and Match techniques [20], our solution requires to
compute less exponentiations (50 + 4k instead of 78 + 4k or 96 + 4k, where k is
the security parameter) and the security is directly only related with the Diffie-
Hellman assumption (on any group Gq) and not to the Decision Diffie-Hellman
assumption. We have also explain how to get a fair computation of any boolean
function with any number of players by extending the scheme of [20] (using Mix
and Match techniques) in order to obtain fair computations.

References

1. D. Beaver and S. Goldwasser, Multiparty computation with faulty majority , Proc.
27th IEEE Symposium on Foundations of Computer Science (FOCS ’89), pp 468-
473. IEEE Computer Society, 1989.

2. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, ACM CCS ’93, pp 62-73, 1993.

3. M. Ben-Or, O. Goldreich, S. Micali and R. L. Rivest, A fair protocol for signing
contracts, IEEE Trans. on Information Theory, vol 36, pp 40-46. , 1990.

4. B. den Boer, More Efficient Match-Making and Satisfiability - The Five Card Trick,
Eurocrypt ’89, pp 208-217, 1989.

5. D. Boneh and M. Naor, Timed Commitments, Crypto ’00, pp 236-254, 2000.
6. F. Boudot, B. Schoenmakers and J. Traoré, A Fair and Efficient Solution to the

Socialist Millionaires’ Problem, Journal of Discrete Applied Mathematics, Volume
111, Numbers 1-2, pp 23-36, 2000.

7. G. Brassard and C. Crépeau, Zero-Knowledge Simulation of Boolean Circuits,
Crypto ’86, pp 223-233, 1986.

8. E. Brickell, D. Chaum, I. Damg̊ard and J. van de Graaf, Gradual and verifiable
release of a secret, Crypto ’87, pp 1987.



The Marriage Proposals Problem 47

9. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, Adaptative security
for threshold cryptosystems, Crypto ’99, pp 98-115, 1999.

10. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, The (in)security of
distributed key generation in dlog-based cryptosystems, Eurocrypt ’99, pp 295-310,
1999.

11. D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms,
Communications of the ACM, pp 84-88, 1981.

12. D. Chaum and T.P. Pedersen, Wallet databases with observers, Crypto ’92, pp
89-105, 1993.

13. R. Cramer, I. Damg̊ard and B. Schoenmakers, Proofs of partial knowledge and
simplified design of witness hiding protocols, Crypto ’94, pp 174-187, 1994.

14. C. Crépeau and J. Kilian, Discreet Solitary Games, Crypto ’93, pp 319-330, 1993.
15. Z. Galil, S. Haber and M. Yung, Cryptographic Computation: Secure Fault-tolerant

Protocols and the Public-Key Model, Crypto ’87, pp 135-155, 1988.
16. T. El Gamal, A public key cryptosystem and a signature scheme based on discrete

logarithms, Auscrypt ’92, pp 244-251, 1992.
17. J. Garay and M. Jakobsson, Timed Realesed of Standard Digital Signatures, Proc.

Financial Cryptography 2002.
18. R. Gennaro and M. Di Raimondo, Secure Multiplication of Shared Secrets In The

Exponent, e-print, 2003.
19. S. Goldwasser and L. Levin, Fair computation of general functions in presence of

immoral majority, Crypto ’90, 1990.
20. M. Jakobbson and A. Juels, Mix and Match: Secure Function Evaluation via Ci-

phertexts (Extended Abstract), Asiacrypt ’00, pp 162-177, 2000.
21. B. Pinkas, Fair Secure Two-Party Computation (Extended Abstract), Eurocrypt

’03, pp 86-105, 2003.
22. D. Pointcheval and J. Stern, Security proofs for signature schemes, Eurocrypt ’96,

pp 387-398, 1996.
23. C.P. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology,

pp 161-174, 1991.
24. Syverson, Weakly Secret Bit Commitments: Applications to Lotteries and Fair

Exchanges, IEEE Computer Security Foundations Workshop, 1998.
25. A. Yao, Protocols for secure computations, Proc. 23rd IEEE Symposium on Foun-

dations of Computer Science (FOCS ’82), pp 160-164. IEEE Computer Society,
1982.

26. A. Yao, How to generate and exchange secrets, Proc. 27th IEEE Symposium on
Foundations of Computer Science (FOCS ’86), pp 162-167. IEEE Computer Soci-
ety, 1986.



On the Security of a Certified E-Mail Scheme

Guilin Wang, Feng Bao, and Jianying Zhou

Infocomm Security Department,
Institute for Infocomm Research,

21 Heng Mui Keng Terrace, Singapore 119613
{glwang, baofeng, jyzhou}@i2r.a-star.edu.sg

http://www.i2r.a-star.edu.sg/icsd/

Abstract. As a value-added service for standard e-mail systems, a cer-
tified e-mail scheme allows a sender to deliver a message to a receiver
in a fair way in the sense that either the sender obtains a receipt from
the receiver and the receiver accesses the content of the e-mail simulta-
neously, or neither party gets the expected item. In 2000, Ferrer-Gomila
et al. [11] proposed a novel certified e-mail protocol. Their scheme is
both efficient and optimistic, since it has only three steps and a trusted
third party is not involved in normal cases. Later, Monteiro and Dahab
[16] identified an attack on Ferrer-Gomila et al.’s scheme, and further
presented a modified scheme. In this paper, we show that their improve-
ment is still insecure by successfully identifying several weaknesses and
security flaws. Our attacks also apply to Ferrer-Gomila et al.’s original
scheme.

Keywords: certified e-mail, fair exchange, non-repudiation.

1 Introduction

A fair exchange protocol allows two potentially mistrusting parities to exchange
digital items over the Internet in a fair way, so that either each party gets
the other’s item, or neither party does. Such protocols include the following
different but related variants: non-repudiation protocols [2, 3, 8, 15], e-contract
signing protocols [7, 9, 17, 6], certified e-mail schemes [20, 10, 11, 4, 13, 5, 1, 16] etc.
For more references and discussions on the relationships between those concepts,
please refer to [3, 13, 14].

As a value-added service for standard e-mail systems, a certified e-mail scheme
allows a message to be delivered in a fair way between a sender Alice and a re-
ceiver Bob, such that either Bob accesses the content of the e-mail and Alice
obtains a receipt from Bob simultaneously, or neither party gets the expected
item. In other words, the main purpose of a certified e-mail scheme is to achieve
the fair exchange of a message and a receipt. Based on the extent of involvement
of the trusted third party (TTP), certified e-mail schemes can be classified into
two types: schemes with online TTPs [20, 10, 1] and schemes with offline TTPs
[11, 13, 4, 16]. Generally speaking, due to the TTP’s participation in every proto-
col instance, the schemes with online TTPs can be implemented easily, but may

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 48–60, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



On the Security of a Certified E-Mail Scheme 49

be expensive and inefficient, because the TTP may need to be paid and must
be involved in each exchange. The schemes with offline TTPs are considered as
optimistic, since the TTP is not invoked in the execution of the protocol unless
one of the two parties misbehaves or the communication channel is out of order.

Abadi et al. proposed an efficient certified e-mail scheme with a light online
TTP in [1]. An advantage of their scheme is that users are not required to
have PKI certificates. Note that Abadi et al.’s scheme does not provide non-
repudiation of origin (NRO), Imamoto and Sakurai [12] proposed an improved
scheme that not only meets NRO property but also enables the receiver freely
choosing the online TTP or offline TTP.

In [13], Kremer et al. constructed a scheme with a strong security require-
ment, called no author-based selective receipt, in which the sender’s identity is
not revealed to the receiver unless the receiver issues a receipt to the sender.
The TRICERT system [4] is a hybrid scheme that distributes the task of a tra-
ditional TTP to less trusted postal agents and a trusted judge who only settles
disputes. In addition, based on Micali’s certified e-mail scheme [17], Onieva et
al. [18] presented a multiparty scheme to delivering a message to a number of
receivers.

In 2000, Ferrer-Gomila et al. [11] proposed a novel certified e-mail scheme
(FPH scheme, for short). Their scheme is both efficient and optimistic, since it
has only three steps and a trusted third party is involved only in exceptions,
i.e., one of the two parties is trying to cheat or the communication channel is
out of order. Later, Monteiro and Dahab [16] identified an attack on the FPH
scheme, and further proposed an improved scheme that was claimed satisfying
the following security requirements.

1) Fairness: After completion of a protocol run, either each party receives the
expected item or neither party receives any useful information about the
other’s item.

2) Non-Repudiation: If an item has been sent from Alice to Bob, Alice cannot
deny the origin of the item and Bob cannot deny the receipt of the item.

3) Timeliness: At any time during a protocol run, each party can unilaterally
choose to terminate the protocol without losing fairness.

4) Verifiability of Third Party: If the third party misbehaves, resulting in
the loss of fairness for a party, the victim can prove the fact in a dispute.

In this paper, we present a security analysis of Monteiro et al.’s certified
e-mail scheme [16] (MD scheme, for short). By successfully identifying several
weaknesses and security flaws, we show that the MD scheme is still insecure, since
the two most important security requirements of fairness and non-repudiation
are not satisfied actually. To demonstrate those security problems concretely
and directly, we mount different attacks on the MD scheme. Moreover, similar
attacks also apply to the FPH scheme, as the same framework is exploited in
those two schemes. At the same time, our attacks illustrate that the executing
environment of fair exchange is complicated, so many cares should be paid to
design a secure scheme for certified e-mail delivery.



50 G. Wang, F. Bao, and J. Zhou

The rest of the paper is organized as follows. In Section 2, notation is in-
troduced. In Section 3, we review the MD scheme, and point out the difference
between the MD scheme and the FPH scheme. Then, we present a security
analysis of the MD scheme in Section 4. Finally, Section 5 concludes the paper.

2 Notation

In this paper, we use the same notation adopted in [16], which is almost the
same as in [11]. For completeness, we list all symbols below.

– A, B and T : The identities of the sender Alice, the receiver Bob, and the
TTP.

– X, Y : Concatenation of messages X and Y .
– H(X): Application of a collision-resistant hash function H to message X.
– PRi[H(X)]: The digital signature of party i on message X (which is first

hashed with hash function H) by using party i’s private key PRi, where i
denotes the identity of any party.

– M : Message delivered to the receiver Bob by the sender Alice.
– K: A secret key for a secure symmetric encryption algorithm.
– “s”: A string s.
– c = EK(M): Ciphertext c produced by encrypting message M under sym-

metric algorithm E with respect to the secret key K; and decryption of c is
denoted by M = DK(c).

– kT = PUT (K): Secret key K is encrypted with the TTP’s public key PUT .
– hA = PRA[H(H(c), kT )]: First part of the non-repudiation evidence of origin

of message M for Bob generated by Alice.
– kA = PRA[“key = ”, K]: Second part of the non-repudiation evidence of

origin for Bob generated by Alice.
– k′

T = PRT [“key = ”, K]: Alternative second part of the non-repudiation
evidence of origin for Bob generated by the TTP.

– h̄B = PRB [H(H(c), kT , hA)]: The non-repudiation evidence of receipt of
message M for Alice generated by Bob.

– hAT = PRA[H(H(c), kT , hA)]: An evidence that Alice has requested the
TTP’s intervention.

– h̄BT = PRB [H(H(c), kT , hA, h̄B)]: An evidence that Bob has requested the
TTP’s intervention.

– h̄′
B = PRT [H(h̄B)]: The TTP’s signature on h̄B that shows its intervention.

3 The MD Scheme

In this section, we first overview the MD scheme proposed by Monteiro and
Dahab in [16], which is an improvement of the FPH scheme [11]. After that, we
briefly point out the difference between the FPH scheme and the MD scheme,
and discuss Monteiro and Dahab’s attack on the FPH scheme.



On the Security of a Certified E-Mail Scheme 51

Like all certified e-mail schemes, the MD scheme also consists of a dispute
resolution policy, and three sub-protocols, i.e., the exchange protocol, the can-
cel protocol, and the finish protocol. The dispute resolution policy defines the
evidences of non-repudiation of origin (NRO) and non-repudiation of receipt
(NRR), and the procedures how a judge settles potential disputes over NRO
or NRR between different parties. The exchange protocol is the main protocol,
which is executed jointly by the sender Alice and the receiver Bob in normal
situation, i.e., both involved parties behave honestly according to the protocol
specification and the communication channel is in order. However, as we men-
tioned before, the difficulty is to meet security requirements even in abnormal
situation where one party is trying to cheat the other or the communication
channel is out of service. As pointed out by Micali [17], fair exchange protocols
have to solve an essential unfair problem in a fair way. Therefore, in abnormal
situations, the cancel protocol and the finish protocol are designed to achieve
fairness for the sender Alice and the receiver Bob, respectively, under the help of
the TTP. More specifically, the cancel protocol allows the sender Alice to cancel
a protocol execution in the following situations: (1) Bob does not respond; (2)
Bob does not respond correctly or timely; or (3) The communication channel
interrupts. Analogously, the finish protocol protects the receiver Bob from the
cheating of Alice or the failure of communications.

We now review in detail the three sub-protocols and the dispute resolution
policy of the MD scheme [16].

3.1 Description of Sub-protocols

(1) The Exchange Protocol. Assume that Alice wants to deliver a message
M to the receiver Bob with a guarantee that Bob can access the message M if
and only if she obtains a receipt from Bob. To this end, the sender Alice and
the receiver Bob run the following exchange protocol jointly.

(e1). A −→ B : c, kT , hA

(e2). B −→ A : h̄B

(e3). A −→ B : kA

(1)

That is, in normal case, Alice first selects a symmetric encryption key K, and
then encrypts the secret key K and message M by computing kT = PUT (K)
and c = EK(M). Then, she generates her signature hA for message (H(c), kT )
to show that c and kT are originated from herself, instead of others. Finally,
Alice sends (c, kT , hA) to the receiver Bob as message flow (e1). After validating
that hA is Alice’s signature on message (H(c), kT ), Bob generates and returns
his signature h̄B to show that he has received the ciphertext c, the encrypted
key kT , and Alice’s signature hA on (H(c), kT ). If h̄B is correct, Alice sends Bob
kA as message flow (e3) to reveal the secret key K.

Therefore, after the successful completion of the exchange protocol, Alice
holds the NRR evidence h̄B , and Bob obtains the NRO evidence (hA, kA) and
then can access message M by decrypting c with secret key K, i.e., M = DK(c).
Note that the authors of [11] pointed out that the RSA cryptosystem [19] is



52 G. Wang, F. Bao, and J. Zhou

specially suitable to their scheme, so Bob can get the value of the secret key K
from kA or k′

T by using the public key of Alice or the TTP, respectively.
However, if the exchange protocol is not executed successfully, the resulting

situation may be unfair for one of involved parties. In such cases, either Alice
or Bob, or both of them, can initiate the cancel protocol or the finish protocol,
respectively, to achieve fairness under the help of the TTP.
(2) The Cancel Protocol. If the sender Alice does not receive the expected
value of h̄B correctly or timely, she can execute the following cancel protocol
with the TTP and then abort the protocol instance with the receiver Bob.

(c1). A −→ T : H(c), kT , hA, hAT

(c2). If (finished = true), T retrieves h̄B

T −→ A : h̄B , h̄′
B

Else T stores (cancelled = true)
T −→ A : PRT [H(“cancelled”, hA)]

(2)

We explain the cancel protocol in detail as follows. To abort a protocol execu-
tion, Alice first sends (H(c), kT , hA, hAT ) as a cancel request to the TTP. Then,
the TTP verifies the correctness of message flow (c1), i.e., whether hA and hAT

are Alice’s signatures on messages (H(c), kT ) and (H(c), kT , hA), respectively. If
this is not the case, an error message is sent to Alice. Otherwise, the TTP pro-
ceeds in one of two possible ways according to the values of variables cancelled
and finished (their default values are set as false). If finished = true, the
TTP retrieves the stored NRR evidence h̄B , and sends it to Alice together with
a token h̄′

B to prove its intervention, since finished = true means that Bob has
obtained k′

T (and then the secret key K) from the TTP by successfully execut-
ing the finish protocol (see below). On the other hand, if Bob has not contacted
the TTP previously, i.e., finished = false, the TTP sends Alice a cancellation
token PRT [H(“cancelled”, hA) to abort the transaction, and stores the status
variable as cancelled = true to satisfy future possible petitions from Bob.
(3) The Finish Protocol. Similarly, if the receiver Bob has sent NRR evidence
h̄B to the sender Alice but does not receive the expected value kA from Alice
correctly or timely, he can get the alternative second part NRO evidence k′

T (and
then the secret key K) from the TTP by running the following finish protocol.

(f1). B −→ T : H(c), kT , hA, h̄B , h̄BT

(f2). If (cancelled = true)
T −→ B : PRT [H(“cancelled”, h̄B)]
Else T stores (finished = true) and h̄B

T −→ B : k′
T

(3)

In more details, to get the value of k′
T from the TTP directly, Bob sends mes-

sage flow (f1) as his resolution request to the TTP, where Bob’s signature h̄BT

shows that this request comes from Bob instead of other users. Upon receiving
Bob’s request, the TTP checks the correctness of (H(c), kT , hA, h̄B , h̄BT ). If it is
not the case, the TTP sends an error message to Bob. Otherwise, it proceeds in



On the Security of a Certified E-Mail Scheme 53

one of two possible ways according to the values of status variables. If cancelled =
true, the TTP sends Bob a cancellation token PRT [H(“cancelled”, h̄B)] to ex-
empt his liability for sending h̄B , since cancelled = true means that Alice has
already aborted the transaction by successfully executing the cancel protocol
(see above) with the TTP, and that the TTP has given a cancellation token to
Alice. If cancelled = false, i.e., Alice has not cancelled the transaction with
the TTP, the TTP first gets the secret key K by decrypting kT . After that, it
generates and sends k′

T to Bob so that he is able to derive the value of K and
then access the content of the encrypted message c by computing M = DK(c).
At the same time, the TTP stores the NRR token h̄B from Bob, and the status
variable as finished = true to satisfy future possible petitions from Alice.

3.2 Dispute Resolution Policy

In some day after the completion of a protocol execution (with or without the
TTP’s participation), it may be necessary to handle the following two types of
dispute resolution requests:

– Repudiation of Origin: Bob claims having received message M from Alice
but Alice denies having sent message M to Bob.

– Repudiation of Receipt: Alice claims having sent message M to Bob but
Bob denies having received message M from Alice.

An external judge should resolve these disputes according the dispute reso-
lution policy specified as follows.

– Resolving Repudiation of Origin. As a resolution request, Bob first sends
the judge M, c, kT , hA, and kA or k′

T . Then, the judge verifies the validity of
signatures hA, kA or k′

T , and whether DK(c) = M , where the secret key K
is derived from kA or k′

T . If any of the above checks fails, the judge dismisses
Bob’s claim. Otherwise, i.e., Bob’s evidence is correct, the judge further asks
whether Alice holds the cancellation token PRT [H(“cancelled”, hA)]. If the
correct token is provided, then the judge concludes that the TTP has acted
mistakenly. In other situation, i.e., Bob has correct NRO evidence and Alice
cannot provide correct cancellation token, the judge rules in favor of Bob,
i.e., the verdict is that Alice indeed sent message M to Bob.

– Resolving Repudiation of Receipt. Similarly, to get the judge’s juris-
diction for a dispute over receipt, Alice submits (M, c, kT , hA, h̄B , K) to the
judge. Upon receiving Alice’s request message, the judge verifies the validity
of signatures hA, h̄B , whether kT is the encryption of K under the public
key of the TTP. If any of these checks is incorrect, then the judge dismisses
Alice’s claim. However, positive answers for those checks are not sufficient to
guarantee that Alice’s claim is true. The judge should further require Bob to
provide a cancellation token PRT [H(“cancelled”, h̄B)]. If Bob is able to pro-
vide it, this means Alice is trying to cheat, so the judge rejects Alice’s request
and solves the dispute in Bob’s favor, i.e., Bob has not received message M
from Alice. If Bob cannot provide that token, the judge will check whether



54 G. Wang, F. Bao, and J. Zhou

M = DK(c). If this final check is positive, the judge will side with Alice, i.e.,
Bob received M from Alice. Otherwise, if the previous check fails, the judge
rejects Alice’s request. Finally, if Alice’s NRR evidence is correct and Bob is
able to provide a correct cancellation token PRT [H(“cancelled”, h̄B)], then
the judge concludes that the TTP has acted improperly.

3.3 The FPH Protocol and Its Security

As noted by the authors of [16], the FPH scheme and the MD scheme are almost
the same, except in the former h̄B , h̄′

B and h̄BT are replaced by hB , h′
B and

hBT , respectively, where

hB = PRB [H(H(c), kT )],
h′

B = PRT [H(hB)],
hBT = PRB [H(H(c), kT , hA, hB)].

(4)

Consequently, in the FPH scheme, the NRO evidence hA and the NRR evi-
dence hB have a symmetric structure. Based on this observation, Monteiro and
Dahab [16] pointed out an attack against the FPH scheme. In their attack, the
receiver initiates both a finish protocol and a cancel protocol by using the same
public information of a protocol instance executed with the sender Alice. Here,
we do not review their attack in detail, but we want to point out that the suc-
cess of the attack depends on the following assumption: The TTP does not check
whether (h(c), kT ) are used repeatedly in different instances of the cancel and
finish protocol. If this check is added, their attack is thwarted (though the FPH
scheme is indeed insecure, as we will see later).

Moreover, to avoid their attack, Monteiro and Dahab introduced asymmetric
structures for NRO and NRR evidences, and then obtained an improved scheme,
i.e., the MD scheme, which is reviewed in previous sections. In the next section,
we will show that the MD scheme is still insecure, though they claimed their
scheme is secure.

4 Security of the MD Scheme

In [11, 16], the authors provided security analysis in detail to show that their
schemes are secure, i.e., satisfying all desirable security properties. However,
contrary to their claim, we identify several weaknesses and security flaws in
their schemes. To illuminate those security problems concretely and directly, we
demonstrate different attacks in this section. For simplicity, we only describe the
attacks on the MD scheme. Similar attacks also apply to the FPH scheme, as
the same framework is exploited in those two schemes. In our discussion, we not
only describe the details about the attacks, but also try to find the reasons why
the MD is still insecure.

4.1 On the Communication Channels

We note that the authors of [11, 16] did not explicitly specify what kinds of com-
munication channels are needed in their schemes. Actually, only [11] pointed out



On the Security of a Certified E-Mail Scheme 55

that cryptographic operations to achieve confidentiality are omitted in order to
simplify the explanation. However, as practice-oriented systems, certified e-mail
schemes are expected to involve as few as possible cryptographic operations while
the desirable security requirements are still satisfied. So, assumptions on the com-
munication channels should be specified clearly in certified e-mail schemes (and
maybe almost all security protocols). Otherwise, misunderstandings may occur
easily in the system evaluation and/or implementation procedures.

Here, we emphasize that secure channels in some sense are necessary in both
the MD scheme and the FPH scheme. For example, as a signature with message
recovery, the value of kA and k′

T must be protected under a secure encryption
scheme. Otherwise, an eavesdropper Eve can derive the message M which is
delivered in encrypted manner between Alice and Bob. That is, if kA and k′

T are
sent to Bob straightforwardly without additional protection, a passive attacker
Eve may first intercept the ciphertext c and the encrypted secret key kA or k′

T ,
and then get message M by computing M = DK(c), where the secret key K
is recovered from kA or k′

T . Therefore, in both schemes kA and k′
T must be

protected in appropriate ways, if the confidentiality of delivered message M is
supposed to provide.

In the following discussion, we assume that there exist authenticated and
confidential channels among the sender Alice, the receiver Bob and the TTP.
That is, all message flows communicated between any two parties of them can-
not be impersonated, modified, inserted or decrypted by a third party. Such
channels are usually called as secure. Later analysis will show that both the MD
scheme and the FPH scheme are insecure, even in the environments where secure
channels are provided.

4.2 On the Dispute Resolution Policy

Dispute resolution policy plays a very important role in all certified e-mail
schemes (and non-repudiation protocols). That is, a judge settles all NRO or
NRR disputes according to the specification of dispute resolution policy exactly.
With a secure dispute resolution policy, any dishonest party cannot cheat other
parties except a negligible probability. However, we find that according to the
specification of the MD protocol, the sender Alice can maliciously frame the
TTP even though the TTP acts honestly.

In the specification of NRO resolution protocol, even though Bob provided
the correct NRO evidence, Alice will be judged as innocent if she can provide the
cancellation token PRT [H(“cancelled”, hA)]. Therefore, to frame the TTP dis-
honest sender Alice may mount the following attack: After running the exchange
protocol successfully with Bob, Alice dishonestly initiates the cancel protocol
with the TTP to get a cancellation token. In more details, Alice first correctly
prepares and sends (c, kT , hA) to the receiver Bob as message flow (e1). Upon
receiving Bob’s signature h̄B via message flow (e2), Alice returns kA to Bob
as message flow (e3). Up to this point, a successful protocol execution is com-
pleted. However, malicious Alice may initiate the cancel protocol with the TTP
by sending out (H(c), kT , hA, hAT ) as message flow (c1). Assumed that Bob has



56 G. Wang, F. Bao, and J. Zhou

not executed the finish protocol with the TTP, Alice will obtain the cancellation
token PRT [H(“cancelled”, hA)] from the TTP via message flow (c2).

After the above procedures have completed, honest receiver Bob (mistakenly)
believes that the protocol is executed successfully since he sent h̄B to Alice and
received correct NRO evidence (hA, kA). However, when Bob wants to prove that
Alice has sent message M to him, Alice can successfully deny having sent mes-
sage M to Bob by providing the cancellation token PRT [H(“cancelled”, hA)].
According to the specification of the dispute resolution policy, the judge will
conclude that the TTP has acted improperly. So the result is that the honest
TTP is framed. In the real world, the TTP may have to take some responsibili-
ties for his faults arbitrated by the judge, for example compensating an amount
of money to Alice and Bob.

Actually, the fact of Bob holding (hA, kA) and Alice being able to provide
PRT [H(“cancelled”, hA)] has already implied Alice’s dishonest behavior. Be-
cause if Alice is honest, there are only two possible ways she has done: (1)
Obtaining PRT [H(“cancelled”, hA)] by running the cancel protocol but not re-
vealing kA to Bob; or (2) Sending kA to Bob without running the cancel protocol
(and so having no PRT [H(“cancelled”, hA)]). The existence of the above attack
means that in the MD scheme, the NRO dispute resolution policy is illogical.
In other words, if Bob provided correct (hA, kA), Alice should be judged as the
originator of message M , regardless whether she holds the cancellation token.
On the other hand, the judge will still conclude that the TTP has acted improp-
erly if Bob submitted correct NRO evidence (hA, k′

T ) and Alice provided valid
PRT [H(“cancelled”, hA)].

In addition, note that the NRO evidence (hA, kA) or (hA, k′
T ) can only be

explained as “Alice indeed sent message M to somebody”, instead of “Alice
indeed sent message M to Bob”. The reason is that after receiving Bob’s valid
NRO dispute request, (M, c, kT , hA, kA) or (M, c, kT , hA, k′

T ), the judge actually
cannot recognize whether Bob is the receiver designated by Alice, since those
tuples do not include any information about Bob’s identity.

4.3 Cheating from the Receiver

The main purpose of the finish protocol is to protect honest receiver Bob, because
the sender Alice may dishonestly refuse to reveal the value of kA to Bob after
she has obtained NRR evidence h̄B from Bob via message follow (e2). If Alice
really cheated like that, Bob runs the finish protocol to get k′

T from the TTP as
a substitute for kA, i.e., the second part of NRO evidence. However, the TTP
needs to store the value of h̄B and the status value cancelled and finished,
because the TTP has to prevent dishonest Bob from trying to get k′

T from itself
directly without sending the NRR evidence h̄B to Alice. However, the goal of
fairness is not achieved.

In this section, we demonstrate an attack that allows a dishonest receiver Bob
to access the encrypted message m without revealing the receipt h̄B to anybody,
including the sender Alice and the TTP. In this attack, we assume that Bob
colludes with his friend A′ to get the secret key K from the TTP. The attack is
illuminated as follows:



On the Security of a Certified E-Mail Scheme 57

(e1). A −→ B : c, kT , hA

(1’). B −→ A′ : kT

(2’). A′ −→ B : c0, hA′

(f1’). B −→ T : H(c0), kT , hA′ , h̄B0, h̄BT0
(f2’). If (cancelled = true)

T −→ B : PRT [H(“cancelled”, h̄B0)]
Else T stores (finished = true) and h̄B0
T −→ B : k′

T

(5)

Now, we explain the above attack in detail. When dishonest receiver Bob
obtains (c, kT , hA) via message flow (e1), he interrupts the protocol execution
permanently. In order to obtain k′

T (and then the secret key K) from the TTP,
Bob sends kT to his friend A′. Then, A′ selects a random number c0, signs
the message (H(c0), kT ) by computing hA′ = PRA′ [H(H(c0), kT )], and returns
back (c0, hA′) to Bob. Upon receiving (c0, hA′), Bob generates his signatures
h̄B0 = PRB [H(H(c0), kT , hA′)] and h̄BT0 = PRB [H(H(c0), kT , hA′ , h̄B0)]. After
that, Bob sends (H(c0), kT , hA′ , h̄B0, h̄BT0) as message flow (f1’) to the TTP by
initiating the finish protocol. Since this message flow is indeed valid, the TTP
believes that A′ and Bob are running the protocol, and that Bob wants to finish
this protocol instance now. So the TTP decrypts kT to get K, then generates
and sends k′

T to Bob. Therefore, under the help of A′ and the TTP, Bob can
read the content of encrypted e-mail c by decrypting M = DK(c), while the
honest sender Alice does not obtain the receipt h̄B from Bob. Furthermore, if
necessary, Bob can prove that Alice has sent message M to him by providing
NRO evidence (hA, k′

T ). Therefore, this attack shows that the MD scheme is
unfair for the sender.

The above attack employs the following weakness in the MD protocol: the
identities of the sender and the receiver are not embedded in kT . That is, when
the TTP derives the secret key K by decrypting kT , it does not know who is the
originator of this encrypted key and who is the expected receiver. Consequently,
the TTP cannot determine whether the dispute resolution requesters are the par-
ties involved in the protocol instance in which kT is generated. Furthermore, note
that the TTP cannot check whether c corresponds with a meaningful plaintext
under the secret K derived from kT , because only the hash value H(c) instead
of c is provided to it in both the cancel protocol and the finish protocol. In this
way, as pointed out by Abadi et al. [1], the privacy and efficiency are guaranteed
better: (1) Without the ciphertext c, even the TTP does not know the delivered
message M between Alice and Bob; and (2) The overhead of communications
between the TTP and users is proportional to the number of dispute resolution
requests rather than the length of message exchanged among users. However,
the point is that security is compromised.

Remark 1. The above attack is significantly stronger than Monteiro et al.’s attack
on the FPH scheme. Namely, our attack is independent of the specific checking
procedures exploited by the TTP in the cancel and finish protocol, since the



58 G. Wang, F. Bao, and J. Zhou

message flow (f1’) sent to the TTP is a totally new message for the TTP. How-
ever, Monteiro et al.’s attack relies on the assumption that the TTP does not
check the repeated usage of the same information (H(c), kT ), as we mentioned
before.

Remark 2. If both the ciphertext c and the encrypted secret kT are transferred
via a public channel, it is not difficult to see that an eavesdropper B′ colluding
with his friend A′ can also mount the above attack. By doing so, B′ could know
the content M of the ciphertext c, though M is delivered between Alice and Bob
in an encrypted way.

4.4 Other Weaknesses in the MD Scheme

Actually, the MD scheme has some other weaknesses. The first one is that the
TTP has to store a lot of messages in its database. Specifically, for all successful
dispute resolution requests, the TTP has to store the values of status variables,
related signatures etc. Correctly maintaining the status variables’ values are very
important, since the variables cancelled and finished are exclusive to each other.
If the values of such variables are lost or confused, a special protocol instance
may be successfully cancelled by the sender Alice and be successfully finished by
the receiver Bob simultaneously. Then, the TTP may issue inconsistent tokens
and has to bear potential liability in the future. We remark that the technique
of cut-off time introduced in [17] can be used to address this problem in a great
degree. That is, let kT , hA, and h̄B include the same cut-off time t. After the
specified cut-off time t, the TTP neither stores the messages nor responds dispute
resolution requests related with t. However, cares should be paid for the possible
attacks resulting from the drift of clocks among different parties.

Another weakness in the MD scheme is that to thwart both the cancel pro-
tocol and the finish protocol being successfully executed for the same protocol
instance, what are the procedures the TTP should follow? For example, only
checking whether H(c) is repeated or checking all message components of dis-
pute requests. In [11, 16], such procedures are not provided. Based on different
implementation, specific attacks may be mounted.

5 Conclusion

This paper presented a security analysis of the certified e-mail scheme proposed
in [16], which is an improvement of the scheme in [11]. Our analysis showed that
those two certified e-mail schemes are all insecure. The most serious problem
is that a receiver can access the content of encrypted e-mail message without
issuing a receipt. Therefore, both of those two schemes are actually unfair, con-
trary to the original authors’s claims. The attacks identified in this paper also
illustrated that the executing environment of certified e-mail delivery is compli-
cated, so many details need to be considered in the design of a secure scheme.
For example, clear assumption on communication channels, correct definition
and explanation on the non-repudiation evidences, detailed specification on the



On the Security of a Certified E-Mail Scheme 59

TTP’s action, necessary link information among different message flows, explicit
identity information on related parties etc. In the future research, we will con-
sider to design a new certified e-mail scheme.

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful and detailed suggestions on the improvement of this paper.

References

1. M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email with a light on-line
trusted third party: Design and implementation. In: Proc. of 2002 International
World Wide Web Conference (WWW’02), pp. 387-395. ACM press, 2002.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair ex-
change. In: Proc. of AMC Conference on Computer and Communications Security
(CCS’97), pp. 7-17. ACM Press, 1997.

3. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18 (4): 591-606, 2000.

4. G. Ateniese, B. de Medeiros, and M.T. Goodrich. TRICERT: A distributed certi-
fied E-mail scheme. In: Proc. of Symposium on Network and Distributed Systems
Security (NDSS’01). Internet Society, 2001.

5. G. Ateniese and C. Nita-Rotaru. Stateless-receipient certified E-mail system based
on verifiable encryption. In: CT-RSA’02, LNCS 2271, pp. 182-199. Springer-Verlag,
2002.

6. F. Bao, G. Wang, J. Zhou, and H. Zhu. Analysis and improvement of Micali’s
fair contract signing protocol. In: Information Security and Privacy (ACISP’04),
LNCS 3108, pp. 176-187. Springer-Verlag, 2004.

7. M. Ben-Or, O. Goldreich, S. Micali, and R. L. Rivest. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, 36(1): 40-46, 1990.

8. C. Boyd and P. Kearney. Exploring fair exchange protocols using specification
animation. In: Information Security Workshop (ISW’00 ), LNCS 1975, pp. 209-
223. Springer-Verlag, 2000.

9. I.B. Damg̊ard. Practical and provably secure release of a secret and exchange of
signatures. Journal of Cryptology, 8(4): 201-222, 1995.

10. R. Deng, L. Gong, A. Lazar, and W. Wang. Practical protocol for certified elec-
tronic mail. Journal of Network and Systems Management, 1996, 4(3):279-297.

11. J. L. Ferrer-Gomila, M. Payeras-Capella, and L. Huguet-Rotger. An efficient pro-
tocol for certified elctronic mail. In: Information Security Workshop (ISW’00 ),
LNCS 1975, pp. 237-248. Springer-Verlag, 2000.

12. K. Imamoto and K. Sakurai. A cerified e-mail system with reciever’s selctive usage
of delivery authortiy. In: Indocrypt 2002, LNCS 2551, pp. 326-338. Springer-Verlag,
2002.

13. S. Kremer and O. Markowitch. Selective receipt in cerified e-mail. In: Indocrypt
2001, LNCS 2247, pp. 136-148. Springer-Verlag, 2001.

14. S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of fair non-repudiation
protocols. Computer Communications, 25(17): 1606-1621. Elsevier, Nov. 2002.

15. S. Gurgens, C. Rudolph, and H. Vogt. On the security of fair non-repudiation
protocols. In: Information Security Conference (ISC’03), LNCS 2851, pp. 193-207.
Springer-Verlag, 2003.



60 G. Wang, F. Bao, and J. Zhou

16. J.R.M. Monteiro and R. Dahab. An attack on a protocol for certified delivery.
In: Information Security Conference (ISC’02 ), LNCS 2433, pp. 428-436. Springer-
Verlag, 2002.

17. S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In: Proc.
of 22th Annual ACM Symp. on Principles of Distributed Computing (PODC’03),
pp. 12-19. ACM Press, 2003.

18. J.A. Onieva, J. Zhou, and J. Lopez. Enhancing certied email service for timeliness
and multicasting. In: Proc. of 4th International Network Conference (INC’04), pp.
327-336, Plymouth, UK, July 2004.

19. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, Feb. 1978, 21(2): 120-
126.

20. J. Zhou and D. Gollmann. Certified electronic mail. In: Computer Security - ES-
ORICS’96, LNCS 1146, pp. 160-171. Springer-Verlag, 1996.



Multiplicative Homomorphic E-Voting�

Kun Peng1, Riza Aditya1, Colin Boyd1, Ed Dawson1, and Byoungcheon Lee1,2

1 Information Security Research Centre,
IT Faculty, Queensland University of Technology

{k.peng, c.boyd, e.dawson, r.aditya}@qut.edu.au
http://www.isrc.qut.edu.au
2 Joongbu University, Korea

sultan@joongbu.ac.kr

Abstract. All the currently existing homomorphic e-voting schemes
are based on additive homomorphism. In this paper a new e-voting
scheme based on multiplicative homomorphism is proposed. In the tally-
ing phase, a decryption is performed to recover the product of the votes,
instead of the sum of them (as in the additive homomorphic e-voting
schemes). Then, the product is factorized to recover the votes. The new
e-voting scheme is more efficient than the additive homomorphic e-voting
schemes and more efficient than other voting schemes when the number
of candidates is small. Strong vote privacy and public verifiability are
obtained in the new e-voting scheme.

1 Introduction

Two main methods have been applied to design e-voting schemes: mix network
and homomorphic tallying. Both methods can protect vote privacy when thresh-
old trust is assumed. In regard to efficiency, it is demonstrated in [2] that mix
network is more suitable for elections with a large number of candidates or
choices (e.g. preferential voting) and homomorphic tallying is more suitable for
elections with a small number of candidates or choices (e.g. “YES/NO” voting)
as the latter’s cost is linear in the number of candidates or choices.

Current homomorphic e-voting schemes employ an additive homomorphic
encryption algorithm (e.g. Paillier encryption) to encrypt the votes and exploit
additive homomorphism of the encryption algorithm to recover the sum of votes
for any candidate or choice with a single decryption. As no single vote is de-
crypted, vote privacy is protected. It is surprising that multiplicative homomor-
phism has never been employed to design any voting scheme, although it may
lead to better performance.

The contribution of this paper is a design of a multiplicative homomorphic
voting scheme. In a multiplicative homomorphic voting scheme, a multiplicative

� The research in this paper was supported by Australian Research Grants DPO345458
and LX0346868.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 61–72, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



62 K. Peng et al.

homomorphic encryption algorithm (e.g. ElGamal encryption) to encrypt the
votes and a single decryption is performed to calculate the product of votes.
Then the product is factorized and the votes are recovered. Like in additive
homomorphic voting, no single vote is decrypted in multiplicative homomor-
phic voting, so vote privacy is protected too. The most important advantage of
multiplicative homomorphic voting is that it is always more efficient than ad-
ditive homomorphic voting and more efficient than other voting schemes when
the number of candidates is small. In brief, multiplicative homomorphic voting
improves efficiency without compromising vote privacy or public verifiability.

2 Related Work

In an election, the voters select a certain number of winners from a few can-
didates. At first the identities of the candidates and the number of expected
winners are declared. Then every bidder appoints some candidates in his bid,
whose number is equal to the number of expected winners. Finally some talliers
count the votes and declare the voting result. In an e-voting system, tallying
must be performed without revealing any vote.

Definition 1. If after the voting every vote is only known to distribute uniformly
in the vote space (containing all the possible choices), we say that complete vote
privacy is achieved. If after the voting every voter’s choice is only known to be
among a large number of published votes, whose number is much larger than the
number of possible choices, we ay that strong vote privacy is achieved.

So far, two methods have been employed to protect vote privacy in voting
schemes. The first one is mix network. In voting schemes using this method [15,
34, 28, 31, 32, 27, 20, 7, 17, 36, 1, 23, 9] (called mix voting), the votes are
shuffled in the mix network and then decrypted separately. Although every single
vote is decrypted, they cannot be linked to the voters after being
shuffled. So, vote privacy is achieved. The second is homomorphic tallying, which
exploits the homomorphism of the encryption algorithm (used to encrypt the
votes) to implement the tallying without decrypting any single vote. E-voting
schemes employing the second method are called homomorphic voting and in-
clude [18, 5, 33, 6, 11, 12, 3, 26, 35, 19, 4, 21, 13, 22, 24, 25]. Since no single vote is
decrypted, vote privacy is obtained. Homomorphic voting schemes are efficient
when the number of candidates or choices is small. However, homomorphic vot-
ing has a drawback: each vote must be verified to be valid. Without the vote
validity check, correctness of the tallying cannot be guaranteed. When the num-
ber of candidates or choices is large (e.g. in a preferential voting), computational
and communicational cost for the proof and verification of vote validity is so high
that homomorphic voting becomes less efficient than mix voting. So, it is widely
believed that homomorphic voting is only suitable for elections with a small
number of candidates or choices (e.g. “YES/NO” voting).

An encryption scheme is additive homomorphic if E(m1+m2) = E(m1)E(m2)
for any messages m1 and m2 where E() stands for the encryption function. In an



Multiplicative Homomorphic E-Voting 63

additive homomorphic voting scheme, each bidder makes a choice for every can-
didate (1 for the candidate or 0 against the candidate), encrypts his choices as
his encrypted vote. Then he proves that his vote is valid, namely every choice en-
crypts 0 or 1 and the number of 1s encrypted in his vote is equal to the expected
number of winners specified in the voting rule. The talliers verify that each vote
is valid. Then they decrypt the product of encrypted choices for each candidate
or the product of all the encrypted votes (in some special voting schemes [24, 25]
each voter combines his choices for all the candidates in one ciphertext) to find
out the sum of votes for each candidate without decrypting any single vote.

One of two possible additive homomorphic encryption algorithm are usu-
ally employed: Paillier encryption or modified ElGamal encryption. Paillier en-
cryption is inherently additive homomorphic and more frequently applied. The
original ElGamal encryption scheme can be simply modified to be additive ho-
momorphic: a message is used as an exponent in an exponentiation computation,
then the exponentiation is encrypted using the original ElGamal encryption. A
passive result of this modification is that a search for logarithm must be per-
formed in the decryption function, which becomes inefficient when the searching
space is not too small. The modified ElGamal encryption is employed in homo-
morphic voting schemes [18, 22, 24, 25], where the details of the modification and
the consequent search are described in detail.

A disadvantage of additive homomorphic voting compared to multiplicative
homomorphic voting is inefficiency due to the following reasons.

– If Paillier encryption is employed, the following drawbacks in efficiency exist.
• Inefficient set-up

In voting schemes, the private key of the encryption algorithm must be
generated and shared by multiple talliers, so that it is not needed to
trust any single party to achieve vote privacy. As the private key is a
factorization secret in Paillier encryption, distributed key generation is
highly inefficient. In comparison, distributed key generation in ElGamal
(distributed generation of a secret logarithm as the private key) is much
more efficient as described in [14, 30, 16].

• Multiple encryption
Usually, a voter has to perform an encryption for each candidate and
prove each of his encryptions contains a valid message.

• Inefficiency of multiplicative and exponentiation computations
In Paillier encryption, each multiplication is performed modulo N2 where
N is the product of two large primes and its factorization is the private
key (see [29] for details). In comparison, in original ElGamal encryption,
each multiplication is performed modulo p, a large prime. If the same
security strength is required, N and p should have the same length (e.g.
1024 bits). As the modulus in Paillier encryption scheme is a square and
usually the computation for modular multiplication is quadratic in the
operand size, multiplication in Paillier encryption scheme is more costly
than that in ElGamal encryption scheme. Although Chinese Remain-
der Theorem can be employed to improve the efficiency of multiplicative



64 K. Peng et al.

computation with a composite modulus in Paillier encryption scheme,
Paillier admitted this efficiency improvement is only available in key
generation and decryption when the factorization of N is known. Paillier
indicated that a multiplication in Paillier encryption is more than three
times as costly as a multiplication in ElGamal encryption when N and
p should have the same length (e.g. 1024 bits). Usually distributed de-
cryption is employed in voting schemes to minimize trust and strengthen
robustness, so the factorization of N is not known to any single tallier,
who performs the decryption. Therefore, we can assume that when the
same security strength is required a multiplication in Paillier encryp-
tion with distributed decryption is at least three times as costly as a
multiplication in ElGamal encryption.

– If the modified ElGamal encryption is employed, the following drawbacks in
efficiency exist.
• Multiple encryption

Usually, a voter has to perform an encryption for each candidate and
prove each of his encryptions contains a valid message.

• Inefficient DL search
As stated before, a search for logarithm is needed in the decryption
function. Even though the (currently known) most efficient solution for
DL in a certain interval — Pollard’s Lambda Method — is employed,
0.5 log2 n exponentiations, O(n0.5) multiplications and O(0.5 log2 n) stor-
age are needed where n is the number of voters. As the number of voters
is often large in voting applications, this is a high cost. To make the
search more efficient, the votes may be divided into multiple groups and
a separate tallying is performed in each group. However, this division
increases the number of decryptions as a separate decryption is needed
for every candidate in each group.

In [24, 25], the modified ElGamal encryption and its additive homomorphism
are exploited in a very special way. Only one encryption is needed in a vote, which
is composed of several sections, each corresponding to one candidate. So only one
decryption is needed to decrypt the product of all the encrypted votes. Although
the numbers of encryptions and decryptions are reduced, they are not the main
computational burden in the voting scheme. The main computational burden
of the voting scheme increases as the computational cost for vote validity proof
increases and the cost of the DL search increases to O(mnm−1) multiplications
and O(nm) full length (e.g. 1024 bits) storage space where m is the number of
candidates. As the number of voters is often large in voting applications, the
cost for the search is intolerable. So the special additive homomorphic tallying
in [24, 25] actually deteriorates efficiency although it was supposed to improve
efficiency.

In comparison, as will be illustrated in Section 3, multiplicative homomorphic
voting employs efficient distributed key generation, requires only one encryption
per vote and needs no DL search, while it achieves vote privacy no weaker than
that of additive homomorphic voting.



Multiplicative Homomorphic E-Voting 65

3 The Multiplicative Homomorphic Voting Scheme

A multiplicative homomorphic voting scheme exploits multiplicative homomor-
phism of the encryption algorithm used for vote encryption to tally efficiently
without revealing any vote. Each voter only needs to encrypt with a multiplica-
tive homomorphic encryption algorithm one integer as his vote. An encryption
algorithm is multiplicative homomorphic if E(m1m2) = E(m1)E(m2) where E()
stands for the encryption function and m1,m2 are two random messages. A typ-
ical multiplicative homomorphic encryption algorithm is ElGamal encryption,
which is employed in this paper. The product of the encrypted votes are then
decrypted, so that the product of the votes is obtained if their product is not
over the multiplicative modulus (certain mechanism is used to guarantee this as-
sumption). Then the product is factorized to recover the votes. A voting protocol
to elect one winner from m candidates is as follows.

1. Preparation phase
Suppose there are m candidates C1, C2, . . . , Cm. ElGamal encryption modulo
p is employed for vote encryption where p = 2q+1 and p, q are large primes.
Several talliers cooperate to generate and threshold share the private key
while the public key is published using the distributed key generation func-
tion in [16]. A set Q = {q1, q2 . . . , qm} is chosen to represent the candidates
as follows.
(a) Two sets Q1 = {1} and Q2 = Φ are initialised. Two integers s1 and s2

representing the sizes of the two sets respectively are initialised as s1 = 1
and s2 = 0. Index s is initialised to be 1.

(b) The sth smallest prime ps is tested.
If pq

s = 1 mod p,
– ps is a quadratic residue;
– ps is put into Q1 and set s1 = s1 + 1.

If pq
s �= 1 mod p,

– ps is not a quadratic residue;
– ps is put into Q2 and set s2 = s2 + 1 .

(c) If s1 < m and s2 < m, set s = s + 1 and go to Step (b). Otherwise, go
to next step.

(d) If s1 = m, Q = Q1; If s2 = m, Q = Q2.
With this setting-up, the members in Q are either all quadratic residues

or all quadratic non-residues, so their encryptions are indistinguishable1.
The talliers set up the ElGamal encryption:
– they cooperatively generate the public key g and y in G, which is the sub-

group in Z∗
p with order q using the distributed key generation techniques

in [14, 30, 16], such that the private key x = logg y are shared by them;
– public key g and y are published.

1 An alternative method to generate Q is to choose p and q such that the m − 1
smallest primes are quadratic residues modulo p. Different large primes are tested
as possible choices of p until a satisfying p is found. So, Q contains 1 and the m − 1
smallest primes. However, it is not clear whether this method is feasible or efficient,
especially when m is large.



66 K. Peng et al.

2. Voting phase
Each of the n voters V1, V2, . . . , Vn chooses a vote from Q. Voter Vi encrypts
his vote vi to ci = E(vi) = (ai, bi) = (gri , viy

ri) where ri is randomly chosen
from Zq. Vi proves that an element in Q is encrypted in ci without revealing
his vote using the following honest-verifier ZK proof:

logg ai = logy(bi/q1) ∨ logg ai = logy(bi/q2) ∨ . . . ∨ logg ai = logy(bi/qm)

This proof is based on the ZK proof of equality of logarithms [8] and the ZK
proof of partial knowledge [10].

3. Tallying phase
The talliers verify that every vote is valid. Then they randomly divide the
encrypted votes c1, c2, . . . , cn to groups of size k, so that Max(Q)k < p
where Max(Q) stands for the largest element in set Q. If Max(Q)n < p, the
division is not necessary and all the votes are in the same group. In each
group the following multiplicative homomorphic tallying is performed.
(a) Suppose c′

1, c
′
2, . . . , c

′
k are the encrypted votes in a group.

(b) The talliers cooperate to calculate v = D(
∏k

i=1 c′
i) where D() denotes

decryption.
(c) v is factorized2.

– If 1 /∈ Q, v =
∏m

j=1 p
tj

j and the number of votes in this group for the
jth candidate is tj for j = 1, 2, . . . , m.

– If 1 ∈ Q, v =
∏m−1

j=1 p
tj

j and the number of votes in this group for the
jth candidate is tj−1 for j = 2, 3, . . . , m while the number of votes in
this group for the first candidate is k −

∑m−1
j=1 tj .

The talliers sum up the results in all the groups to get the final result.

4 Analysis

The new voting scheme is analysed in this section to show that it is correct and
efficient.

Theorem 1. The multiplicative homomorphic tallying in each group with en-
crypted votes c′

1, c
′
2, . . . , c

′
k is correct.

Proof: In the multiplicative homomorphic tallying in each group with encrypted
votes c′

1, c
′
2, . . . , c

′
k,

D(
k∏

i=1

c′
i) = v =

m−1∏
j=1

p
tj

j

where
∏m−1

j=1 p
tj

j is a factorization of v.
As ElGamal encryption is multiplicative homomorphic,

D(
k∏

i=1

c′
i) =

k∏
i=1

D(c′
i) mod p

2 This factorization is very efficient as each prime in Q is very small.



Multiplicative Homomorphic E-Voting 67

When the encrypted votes are divided into groups, it is guaranteed that
Max(Q)k < p. So

∏k
i=1 D(c′

i) < p Therefore,

k∏
i=1

D(c′
i) = D(

k∏
i=1

c′
i) =

m−1∏
j=1

p
tj

j

As D(c′
i) for i = 1, 2, . . . , k are verified to be in Q in the voting phase,

∏k
i=1 D(c′

i)
is also a factorization of v.

As there is a unique factorization for any integer,
∏k

i=1 D(c′
i) and

∏m−1
j=1 p

tj

j

are the same factorization. Namely, each prime factor in
∏k

i=1 D(c′
i) is also a

prime factor in
∏m−1

j=1 p
tj

j and each prime factor in
∏m−1

j=1 p
tj

j is also a prime

factor in
∏k

i=1 D(c′
i).

Therefore, all the non-one votes encrypted in c′
1, c

′
2, . . . , c

′
k and only these

votes are prime factors in
∏m−1

j=1 p
tj

j . That means every non-one vote is correctly
recovered.

As the number of vote in each group is a constant k, the number of “1” votes
is also correctly recovered if there are any. �

Theorem 2. Multiplicative homomorphic tallying does not reveal any vote.

Sketch of proof:

– Semantically secure encryption
The usage of ElGamal encryption in this paper is semantically secure due to
the choice of message space Q. (Either all members are quadratic residues
or no member is quadratic residue where p = 2q +1) So, without the private
key to decrypt the votes, it is difficult to get any information about any vote.

– Private key (decryption) security
As the private key is protected by a threshold key sharing mechanism, no
single vote is decrypted if a threshold trust on the talliers is assumed.

– Unlinkability (No bidder can be linked to his bid.)
As a result, the only message decrypted from the encrypted votes is the
product of votes in each group, which links no vote to the corresponding
voter. The revealed information tells no more than that a voter in every
group may have submitted any vote in the group.

– The group size is large enough for strong vote privacy.
As homomorphic tallying is only applied to elections with a small number
of candidates, m and Max(Q) are small3. As p is large (e.g. with a length
of 1024 bits), �logMax(Q) p, the size of a group, is large compared to m
where �x denotes the smallest integer no smaller than a real number x. For
example, when m = 2 and |p| = 1024 where || stands for bit length, we get
Q = {1, 2} (for simplicity, assuming 2 is a quadratic residue), Max(Q) = 2

3 Max(Q) is no larger than the (2m − 1)th smallest prime, which is no more than a
small multiple of m when m is small.



68 K. Peng et al.

and the group size is larger than 1024. When there are only two candidates
and more than 1024 votes are mixed together in each group, strong vote
privacy is achieved.

�

Every operation in the voting scheme can be publicly verified by anyone.
(Note that public proofs of vote validity and correctness of decryption are pro-
vided by the voters and talliers respectively.) The computational cost of additive
homomorphic voting employing Paillier encryption and that of the proposed mul-
tiplicative homomorphic voting are listed in Table 1. As stated in Section 2, the
DL search in the decryption of the modified ElGamal encryption in [18, 22, 24, 25]
is too inefficient4. So the modified ElGamal encryption is not considered as
a good choice in additive homomorphic voting. As only small primes are em-
ployed to stand for the votes, the computational cost of the final factorization
in multiplicative homomorphic voting is negligible compared to full length ex-
ponentiation. To make a precise comparison of the efficiency of the two kinds of
homomorphic voting, it is supposed the same strength of encryption security is
required in both kinds of voting, so N in Paillier encryption employed in additive
homomorphic voting and p in ElGamal encryption employed in multiplicative
homomorphic voting have the same length. An exponentiation in multiplicative
homomorphic voting (employing ElGamal encryption) is called a standard expo-
nentiation while an exponentiation in additive homomorphic voting (employing
Paillier encryption with distributed decryption) is accounted as three standard
exponentiations. The number of standard exponentiations is accounted in every
operation in Table 1. This table clearly illustrates that multiplicative homomor-
phic voting is always more efficient than additive homomorphic voting in key
generation, vote encryption and vote validity check. When the number of voters
is not too large, multiplicative homomorphic voting is also more efficient than
additive homomorphic voting in tallying. For example, when m = 2, |p| = 1024
and n = 1024, the needed number of standard exponentiation in tallying in
additive homomorphic voting is 12 or 6, while the needed number of standard
exponentiation in tallying in multiplicative homomorphic voting is 3. Even if
multiplicative homomorphic tallying is less efficient than additive homomorphic
tallying when the number of voters is large, it has a trivial influence on the total
cost of the voting scheme as will be shown in Table 2.

A more comprehensive efficiency comparison is presented in Table 2, where
the efficiency of MV (mix voting), AHV (additive homomorphic voting) and the
proposed MHV (multiplicative homomorphic voting) are compared. In this com-
parison, [17] (one of the most efficient mix voting) is taken as an example of mix
voting where ElGamal encryption is employed. It is assumed that the additive
homomorphic voting (no existing example is referred to) employs distributed

4 Although some computation in the Pollard’s Lambda Method can be pre-computed,
precomputation can be employed in most voting schemes. For example, the expo-
nentiation computation in vote encryption and all the computation in the proof of
vote validity (if necessary) can be precomputed in mix voting, Paillier-based additive
homomorphic voting and multiplicative homomorphic voting.



Multiplicative Homomorphic E-Voting 69

Table 1. Computational cost of the two kinds of homomorphic voting

Additive Multiplicative
homomorphic voting homomorphic voting

Distributed highly efficient
key generation inefficient

Encryption 6m 2
per vote

Vote validity 12m + 6 4m − 2
proof per vote
Vote validity 12m + 6 4m

verification per vote
Tallying computation 9m 3�n logp Max(Q)	

per tallier ora 9(m − 1)

a It is often assumed that a decryption is necessary for every candidate. However, when
n, the total number of voters is known and each vote has been verified to be valid,
m − 1 decryptions are enough. The talliers randomly choose m − 1 candidates and
decrypt the sum of votes for each of them. The vote of the remaining candidate is n
minus the sum of the votes for the m− 1 chosen candidates. We call this economical
tallying.

Paillier encryption and performs every necessary operation listed in Table 1. For
simplicity, voters’ signature on the votes are omitted, so voters’ signature gener-
ation and talliers’ signature verification are not taken into account. In Table 2, t
is the number of talliers. The number of standard exponentiation is accounted in
computational cost and the number of transported bits is accounted in commu-
nicational cost. An example is given in Table 2, where t = 5, m = 2, |p| = 1024
and n = 1000000. For simplicity, it is assumed that 2 is a quadratic residue
modulo p, so Q = 1, 2. In this example, it is shown that even when the number
of voters is large, multiplicative homomorphic voting is still more efficient than
mix voting and additive homomorphic voting. When the number of voters is not
large and grouping is not necessary in tallying, efficiency advantage of multi-
plicative homomorphic voting is more obvious. So multiplicative homomorphic
voting is the most efficient voting solution when the number of candidates is
small.

5 Conclusion

The voting scheme in this paper employs a new tallying method: multiplicative
homomorphic tallying. It achieves the highest efficiency when the number of
candidates is small and guarantees strong vote privacy and public verifiability.



70 K. Peng et al.

Table 2. Efficiency comparison

Key Voter’s Tallier’s Communication
generation computation computation

MV efficient 8 18n 1024(6n + 18tn)
= 18000000 =98304000000

highly 18m + 6 (12m + 6)n 2048(6t(m − 1)+
AHVa +9(m − 1) (10m + 4)n)

inefficient = 42 = 30000009 =49152061440
4m 4mn + 3�n 1024(2n(m + 1)+

MHV efficient logp Max(Q)	 3�n logp Max(Q)	)
= 8 = 8003000 =6147072000

a It is assumed economical tallying in Table 1 is employed.

References

1. Masayuki Abe and Hideki Imai. Flaws in some robust optimistic mix-nets. In
Advances in Cryptology—ACISP 03, pages 39–50, 2003.

2. R. Aditya, C. Boyd, E. P. Dawson, and K. Viswanathan. Secure e-voting for
preferential elections. In Proceedings of EGOV 03 Conference, pages 246–249,
Berlin, 2003. Springer-Verlag. Lecture Notes in Computer Science Volume 2738.

3. James M. Adler, Wei Dai, Richard L. Green, and C. Andrew Neff. Computa-
tional details of the votehere homomorphic election system. Technical report, Vote-
Here Inc, 2000. Available from http://www.votehere.net/technicaldocs/hom.pdf,
last accessed 22 June 2002.

4. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guil-
laume Poupard. Practical multi-candidate election system. In Twentieth Annual
ACM Symposium on Principles of Distributed Computing, pages 274–283, 2001.

5. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing,
pages 544–553, 1994.

6. Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Faculty
of Graduate School, Yale University, 1996.

7. Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications
to voting. In 9th ACM Conference on Computer and Communications Security—
CCS 02, pages 68–77, 2002.

8. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,
pages 89–105, Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science
Volume 740.

9. David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
and Privacy, 2(1):38–47, January/February 2004.

10. R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’94, pages 174–187,
Berlin, 1994. Springer-Verlag. Lecture Notes in Computer Science Volume 839.

11. Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-
authority secret-ballot elections with linear work. In Advances in Cryptology—
EUROCRYPT 96, pages 72–83, 1996.



Multiplicative Homomorphic E-Voting 71

12. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and op-
timally efficient multi-authority election scheme. In Advances in Cryptology—
EUROCRYPT 97, pages 103–118, 1997.

13. Ivan Damgåard and Mats Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Public Key Cryptography—
PKC 01, pages 119–136, 2001.

14. P Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th
Annual Symposium on Foundations of Computer Science, pages 427–437, 1987.

15. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Advances in Cryptology—AUSCRYPT 92, pages
244–251, 1992.

16. R Gennaro, S Jarecki, H Krawczyk, and T Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In EUROCRYPT ’99, pages 123–139, Berlin,
1999. Springer-Verlag. Lecture Notes in Computer Science Volume 1592.

17. Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. Op-
timistic mixing for exit-polls. In Advances in Cryptology—ASIACRYPT 02, pages
451–465, 2002.

18. Alejandro Hevia and Marcos Kiwi. Electronic jury voting protocols. 2000.
http://eprint.iacr.org/2000/035/.

19. Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Advances in Cryptology—EUROCRYPT 00, pages 539–556, 2000.

20. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In 11th USENIX Security
Symposium, pages 339–353, 2002.

21. Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and
applications to electronic voting. In Advances in Cryptology—EUROCRYPT 01,
pages 78–92, 2001.

22. Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy.
In Public Key Cryptography, 5th International Workshop—PKC 02, pages 141–158,
2002.

23. Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In to
appear in Information Security and Cryptology, ICISC 2003, 2003.

24. Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting through col-
laboration of voter and honest verifier. In JW-ISC 2000, pages 101–108, 2000.

25. Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting scheme with
a tamper-resistant randomizer. In Information Security and Cryptology, ICISC
2002, pages 389–406, 2002.

26. C. Andrew Neff. Conducting a universally verifiable electronic election using ho-
momorphic encryption. White paper, VoteHere Inc, 2000.

27. C. Andrew Neff. Verifiable, secret shuffles of elgamal encrypted data for secure
multi-authority elections. In 8th ACM Conference on Computer and Communica-
tions Security—CCS 01, pages 116–125, 2001.

28. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Proc. Security Protocols, 5th International Workshop 1997, pages 25–35, 1997.

29. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, pages 223–238, Berlin, 1999. Springer-Verlag. Lecture Notes
in Computer Science Volume 1592.

30. Torben P. Pedersen. A threshold cryptosystem without a trusted party. In EU-
ROCRYPT ’91, pages 522–526, Berlin, 1991. Springer-Verlag. Lecture Notes in
Computer Science Volume 547.



72 K. Peng et al.

31. Andreu Riera and Joan Borrell. Practical approach to anonymity in large scale elec-
tronic voting schemes. In Network and Distributed System Security Symposium—
NDSS 99, pages 69–82, 1999.

32. Andreu Riera, Josep Rifà, and Joan Borrell. Efficient construction of vote-tags to
allow open objection to the tally in electronic elections. Information Processing
Letters, 75(5):211–215, October 2000.

33. Kazue Sako and Joe Kilian. Secure voting using partially compatible homomor-
phisms. In Advances in Cryptology—CRYPTO 94, pages 411–424, 1994.

34. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme: A practical
solution to the implementation of a voting booth. In Advances in Cryptology—
EUROCRYPT 95, pages 393–403, 1995.

35. Berry Schoenmakers. Fully auditable electronic secret-ballot elections. XOOTIC
Magazine, July 2000.

36. Douglas Wikström. How to break, fix and optimize “optimistic mix for exit-polls”.
Technical report, Swedish Institute of Computer Science, 2002. Available from
http://www.sics.se/libindex.htlm, last accessed 08 October 2003.



Chosen Ciphertext Attack on a New Class of
Self-Synchronizing Stream Ciphers�

Bin Zhang1,2, Hongjun Wu1, Dengguo Feng2, and Feng Bao1

1 Institute for Infocomm Research, Singapore
2 State Key Laboratory of Information Security,

Graduate School of the Chinese Academy of Sciences,
Beijing 100039, P.R. China

zhangbin@mails.gscas.ac.cn
{hongjun, baofeng}@i2r.a-star.edu.sg

Abstract. At Indocrypt’2002, Arnault et al. proposed a new class of
self-synchronizing stream ciphers combining LFSR and FCSR architec-
tures. It was claimed to be resistant to known attacks. In this paper, we
show that such a self-synchronizing stream cipher is extremely vulner-
able to chosen ciphertext attack. We can restore the secret keys easily
from one chosen ciphertext with little computation. For the parameters
given in the original design, it takes less than one second to restore the
secret keys on a Pentium 4 processor.

Keywords: Stream cipher, Self-synchronizing, 2-adic expansion, Feed-
back shift register.

1 Introduction

Stream ciphers are an important class of encryption algorithms in practice. In
general, they are classified into two kinds: synchronous stream ciphers and self-
synchronous stream ciphers [5]. In a self-synchronizing stream cipher, each plain-
text bit affects the entire following ciphertext through some mechanism, which
makes it more likely to be resistant against attacks based on plaintext statistical
properties. Since several ciphertext bits may be incorrectly decrypted when a
bit modification occurs in the ciphertext, such a mechanism provides additional
security against active attacks.

In [1], a new class of self-synchronous stream ciphers was proposed which
exploits the concatenation of LFSR and FCSR. The main idea behind such a
design is to confuse the GF (2) linearity with the 2-adic linearity so that neither
of the synthesis algorithms (Berlekamp-Massey type algorithms) can work in this
case. However, as we will show in this paper, such a simple design is extremely
weak under chosen ciphertext attack. By choosing one ciphertext, we can recover

� Supported by National Natural Science Foundation of China (Grant No. 60273027),
National Key Foundation Research 973 project (Grant No. G1999035802) and Na-
tional Science Fund for Distinguished Young Scholars (Grant No. 60025205).

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 73–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



74 B. Zhang et al.

the secret keys with little computation. Assume both LFSR and FCSR are of
length 89, as suggested by the authors [1], we can recover both the structures in
1 second on a Pentium 4 processor.

This paper is organized as follows. In Section 2, we will give an introduction
to the self-synchronizing stream cipher together with some backgrounds. Our
attack on this cipher is given in Section 3 and detailed experimental results are
also included in this section. Finally, some conclusions are given in Section 4.

2 The Self-Synchronizing Stream Cipher

In this section, we will first review some backgrounds including 2-adic arithmetic
and the Galois representations of LFSR and FCSR. Then a detailed description
of the self-synchronizing stream cipher is presented.

2.1 2-Adic Arithmetic, Galois Representations of LFSR and FCSR

A 2-adic integer is a formal power series s =
∑∞

i=0 si2i with si ∈ {0, 1}. We
denote the set of 2-adic integers by Z2. The addition and multiplication in Z2
is done according to 2i + 2i = 2i+1 for all i ≥ 0, i.e. taking the carry to the
higher order term. Thus the addition inverse of 1 is

∑∞
i=0 2i = −1 and if a 2-adic

integer s = 2r +
∑∞

i=r+1 si2i, its addition inverse is −s = 2r +
∑∞

i=r+1(1− si)2i.
A feedback with carry shift register (FCSR) is a device for the fast generation

of pseudorandom sequence with good statistical properties and large period. Like
LFSR, FCSR also has two architectures: Fibonacci structure and Galois struc-
ture [3]. The Galois architecture is more efficient due to the parallel computation
of feedbacks. As in [1], we only consider the Galois structure in this paper.

Lemma 1 characterizes the eventually periodic binary sequences in terms of
2-adic integers.

Lemma 1. [3] Let S2 =
∑∞

i=0 si2i be the 2-adic integer corresponding to a
binary sequence S = {si}i≥0. S is eventually periodic if and only if there exists
two integers p and q in Z such that S2 = p/q with q odd, see Figure 1. Further,
S is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|.

• • ••

+ + + + 0p1p2−rp
1−rp

1q
2q

1−rqrq

rp

Fig. 1. Galois representation of a FCSR

The 2-adic division of p/q is fulfilled by a FCSR using Galois architecture.
Without loss of generality, we always assume p =

∑r
i=0 pi2i +pr+12r+1 + · · · ≥ 0

and q = 1 −
∑r

i=1 qi2i < 0 with pi and qi ∈ {0, 1}. In Figure 1, � denotes the



Chosen Ciphertext Attack 75

addition with carry, i.e. the output of a � b is a ⊕ b ⊕ cn−1 and the carry is
cn = ab ⊕ acn−1 ⊕ bcn−1. � is the binary multiplication. The period of S is the
smallest integer t such that 2t ≡ 1 (modq).

Similarly, the Galois representation of a LFSR is shown in Figure 2, where the
input of the circuit is S(x) =

∑∞
i=0 six

i and the output is S′(x) = S(x)/Q(x),
with Q(x) = 1 +

∑r
i=1 qix

i and ⊕ being Xor.

• • ••

0s1s2−rs1−rs

1q
2q

1−rqrq

rs ⊕⊕⊕⊕

Fig. 2. Galois representation of a LFSR

2.2 Description of the Self-Synchronizing Stream Cipher

The structure of this cipher is a concatenation of one LFSR and one FCSR, as
shown in Figure 3. An irreducible primitive polynomial Q(x) of prime degree k is

)(/ xQ q/

LFSR FCSR

S 'S ''S

Fig. 3. The self-synchronizing stream cipher

used as the feedback polynomial of the LFSR. A negative prime q for the FCSR
divisor box is of size k satisfying |q| = 2u+1 with u a prime congruent to 1 mod-
ulo 4 and gcd(|q|−1, 2k−1) = 1, where |·| denotes the absolute value. For practi-
cal applications, the authors of [1] suggest k = 89. Initialize LFSR and FCSR ran-
domly and denote the message to be encrypted by S, the encryption scheme is:
1. Compute S′(x) = S(x)/Q(x) by the LFSR divisor-box.
2. Convert S′(x) into the 2-adic integer S′(2).
3. Compute the ciphertext S′′ = S′(2)/q by the FCSR divisor-box.

Upon decrypting, without loss of generality, initialize all the LFSR and FCSR
cells (including the carries) to be zero. The corresponding decryption scheme is:
1. Compute S′(2) = qS′′(2).
2. Convert S′(2) into the formal power series S′(x).
3. Compute the plaintext S by S(x) = Q(x)S′(x).

The decryption circuits are only generally discussed in [1], no concrete circuit
is given in that paper. It is claimed in [1] that this cipher is fast and secure against
known attacks. However, as we will show below, this self-synchronizing stream
cipher is far away from security.



76 B. Zhang et al.

3 Our Attack

In this section, we will show that this self-synchronizing stream cipher is very
vulnerable to chosen ciphertext attack. Subsection 3.1 gives the circuits fulfilling
multiplication by q and Q(x), respectively. Our attack is given in subsection 3.2.
The experimental results are given in subsection 3.3 in detail.

3.1 The Multiplication Circuits

Without loss of generality, we propose the following two circuits to fulfill the
multiplication by q and Q(x), respectively. The only purpose of this section is
to show that the proposed stream cipher can actually decrypt the ciphertext.

• • ••

++ + +

1q
2q

1−kq
kq

''
0

''
1 ,ss

Fig. 4. Multiplication circuit with q being the multiplier

• • •• 1Q2Q1−kQkQ

⊕⊕⊕ ⊕

'
0

'
1,ss

Fig. 5. Multiplication circuit with Q(x) being the multiplier

In Figures 4 and 5, q = 1 −
∑k

i=1 qi2i and Q(x) = 1 +
∑k

i=1 Qix
i are the

secret parameters used in the cipher. Upon decrypting, let all the cells in Figures
4 and 5 (including the carries) be zero. From (1), the inputs corresponding to
the k cells in Figure 4 are the addition inverses of the ciphertext, while the input
corresponding to rightmost � is the ciphertext itself. We denote the inverse
operation by a hollow circle in Figure 4.

(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(1 − q1 · 21 − q2 · 22 − · · · − qk · 2k)

= −(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(q1 · 21 + q2 · 22 + · · ·+ qk · 2k − 1)

= −(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(q1 · 21 + q2 · 22 + · · ·+ qk · 2k) + (s′′

0 + s′′
1 · 21

+s′′
2 · 22 + · · ·).

(1)



Chosen Ciphertext Attack 77

3.2 A Chosen Ciphertext Attack

The basic idea of our attack is that if we choose a special ciphertext fed into the
decryption circuits such that the corresponding decrypted message (including a
preamble) is of finite length, then we can retrieve the secret keys q and Q(x) by
simple factoring the polynomial corresponding to the decrypted message over
GF (2) [2, 6].

Since the secret q is a negative prime, the decrypted message is of finite
length if the ciphertext fed into the decryption circuits is a binary string with
the following form:

(∗, ∗, · · · , ∗︸ ︷︷ ︸
A

, 1, 1, · · · , 1, 1︸ ︷︷ ︸
B

), (2)

where A is a randomly-chosen binary prefix of certain length and B is a all-
1 string of certain length. We use a randomly-chosen string A to disguise the
subsequent all-1 string. (3) confirms the validity of the above chosen ciphertext.

(s′′
0 + s′′

1 · 21 + · · ·+ s′′
l · 2l + 1 · 2l+1 + 1 · 2l+2 + · · ·)q

= (s′′
0 + s′′

1 · 21 + · · ·+ s′′
l · 2l)q

+(1 · 2l+1 + 1 · 2l+2 + · · ·)q

= (s′′
0 + s′′

1 · 21 + · · ·+ s′′
l · 2l)q +

2l+1

1 − 2
q

= (s′′
0 + s′′

1 · 21 + · · ·+ s′′
l · 2l)q + 2l+1 · (−q)

→ D(x),
(3)

where A = (s′′
0 , s′′

1 , · · · , s′′
l ) is of length l. From (3), (s′′

0 + s′′
1 · 21 + · · ·+ s′′

l · 2l)q +
2l+1 · (−q) corresponds to a polynomial D(x) of finite degree. Therefore, the
polynomial corresponding to the decrypted message is D(x)Q(x) ∈ GF (2)[x].
According to [6], the following lemma holds.

Lemma 2. [6] A univariate polynomial of degree n over the finite field GF (pk),
where p is a small, fixed prime, can be factored with a deterministic algorithm
whose running time is O((nk)2).

From our experimental results, the degree of D(x)Q(x) is less than 300.
Hence, the complexity of factoring D(x)Q(x) over GF (2) is only O(216).

Upon factoring the decrypted message, we get both Q(x) and D(x). Let
D(x) = d0+d1x

1+d2x
2+· · ·+dhxh. Keeping in mind that D(x) is the polynomial

representation of (s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l)q + 2l+1 · (−q), d0 + d1 · 21 + d2 ·

22 + · · · + dh · 2h has an integer factor (−q). Therefore, factoring the integer
d0 + d1 · 21 + d2 · 22 + · · ·+ dh · 2h retrieves the secret q. Since 289 ≤ (−q) ≤ 290,
(−q) is an integer with at most 28 decimal digits which can be recovered easily by
factoring d0+d1 ·21+d2 ·22+· · ·+dh ·2h using the number field sieve algorithm [4].

A full description of our attack is as follows.

1. Choose a string as shown in (2) and feed it into the decryption circuits.



78 B. Zhang et al.

2. Convert the decrypted message into polynomial form and factor it to get
Q(x) and D(x).

3. Transform D(x) into the integer form and factor the integer to recover q.

The complexity of our attack is very low for the parameter k = 89. See
Subsection 3.3.

3.3 Experimental Results

We have implemented the above attack on a Pentium 4 processor, see Appendix
A for the C source codes. The parameters of this self-synchronizing stream cipher
are chosen as follows.

Q(x) = x89 + x6 + x5 + x3 + 1, q = −618970052618499608724417827, (4)

where Q(x) is a primitive polynomial of degree 89 and q is a negative prime
satisfying the following three conditions:

1. 289 ≤ (−q) ≤ 290.
2. gcd(618970052618499608724417826, 289 − 1) = 1.
3. |q| = 2u + 1 with u = 309485026309249804362208913 is a prime congruent

to 1 modulo 4.

These three conditions are used to verify the candidate keys obtained from
the attack. We choose a 600-bit ciphertext as follow.

A = (1010111010101000110100110011001001110001) || B = (11 · · · 11), (5)

where A is a randomly-chosen string of length 40 and B is a all-1 string of length
560. Feed the above chosen ciphertext into the decryption circuits and get the
result. The polynomial corresponding to the decrypted message is x216 + x215 +
x214 +x210 +x209 +x207 +x206 +x203 +x202 +x199 +x198 +x196 +x194 +x192 +
x190 +x183 +x181 +x179 +x178 +x176 +x174 +x173 +x167 +x166 +x165 +x163 +
x159 +x155 +x153 +x149 +x148 +x147 +x145 +x144 +x143 +x140 +x139 +x136 +
x133 +x132 +x131 +x128 +x126 +x123 +x122 +x120 +x118 +x113 +x111 +x110 +
x105 + x104 + x103 + x101 + x100 + x99 + x98 + x96 + x95 + x92 + x91 + x89 + x88 +
x85 + x78 + x75 + x74 + x73 + x72 + x71 + x67 + x64 + x61 + x60 + x59 + x56 +
x52 + x51 + x49 + x42 + x40 + x35 + x34 + x32 + x29 + x6 + x5 + x3 + 1. It takes
0.203 seconds to factor the above polynomial using Mathematica. The result is
(1 + x + x4 + x5 + x6)(1 + x7 + x9 + x11 + x13 + x14 + x15)(1 + x + x2 + x5 +
x8 + x9 + x11 + x16 + x17 + x19 + x20 + x21 + x24 + x25 + x26)(1 + x3 + x8 + x9 +
x10 + x11 + x15 + x17 + x18 + x22 + x24 + x25 + x29 + x30 + x31 + x32 + x33)(1 +
x4 + x5 + x6 + x8 + x9 + x13 + x15 + x19 + x20 + x22 + x23 + x24 + x26 + x27 +
x30 + x31 + x33 + x34 + x35 + x36 + x37 + x40 + x42 + x43 + x44 + x45 + x46 +
x47)(1+x3 +x5 +x6 +x89). Expand the factors other than x89 +x6 +x5 +x3 +1
and let x = 2. The result is 302266531961499475785005717448795619329. By
Mathematica, it takes 0.219 seconds to factor this integer. The result is 32 · 23 ·
8839 ·266899 ·618970052618499608724417827. Therefore, the total time required
to restore Q(x) and q is about 0.422 seconds.



Chosen Ciphertext Attack 79

Some Remarks. A pseudorandom generator with a similar structure was also
proposed in [1]. Since our attack only work in the chosen ciphertext scenario,
the security of that generator is not influenced by our attack.

4 Conclusion

In this paper, we showed that the proposed self-synchronizing stream cipher is
extremely weak against chosen ciphertext attack. We can restore the secret keys
easily from a 600-bit chosen ciphertext in 1 second on a Pentium 4 processor.
We suggest that this cipher should not be used in practice.

References

1. F. Arnault, T. P. Berger, A. Necer, “A New Class of Stream Ciphers Combining
LFSR and FCSR Architectures”, Progress in Cryptology-INDOCRYPT’2002, LNCS
vol. 2551, Springer-Verlag,(2002), pp. 22-33.

2. Berlekamp, E. R., ”Factoring polynomials over finite fields”, Bell Systems Tech. J.,
46, 1967, pp. 1853-1859.

3. M. Goresky, A. M. Klapper, ”Fibonacci and Galois Representations of Feedback-
With-Carry Shift Registers”, IEEE Transactions on Information Theory, vol. 48,
No. 11, 2002, pp. 2826-2836.

4. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, “The Number Field
Sieve”, Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, Baltimore, Maryland, May 1990, pp. 14-16.

5. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC
Press,1997.

6. V. Shoup, “A fast deterministic algorithm for factoring polynomials over finite fields
of small characteristic”, Proc. 1991 International Symposium on Symbolic and Al-
gebraic Computation, 1991, pp. 14-21.

A A Non-optimized C Implementation of Our Attack

#include "stdio.h"
#include "math.h"
#define SIZE 8000

unsigned char LFSR[89],FCSR[89],carry[89],cipher[SIZE],
re[SIZE],fe[SIZE],inter[SIZE],plain[SIZE],deinter[SIZE];

void main()
{
unsigned char S[256],z[256],G[5]={179,43,228,11,194};
unsigned char RF[90],RL[90],i1,j1,L[90],F[90];
unsigned int i,j,n,k1;



80 B. Zhang et al.

//use RC4 as the random source
for(k1=0;k1<256;k1++)S[k1]=k1;
for(j1=0,k1=0;k1<=255;k1++)
{

j1=j1+S[k1]+G[k1%5];
i1=S[k1];S[k1]=S[j1];S[j1]=i1;

}

for(i1=0,j1=0,k1=0;k1<256;k1++)
{

i1++;j1=j1+S[i1];n=S[i1];S[i1]=S[j1];S[j1]=n;
z[k1]=S[(unsigned char)(S[i1]+S[j1])];

}

//initialization
for(i=0;i<SIZE;i++)

inter[i]=cipher[i]=plain[i]=deinter[i]=re[i]=fe[i]=0;
for(i=0;i<89;i++)

LFSR[i]=FCSR[i]=carry[i]=0;
for(i=0;i<300;i++)

for(j=0;j<8;j++)
{

deinter[8*i+(j%8)]=(z[i]&(1<<j))>>j;
}

//printf("The message is: \n");
//for(i=0;i<300;i++)printf("%x ",deinter[i]);printf("\n");

// for simplicity, we just initial the LFSR
// and FCSR as follows.
LFSR[0]=1;
LFSR[1]=1;
LFSR[45]=1;
//LFSR[3]=1;
LFSR[88]=1;
//FCSR[1]=1;
FCSR[0]=1;
FCSR[29]=1;
//FCSR[3]=1;
FCSR[88]=1;

for(i=0;i<90;i++)
L[i]=F[i]=0;

for(i=0;i<90;i++)
RL[i]=RF[i]=0;



Chosen Ciphertext Attack 81

L[0]=L[3]=L[5]=L[6]=L[89]=1;
F[0]=F[2]=F[5]=F[8]=F[10]=1;
F[11]=F[13]=F[15]=F[18]=F[19]=F[22]=1;
F[26]=F[28]=F[29]=F[42]=F[43]=F[44]=1;
F[47]=F[48]=F[53]=F[55]=F[56]=F[59]=1;
F[62]=F[63]=F[64]=F[89]=1;
for(i=0;i<600;i++)
{

inter[i]=(LFSR[0] & 1);
j1=deinter[i];
for(j=0;j<90;j++)

RL[j]=(L[j] & LFSR[0]);
for(j=0;j<88;j++)

LFSR[j]=RL[j+1]^LFSR[j+1];
LFSR[88]=RL[89]^j1;

}

for(i=0;i<600;i++)
{

j1=inter[i];
cipher[i]=FCSR[0];
for(j=0;j<90;j++)

RF[j]=(F[j] & FCSR[0]);
for(j=0;j<88;j++)
{
FCSR[j]=(FCSR[j+1]+RF[j+1]+carry[j])&1;
carry[j]=
(unsigned char)((FCSR[j+1]+RF[j+1]+carry[j])&(1<<1))>>1;

}
FCSR[88]=(RF[89]+j1+carry[88])&1;
carry[88]=
(unsigned char)((RF[89]+j1+carry[88])&(1<<1))>>1;

}

//printf("The ciphertext is: \n");
//for(i=0;i<300;i++)printf("%x ",cipher[i]);printf("\n");

// our attack
for(i=40;i<600;i++)

cipher[i]=1;
printf("***\n");
for(i=0;i<40;i++)

printf("%x ", cipher[i]);
printf("***\n");



82 B. Zhang et al.

for(i=0;i<600;i++)
re[i]=cipher[i];

i=0;
while (cipher[i]==0) i=i+1;
for(n=i+1;n<600;n++)

cipher[n]=cipher[n]^1;

for(i=0;i<90;i++)
L[i]=F[i]=0;

for(i=0;i<89;i++)
FCSR[i]=carry[i]=0;

for(i=0;i<90;i++)
RL[i]=RF[i]=0;

L[0]=L[3]=L[5]=L[6]=L[89]=1;
F[0]=F[2]=F[5]=F[8]=F[10]=1;
F[11]=F[13]=F[15]=F[18]=F[19]=F[22]=1;
F[26]=F[28]=F[29]=F[42]=F[43]=F[44]=1;
F[47]=F[48]=F[53]=F[55]=F[56]=F[59]=1;
F[62]=F[63]=F[64]=F[89]=1;
for(i=0;i<600;i++)
{

j1=cipher[i];
i1=re[i];
fe[i]=((FCSR[0]+i1+carry[0])&1);
carry[0]=
(unsigned char)((FCSR[0]+i1+carry[0])&(1<<1))>>1;
for(j=1;j<90;j++)

RF[j]=(j1 & F[j]);
for(j=0;j<88;j++)
{
FCSR[j]=(RF[j+1]+FCSR[j+1]+carry[j+1])&1;
carry[j+1]=
(unsigned char)((RF[j+1]+FCSR[j+1]+carry[j+1])&(1<<1))>>1;

}
FCSR[88]=j1;

}

for(i=0;i<89;i++)
LFSR[i]=0;

for(i=0;i<600;i++)
{

j1=fe[i];
plain[i]=((LFSR[0]^j1)&1);
for(j=1;j<90;j++)



Chosen Ciphertext Attack 83

RL[j]=(L[j] & j1);
for(j=0;j<88;j++)

LFSR[j]=(LFSR[j+1]^RL[j+1]);
LFSR[88]=j1;

}

printf("The decrypted message is: \n");
for(i=0;i<300;i++)

printf("%x ",plain[i]);
printf("\n");

}

After getting the result, we can use Mathematica to restore the secret keys.



Algebraic Attacks over GF (q)

Lynn Margaret Batten�

Deakin University, 221 Burwood Highway, Vic 3125, Australia
lmbatten@deakin.edu.au

Abstract. Recent algebraic attacks on LFSR-based stream ciphers and
S-boxes have generated much interest as they appear to be extremely
powerful. Theoretical work has been developed focusing around the Boo-
lean function case. In this paper, we generalize this theory to arbitrary
finite fields and extend the theory of annihilators and ideals introduced
at Eurocrypt 2004 by Meier, Pasalic and Carlet. In particular, we prove
that for any function f in the multivariate polynomial ring over GF (q),
f has a low degree multiple precisely when two low degree functions ap-
pear in the same coset of the annihilator of fq−1 − 1. In this case, many
such low degree multiples exist.

Keywords: Algebraic attacks, stream ciphers, finite fields, annihilator.

1 Introduction

Algebraic attacks on stream ciphers based on linear feedback shift registers and
S-boxes have been studied in [1, 2, 3, 4, 5, 8]. Such shift registers (LFSRs) com-
prise a linear part L and a non-linear combining function f . The problem of
finding plaintext bits given ciphertext output is thus reduced to finding solutions
to systems of equations involving L and f . The function f is, in practice, of high
degree, making standard techniques for solving a given system of equations too
time-consuming to be of practical interest. The recent algebraic attacks find a
multiple of f which is of low degree; however, this multiple is determined on an
ad-hoc basis, [4,5]. The paper by Meier, Pasalic and Carlet [8] stream-lines the
ideas developed behind these attacks, reducing and simplifying the various sce-
narios which have so far been considered. The authors also propose an algorithm
to decide whether a Boolean function has low degree multiples.

In this paper, we completely generalize the work of [8] to the case of GF (q)
for any prime power q. We further develop the work on annihilators and ideals
and show how the ideal structure assists in determining low degree multiples.
Since a number of cryptographic systems employ fields other than GF (2) (for
instance, SOBER-t16, SOBER-t32, Camellia, AES) it is important to be able to
analyze their complete structure regardless of the field used.

� Supported by a Discovery Grant of the Australian Research Council. The author
wishes to thank COSIC/ESAT at KULeuven for their hospitality February - June
2004, where she was a Visiting Professor.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 84–91, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Algebraic Attacks over GF (q) 85

We show that, as for the Boolean case, the S3 scenarios introduced in [4] can
be essentially reduced to one case over GF (q) using the interplay between the
multivariate function f and its complementary function fq−1 − 1 over GF (q).
In Theorem 1 below, we generalize the result of [4,5] to show that any function
f over GF (q) has a low degree multiplier, that is, a low degree function g such
fg = 0 or fg has low degree.

In Section 3, we examine the annihilator sets of the functions f and fq−1− 1
in order to gain deeper insight into their structure in the polynomial ring. This
leads to an analysis of the coset structure of the annihilator ideals in Section 4
yielding the result (Theorem 4) that low degree multiples of f (fg = h is of low
degree) exist precisely when some coset of An(fq−1− 1) contains more than one
low degree function. By appropriately identifying coset representatives, a simple
count for any fixed degree d will verify whether or not this coset property holds.
This result is also new in the Boolean case.

2 The S3 Scenarios

In [4] the authors consider the situation of reducing the degree of a Boolean
function by multiplying it by another non-zero function and present three cases,
each of which has a method of solution. In each of these cases, f is considered
to be a function of high degree. The cases are as follows:

S3a. The function g has low degree and fg �= 0 has low degree.
S3b. The function g has low degree and fg = 0.
S3c. The function g has high degree and fg �= 0 has low degree.

The words ‘high’ and ‘low’ are not defined explicitly, but in [5] theory indicates
that low degree for a Boolean function in n variables means that the degree is
less than about n/2.

In [8], the authors point out that these three cases can essentially be reduced
to one situation as follows. In S3c, let fg = h. Then h = fg = f2g (since f = f2

over GF (2)) = f(fg) = fh, and so we are in case S3a.
The following lemma re-organizes Proposition 1 of [8] and the additional

comments in section 3 of that paper.

Lemma 1. Suppose f is a Boolean function of high degree. If f is in category
S3a, then f + 1 is in category S3b. If f is in category S3b, then f + 1 is in
category S3a.

Proof. Let f be in category S3a. So there exist low degree functions g and h
such that fg = h �= 0. Then fg = f2g = f(fg) implies (f +1)fg = (f +1)h = 0.
So f + 1 is in category S3b.

Now suppose f is in category S3b. Then there exists a non-zero, low degree
function g such that fg = 0. Then (f +1)g = g and so f +1 is in category S3a.�

One of the purposes of the current article is to generalize many of the existing
results on algebraic attacks to general finite fields. The categories S3a, S3b and



86 L.M. Batten

S3c apply equally to any function f : GF (q)n → GF (q), q a prime power. We
show in the next two lemmas that a reduction to one case also applies here.

We note first of all that

(fq−1 − 1)q = fq−1 − 1 = fq−1 − f + f − 1 = (f + 1)(fq−1 − 1)

and so (fq−1 − 1)q−1 − 1 = f . This fact, along with f(fq−1 − 1) = 0, leads us to
call fq−1− 1 the orthogonal complement, or simply, the complementary function
of f .

Lemma 2. Let f : GF (q)n → GF (q) be in category S3c. Then fq−1 − 1 is in
category S3b. If fq−1 − 1 is in category S3b, then f is in S3c.

Proof. Let fg = h, g of high degree and h �= 0 of low degree. Then h = fg =
fqg = fq−1(fg) = fq−1h. Thus (fq−1 − 1)h = 0. The second part follows from
the remark preceding Lemma 2. �

Lemma 2 indicates that the perceived need to look for low degree annihilators
is an illusion. It suffices to find any annihilators, and alternate between f and
fq−1 − 1.

Lemma 3. Suppose f : GF (q)n → GF (q) . Then f is in category S3a if and
only if fq−1−1 is in category S3b. So f is in category S3b if and only if fq−1−1
is in category S3a.

Proof. Suppose f is in category S3a. So there exist low degree functions g and
h such that fg = h �= 0. Then fg = fqg = fq−1(fg) implies (fq−1 − 1)h = 0
and so fq−1 − 1 is in category S3b. Suppose f is in category S3b. So there
exists a non-zero, low degree function g such that fg = 0. Then (fq−1 − 1)g =
fq−2(fg)−g = −g and so fq−1−1 is in category S3a. The remainder follows since
(fq−1 − 1)q−1 − 1 = f. �

In [4] the following theorem is proved, thus providing the existence of a suit-
able multiplier g for the cases S3a and S3b:

Theorem 6.0.1 [4,5] Let f : GF (2)n → GF (2) be any Boolean function. Then
there is a Boolean function g �= 0 of degree at most �n/2 such that fg = 0 or
has degree at most �n/2�.

We now generalize this result to GF (q).

Theorem 1. Let f : GF (q)n → GF (q). Then there is a function g : GF (q)n →
GF (q), g �= 0, deg(g) ≤ �(q − 1)n/2 such that either fg = 0 or deg(fg) ≤
�(q − 1)n/2�.

Proof. Note that the maximum degree of any monomial over GF (q)n is
(q − 1)n. Also, the number of such monomials is qn which is therefore the di-
mension of the vector space they generate. Let A be the set of all monomials of
degree ≤ �(q − 1)n/2�. Let B be the set of all products of f by monomials of
degee ≤ �(q − 1)n/2. Then



Algebraic Attacks over GF (q) 87

|A| + |B| =
�(q−1)n/2�∑

i=0

(
(q − 1)n

i

)
+

	(q−1)n/2
∑
i=0

(
(q − 1)n

i

)

=
�(q−1)n/2�∑

i=0

(
(q − 1)n

i

)
+

(q−1)n∑
�(q−1)n/2�

(
(q − 1)n

i

)

=
(q−1)n∑

i=0

(
(q − 1)n

i

)
+
(

(q − 1)n
�(q − 1)n/2�

)
> 2(q−1)n ≥ qn.

Since |A|+ |B| is larger than the dimension of the vector space generated by
the monomials, we have linear dependencies in A∪B. Since all elements of A are
independent, it follows that there exist elements aj ∈ A and fb, fbi ∈ B such
that for some finite sums, fb =

∑
i

fbi +
∑
j

aj . This produces a non-zero func-

tion g of the desired degree such that either fg = 0 or deg(fg) ≤ �(q−1)n/2�. �

Meier et al. [8] introduce the notion of algebraic immunity for Boolean func-
tions. Here we generalize the notion.

Definition. The algebraic immunity of the function f : GF (q)n → GF (q)
is AI(f) = min {d ≥ 1| deg(g) = d, g : GF (q)n → GF (q) and either
gf = 0 or g(fq−1 − 1) = 0}.

Theorem 1 along with Lemma 3 shows that the algebraic immunity of any
such function f is at most �(q − 1)n/2�.

3 The Annihilator Set

For f in the ring R = F [x1, x2, . . . xn], F = GF (q), the product f(fq−1−1) = 0.
Thus

An(f) = {g ∈ R|fg = 0}
contains the function fq−1 − 1. Following Meier et al. [8], we refer to An(f) as
the annihilator set of f in the ring R.

It is easy to verify that An(f) is an ideal in the ring R generated by the
element fq−1−1 and is therefore a principal ideal [7] which we denote by 〈fq−1−
1〉. If q is odd, this ideal is never maximal as fq−1− 1 =

(
f

q−1
2 − 1

)(
f

q−1
2 + 1

)
and so < fq−1 − 1 >� 〈f q−1

2 − 1〉, 〈f q−1
2 + 1〉.

We consider the question of the size |An(f)| of An(f). Consider the equation
fg = 0. Since for any vector x, g may take only the zero value at any non-zero
position of f , this leaves g to take on any values possible where f is zero. Let
Si(f) be the number of positions at which f is i, computed over all vectors
x = (x1, x2, . . . xn) ∈ GF (q)n. Then qS0(f) is the number of ways that g can
be chosen. If, in addition, f is balanced, that is, each value of {0, 1, . . . , qn−1}
occurs an equal number of times, then S0(f) = qn−1. We summarize the above
remarks in the following.



88 L.M. Batten

Theorem 2. The set An(f) for f ∈ R is a principal ideal of R generated by
fq−1 − 1. Moreover, letting S0(f) be the number of positions at which f is zero,
then |An(f)| = qS0(f). In addition, if f is balanced, then |An(f)| = qqn−1

.

Over GF (2), if f is balanced, so is fq−1 − 1 = f + 1. However, for GF (q),
q > 2, fq−1 − 1 is never balanced, since it only takes on the values 0 (for f = 0)
and −1 (for all other values of f).

Before considering the quotient ring R/An(f) in more depth, we consider
relationships between various annihilator ideals in the following lemma.

Lemma 4. For non-zero functions fkl − i and fk − j we have An(fkl − i) ∩
An(fk − j) = {0} if i �= jl for all i, j ∈ GF (q), k and l integers.

Proof. Let g ∈ An(fkl − i) ∩ An(fk − j). Then gi = gfkl and gj = gfk. So
gi = gjl yielding g(i− jl) = 0. Since i �= jl by assumption, i− jl is an invertible
element, leaving g = 0. �

Example 1. In GF (5), f4 + 4 = (f + 2)(f + 3)(f + 4) while f3 + 2 = (f +
3)(f2 + 2f + 4) and so An(f + 3) ⊆ An(f3 + 2), An(f4 + 4) demonstrating that
generalising Lemma 4 to all powers of f is not possible.

Theorem 3. Let cf be the number of additive cosets of the group structure
of R/An(f) = {r + An(f)}. Then cf = qqn−S0(f) and if f is balanced, cf =
qqn−1(q−1).

Moreover, for any functions g1 and g2 ∈ R, fg1 = fg2 if and only if g1 +
An(f) = g2 + An(f).

Proof. The value of cf comes from cf = |R/An(f)| = qqn

/qS0(f) by Theorem
2 and elementary group theory [7].

Consider g1 and g2 in R. Then f(g1 − g2) = 0 if and only if g1 − g2 ∈ An(f).
It follows that g1 +An(f) = g2 +An(f) if and only if fg1 = fg2. �

Corollary 1. For any f ∈ R the number of different values of fg for g ∈ R is
precisely cf . Moreover, for any g �∈ An(f), the cosets ig+An(f) and jg+An(f),
for i �= j in GF (q), are distinct.

Proof. The first statement follows directly from the theorem.
Consider ig + An(f) = jg + An(f), g �∈ An(f), i �= j, i, j ∈ GF (q). Then by
Theorem 3, ig−jg = (i−j)g ∈ An(f), so (i−j)gf = 0. But i−j is invertible and
so gf = 0 putting g ∈ An(f) which is a contradiction. �

Corollary 2. For functions f , g and h, g �∈ An(f), if h + An(f) �= ig + An(f)
for any i ∈ GF (q), then jh + An(f) �= kg + An(f) for any j, k ∈ GF (q)∗.

Proof. Suppose jh + An(f) = kg + An(f) for some i and j in GF (q)∗. Then
j−1(jg + An(f)) = h + An(f) = (j−1k)g + An(f) which is a contradiction. �

Corollary 3. For any function f of R, q − 1|cf − 1.



Algebraic Attacks over GF (q) 89

Proof. This follows from Corollaries 1 and 2.
We note that the algorithms of [8] can be easily adapted to the general case

GF (q). �

4 The Cosets

The upper bound given in Theorem 1 has been shown to be a best bound in [6].
We therefore concentrate in this section on possible degrees of the resultant (non-
zero) product fg. In view of Lemma 2, in fact, it suffices to find any function
g such that fg is either zero or of low degree. We first determine appropriate
coset representatives for the cosets of R/An(fq−1 − 1) = R/〈f〉, where fq−1 − 1
is fixed and non-zero. We use cfq−1−1 to denote the number of such cosets.

Choose a function r of least degree in any non-zero coset. Then every element
in the coset is of the form r + fg for some g ∈ R. From henceforth, unless
otherwise stated, we assume that the coset representative r is of least degree in
the coset.

Theorem 4. The function f is in category S3a precisely when some coset of
An(fq−1 − 1) contains two distinct elements of low degree. In this case, R con-
tains at least |An(f)| multiples of f of low degree.

Proof. Suppose f is in category S3a. Let fg = h �= 0 where g and h are of
low degree, say d = max{deg(g), deg(h)}. Then g + An(fq−1 − 1) = g + h +
An(fq−1 − 1) contains both g and g + h �= g.

Now let h1 and h2 be (low) degree d elements of r + An(fq−1 − 1). Then
0 �= h = h1 − h2 ∈ 〈f〉, and so h = fg for some g ∈ R and the degree of h is
≤ d. Consider the element g, which belongs to a coset of An(f). By Theorem 3,
for any g‘ in this coset, fg = fg‘. The size of this coset is |An(f)|.

It remains to show that f is in category S3a. But h = fg = fqg = fq−1h im-
plies h(fq−1−1) = 0 and so fq−1−1 is in S3b. By Lemma 3, (fq−1−1)q−1−1 = f
is in category S3a. �

Lemma 3 and the identity (fq−1 − 1)q−1 − 1 = f produce the analogue
theorem:

Theorem 4′. The function fq−1−1 is in category S3a precisely when some coset
of An(f) contains two distinct elements of low degree. In this case, R contains
at least |An(fq−1 − 1)| multiples of fq−1 − 1 of low degree.

Note that Theorems 4 and 4′ actually show more than is stated: if a coset
of An(fq−1 − 1) contains two functions of degree ≤ d, then f has a multiple of
degree ≤ d. Analogously for An(f).

Implications of Theorems 4 and 4′ on the Choice of f .
Consider the distribution of low degree functions across cosets. There are rel-
atively few constant or linear functions and the chances of them being widely
distributed in cosets is high. In fact, constants are always distributed well ac-
cording to Corollary 1 of Theorem 3. Over Z2, given a key of size n, there are



90 L.M. Batten

2d+1nd(d+1)/2 polynomials of degree ≤ n out of a total of 2n+1nn(n+1)/2 possible
polynomials. One would therefore expect, for d rather small and n large, to see
the possibility of the existence of annihilators go to zero as n goes to infinity as
demonstrated in [8].

However, once we find two low degree elements of a coset, Theorem 4 indicates
that many low degree multiples of f are available, and so the chance of finding
such a multiple is rather good.

Thus, when choosing f , it is essential to verify that no cosets of An(f) or
of An(fq−1 − 1) contain several low degree functions. If the cosets are assigned
least degree coset representatives, we can formulate a design criterion as follows:

Criterion. No coset of An(f) or of An(fq−1−1) with low degree representative
should contain a second low degree function.

In practice, degree 6 still appears to be sufficiently high and so it suffices to
check cosets with representatives of degree ≤ 5 [8]. In this case, simply verifying
that the number of coset representatives of degree ≤ 5 is precisely the total
number of functions of degree ≤ 5 is sufficient to verify the above Criterion.

Cosets of An(f) do not act independently in attracting low degree functions.
The following lemma demonstrates this.

Lemma 5. The coset An(f) of R contains two degree ≤ d functions if and only
if every coset r + An(f), deg r ≤ d, contains two functions of degree ≤ d.

Proof. Suppose g1, g2 ∈ An(f) have degree ≤ d. Then r + An(f) = r + g1 +
An(f) = r+g2+An(f) and deg (r+g1), deg (r+g2) ≤ d while r+g1 �= r+g2. The
converse is trivial. �

It follows that the Criterion above is equivalent to

Criterion∗. Neither An(f) nor An(fq−1 − 1) should contain two low degree
functions.

Example 2. We finish with a small example showing how the annihilator
cosets can vary the distribution of low degree functions depending on the choice
of f . We let R = GF (2)[x, y] be the multivariate ring of two variables over
GF (2). So R = {a + bx + cy + dxy | a, b, c, d ∈ GF (2)} has 24 elements.

Let f = x+y+xy. Then An(f+1) = {0, x, y, x+y, xy, x+xy, y+xy, x+y+xy}
has just two cosets in R. The second is 1+An(f +1). These two cosets separate
degree zero functions (in fact, Corollary 1 to Theorem 3 shows that degree zero
functions are always separated if the ideal is not the whole ring), but do not
separate degree 1 functions. Hence, f will have a degree 1 multiple. In fact,
Theorem 4 shows that some multiple of f is x + (x + y) = y.

Let g = x + xy. Then An(g + 1) = 〈g〉 = {0, x + xy}. Thus An(g + 1)
has eight cosets in R. These are, in addition to the above, {1, 1 + x + xy},
{x, xy}, {y, x + y + xy}, {x + y, y + xy}, {1 + x + y, 1 + y + xy}, {1 + x, 1 + xy},
{1+ y, 1+x+ y +xy}. This ideal therefore separates out all of the degree 1 and
all of the degree 2 functions.



Algebraic Attacks over GF (q) 91

References

1. F. Armknecht and M. Krause. Algebraic attacks on stream combiners with memory.
In Advances in Cryptology - CRYPTO 2003, volume LNCS 2729, pages 162 - 176.
Springer-Verlag, 2003.

2. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Ad-
vances in Cryptology - CRYPTO 2003, volume LNCS 2729, pages 176 -194. Springer-
Verlag, 2003.

3. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined systems
of equations. In Advances in Cryptology - ASIACRYPT 2002, volume LNCS 2501,
pages 267 - 287. Springer-Verlag, 2002.

4. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback.
In Advances in Cryptology - EUROCRYPT 2003, volume LNCS 2656, pages 346 -
359. Springer-Verlag, 2003.

5. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback.
Extended version of [8], available at http://www.cryptosystem.net.stream/, 2003.

6. J.-CH. Faugère and G. Ars. An algebraic cryptoanalysis of nonlinear filter genera-
tors using Gröbner bases. Available on the web, 2003. http://www.inria.fr/rrrt/rr-
4739.html.

7. S. Maclane and G. Birkhoff. Algebra. MacMillan, New York, 1967.
8. W. Meier, E. Pasalic and C. Carlet. Algebraic attacks and decomposition of boolean

functions. In Advances in Cryptology - EUROCRYPT 2004, volume LNCS 3027,
pages 474 - 491. Springer-Verlag, 2004.



Results on Algebraic Immunity for
Cryptographically Significant Boolean Functions

Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute,
203, B T Road, Calcutta 700 108, India

{deepak r, kishan t, subho}@isical.ac.in

Abstract. Recently algebraic attack has received a lot of attention in
cryptographic literature. It has been observed that a Boolean function
f , interpreted as a multivariate polynomial over GF (2), should not have
low degree multiples when used as a cryptographic primitive. In this
paper we show that high nonlinearity is a necessary condition to resist
algebraic attack and explain how the Walsh spectra values are related to
the algebraic immunity (resistance against algebraic attack) of a Boolean
function. Next we present enumeration results on linearly independent
annihilators. We also study certain classes of highly nonlinear resilient
Boolean functions for their algebraic immunity.

Keywords: Algebraic Attacks, Annihilators, Boolean Functions, Non-
linearity, Walsh Spectra.

1 Introduction

A very well studied model of stream cipher is the nonlinear combiner model,
where the outputs of several LFSRs are combined using a nonlinear Boolean
function to produce the key stream. This model has undergone a lot of crypt-
analysis and to resist those attacks, different design criteria have been proposed
for both the LFSRs and the combining Boolean function. There are large number
of important papers in this direction and one may refer to [1, 11, 2, 23] and the
references in these papers for more details. Very recently a new attack has gained
lot of attention that uses over defined systems of multivariate linear equations
to recover the secret key and it is known as algebraic attack [4, 5, 6, 13].

Given a Boolean function f on n-variables, different kinds of scenarios related
to low degree multiples of f have been studied in [5, 13]. The core of the analysis
is to find out minimum (or low) degree annihilators of f and 1 + f , i.e., to
find out minimum (or low) degree functions g1, g2 such that f ∗ g1 = 0 and
(1 + f) ∗ g2 = 0. To mount the algebraic attack, one needs only the low degree
linearly independent annihilators [5, 13] of f, 1 + f .

In this paper we refer the immunity of a Boolean function against algebraic
attack as algebraic immunity. We study the relationship between algebraic im-
munity and nonlinearity of a Boolean function. We show that a Boolean function

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 92–106, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Algebraic Attack 93

with low nonlinearity will have low algebraic immunity. The result relates the
algebraic immunity to the Walsh spectra of a Boolean function. We also present
enumeration results on number of such annihilators.

It is known that a Boolean function must be resilient, should have high non-
linearity and algebraic degree to be used in the nonlinear combiner model of
stream cipher. We study such functions for their algebraic immunity. We present
experimental results on highly nonlinear resilient functions which are rotation
symmetric [8, 20, 21, 10, 12]. The experiments have been done using Algorithm
1 [13] on functions of 7, 8 and 9 variables and their complements. The results
found are encouraging, which shows that there are highly nonlinear resilient
functions which are also optimal in terms of their algebraic immunity. Further
we study different construction methods of resilient functions. We note that the
Siegenthaler’s construction [19] is not good in terms of algebraic immunity. On
the other hand we show that the construction presented in [14] (basically a con-
struction similar to the Tarannikov’s construction [22]) is encouraging in terms of
algebraic immunity. We have also experimentally studied some functions which
are of Maiorana-McFarland type [16], i.e., which can be seen as concatenation
of affine functions.

2 Preliminaries

A Boolean function on n variables may be viewed as a mapping from Vn = {0, 1}n

into V1 = {0, 1} and define Bn as the set of all n-variable Boolean functions.
One of the standard representation of a Boolean function f(x1, . . . , xn) is by the
output column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

The set of x ∈ Vn for which f(x) = 1 (respectively f(x) = 0) is called the on
set (respectively off set), denoted by 1f (respectively 0f ). We say that a Boolean
function f is balanced if the truth table contains an equal number of 1’s and 0’s.

The Hamming weight of a binary string S is the number of ones in the string.
This number is denoted by wt(S). The Hamming distance between two strings,
S1 and S2 is denoted by d(S1, S2) and is the number of places where S1 and S2
differ. Note that d(S1, S2) = wt(S1 + S2) (by abuse of notation, we also use +
to denote the GF (2) addition, i.e., the XOR).

Any Boolean function has a unique representation as a multivariate polyno-
mial over GF (2), called the algebraic normal form (ANF),

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

aijxixj + . . . + a12...nx1x2 . . . xn,

where the coefficients a0, aij , . . . , a12...n ∈ {0, 1}. The algebraic degree, deg(f),
is the number of variables in the highest order term with non zero coefficient. A
Boolean function is affine if there exists no term of degree > 1 in the ANF and
the set of all affine functions is denoted A(n). An affine function with constant
term equal to zero is called a linear function.



94 D.K. Dalai, K.C. Gupta, and S. Maitra

It is known that a Boolean function should be of high algebraic degree to
be cryptographically secure [7]. Further, it has been identified recently, that it
should not have a low degree multiple [5]. The algebraic attack (see [5, 13] and
the references in these papers) is getting a lot of attention recently. To resist
algebraic attacks, the Boolean functions used in the cryptosystems should be
chosen properly. It is shown [5] that given any n-variable Boolean function f ,
it is always possible to get a Boolean function g with degree at most �n

2  such
that f ∗ g is of degree at most �n

2 . Here the functions are considered to be
multivariate polynomials over GF (2) and f ∗ g is the polynomial multiplication
over GF (2). Thus while choosing an f , the cryptosystem designer should be
careful that it should not happen that degree of f ∗ g falls much below �n

2 . At
this point we present two important issues related to algebraic attack [5, 13].

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g of low degree
such that f ∗ g = h, where h is a nonzero function of low degree and without
loss of generality, deg(g) ≤ deg(h). This is because, if deg(g) > deg(h), then
f ∗ h = f ∗ f ∗ g = f ∗ g = h, so one can use h in place of g.

2. Assume there exists a nonzero function g of low degree such that f ∗ g = 0.
This g is called the annihilator of f .

The following two results from [5, 13] are relevant here.

1. Let f, g ∈ Bn. Then g is an annihilator of f iff 1f ⊆ 0g.
2. Let f ∈ Bn. Then there is a non zero g ∈ Bn of degree ≤ �n

2  such that f ∗ g
is of degree ≤ �n

2 .

We will update the notion a little bit for our purpose where we will consider
the multiples of both f and 1 + f .

1. Take f, g, h ∈ Bn. Assume that there exists a nonzero function g of low
degree such that f ∗g = h or (1+f)∗g = h, where h is a nonzero function of
low degree and without loss of generality, deg(g) ≤ deg(h). Among all such
h’s we denote the lowest degree h (may be more than one and then we take
any one of them) by ldgmn(f).

2. Assume there exists a nonzero function g of low degree such that f ∗ g = 0
or (1 + f) ∗ g = 0. Among all such g’s we denote the lowest degree g (may
be more than one and then we take any one of them) by ldgan(f).

From the discussion in [13], it can be deduced that for f ∈Bn, deg(ldgmn(f)) =
deg(ldgan(f)). Keeping this in mind, we present the following definition of alge-
braic immunity.

Definition 1. The algebraic immunity of an n-variable Boolean function f is
denoted by AIn(f) which is basically deg(ldgmn(f)) or deg(ldgan(f)).

The nonlinearity of an n-variable function f is the minimum distance from
the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈A(n)

(d(f, g)).



Algebraic Attack 95

Boolean functions used in crypto systems must have high nonlinearity to
prevent linear attacks [7].

It is known that there are highly nonlinear Boolean functions of low degree,
as example there exist quadratic bent functions, which are of degree 2 and max-
imum possible nonlinearity 2n−1 − 2

n
2 −1, when n is even. Such functions f , as

they are by themselves of low algebraic degree, will have low values of algebraic
immunity AIn(f) (see Definition 1 later). On the other hand, we may have
Boolean functions of low nonlinearity with high algebraic degree. Interestingly
this is not the case in terms of algebraic immunity. In this paper we show that
if a function is of low nonlinearity, then it must have a low value of AIn(f).
This implies that if one chooses a function with good value of AIn(f), that
will automatically provide a good nonlinearity. That is the algebraic immunity
property takes care of two fundamental properties of a Boolean function, alge-
braic degree and nonlinearity, at the same time. Further we will show that this
property stays almost unchanged with respect to linear transformation unlike
correlation immunity or propagation characteristics.

Many properties of Boolean functions can be described by the Walsh trans-
form. Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and
x · ω = x1ω1 + . . . + xnωn. Let f(x) be a Boolean function on n variables. Then
the Walsh transform of f(x) is an integer valued function over {0, 1}n which is
defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)+x·ω.

A Boolean function f is balanced iff Wf (0) = 0. The nonlinearity of f is
given by nl(f) = 2n−1 − 1

2 maxω∈{0,1}n |Wf (ω)|. Correlation immune functions
and resilient functions are two important classes of Boolean functions. A function
is m-resilient (respectively mth order correlation immune) iff its Walsh transform
satisfies

Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m (respectively 1 ≤ wt(ω) ≤ m).

Following the notation as in [16, 17, 21] we use (n, m, d, σ) to denote n-
variable, m-resilient function with degree d and nonlinearity σ. Further, by
[n, m, d, σ] we denote unbalanced n-variable, mth order correlation immune func-
tion with degree d and nonlinearity σ.

3 On Algebraic Attacks

Towards proving the results relating algebraic immunity and the nonlinearity
of a Boolean function, we first present the following result where we relate the
algebraic degree with the weight of the function.

Theorem 1. Let f ∈ Bn and AIn(f) > d. Then

d∑
i=0

(
n

i

)
≤ wt(f) ≤

n−(d+1)∑
i=0

(
n

i

)
.



96 D.K. Dalai, K.C. Gupta, and S. Maitra

Proof. Consider that f has an annihilator g of degree d. Let the ANF of g =
a0 +

∑n
i=1 aixi +

∑
1≤i<j≤n ai,jxixj + ... +

∑
1≤i1≤...≤id≤n ai1,...id

xi1 ...xid
. Note

that f(x) = 1 implies g(x) = 0. So, we will be able to get linear equations from
g(x) = 0 on the a’s in ANF of g. That is we will get wt(f) many homogeneous
linear equations on the a’s.

Solving the system of linear homogeneous equations, we can find out annihi-
lators g of degree ≤ d on nontrivial solutions. (In case of a trivial solution we
will get all the a’s equal to zero, i.e., g(x) = 0, which is not acceptable as we are
interested in non zero g(x).)

Here, we have
∑d

i=0

(
n
i

)
number of variables (the a’s for the monomials up

to degree d) and wt(f) many number of equations. If the number of variables
is greater than number of equations then we will get nontrivial solutions. Thus
f has no annihilator g of degree d implies the number of equations is greater
than or equal the number of variables. So, there must be at least

∑d
i=0

(
n
i

)
number of equations, i.e., wt(f) ≥

∑d
i=0

(
n
i

)
. Similarly, when considering 1 + f ,

we get wt(1 + f) ≥
∑d

i=0

(
n
i

)
. This gives, wt(f) ≤ 2n −

∑d
i=0

(
n
i

)
, i.e., wt(f) ≤∑n−(d+1)

i=0

(
n
i

)
. ��

Theorem 1 also gives an alternative proof of AIn(f) ≤ �n
2  which was given

in [5]. For any f the inequality in Theorem 1 will not be satisfied if d > n− (d+
1) ⇒ d > n−1

2 ⇒ d ≥ �n
2 . That is, for any f the inequality in Theorem 1 will

not be satisfied if AIn(f) > d ≥ �n
2 .

However, the reverse direction of Theorem 1 is not always true. For example,
the affine functions are balanced, but clearly they have linear annihilators.

Based on Theorem 1, the following result gives a bound on wt(f), where f
does not have multiples of degree less than �n

2 .

Corollary 1. AIn(f) = �n
2  implies

1. f is balanced when n is odd
2.
∑n

2 −1
i=0

(
n
i

)
≤ wt(f) ≤

∑n
2
i=0

(
n
i

)
when n is even.

Proof. The wt(f) will satisfy Theorem 1 for d = �n
2  − 1. That is

	 n
2 
−1∑
i=0

(
n

i

)
≤ wt(f) ≤

n−	 n
2 
∑

i=0

(
n

i

)
⇒

	 n
2 
−1∑
i=0

(
n

i

)
≤ wt(f) ≤

� n
2 �∑

i=0

(
n

i

)
.

When n is odd, �n
2 � = �n

2  − 1 and hence wt(f) =
∑� n

2 �
i=0

(
n
i

)
= 2n−1. For n

even, �n
2 � = �n

2  and the result follows. ��

Now we connect algebraic immunity with nonlinearity.

Theorem 2. If nl(f) <
∑d

i=0

(
n
i

)
, then AIn(f) ≤ d + 1.

Proof. Let α ∈ {0, 1}n such that |Wf (α)| is maximum, i.e., nl(f) = min{wt(f +
α · x), wt(1 + f + α · x)}. We use the contrapositive result of Theorem 1. If d is



Algebraic Attack 97

the minimum integer such that min{wt(f + α ·x), wt(1 + f + α ·x)} <
∑d

i=0

(
n
i

)
then AIn(f + α · x) ≤ d.

Let F ∈ Bn and l ∈ An. For any g such that F ∗g = 0, (F +l)∗((l+1)∗g) = 0.
Similarly for any g such that (1+F )∗ g = 0, (1+F + l)∗ ((l +1)∗ g) = 0. Hence
AIn(F + l) ≤ AIn(F ) + 1. Since f = (f + α ·x) + α ·x, AIn((f + α ·x) + α ·x) ≤
AIn(f + α · x) + 1 ≤ d + 1. ��

From the above theorem we directly get the following result.

Corollary 2. If AIn(f) > d + 1 then nl(f) ≥
∑d

i=0

(
n
i

)
.

In Theorem 2, the interesting situation is when deg(f) > d+1. Because, when
deg(f) ≤ d + 1, then irrespective of the nonlinearity of f , AIn(f) ≤ d + 1, since
f ∗ (1 + f) = 0. Since there are low degree functions with very high nonlinearity
(as example quadratic bent function), it is clear that there are functions f with
high nonlinearity and low AIn(f) (basically 1+f). On the other hand, we prove
that one should not use functions f with low nonlinearity because in that case
AIn(f) will be low. Thus the candidate functions f with good algebraic immunity
should be of high algebraic degree as well as high nonlinearity. Then one should
check the multiples at degree AIn(f) before deciding the quality of the function,
i.e., in the best possible scenario AIn(f) = �n

2 . A function with AIn(f) = �n
2 ,

by itself, takes care of good nonlinearity and algebraic degree.

3.1 Count of Annihilators

In the proof of Theorem 1, we get wt(f) many homogeneous linear equations
using the a’s. Let us denote the coefficient matrix of this system of equations
by M . Then M has wt(f) many rows and

∑d
i=0

(
n
i

)
many columns. The rank of

the matrix M , r ≤ min{wt(f),
∑d

i=0

(
n
i

)
}.

1. If r =
∑d

i=0

(
n
i

)
, then there is no annihilator of degree ≤ d.

2. If r <
∑d

i=0

(
n
i

)
, then there are annihilators of degree ≤ d. There will be∑d

i=0

(
n
i

)
− r many linearly independent annihilators having degree ≤ d.

It is clear [5] that a larger number of independent annihilators helps better in
cryptanalysis. Thus when considering a Boolean function one should check the
number of independent annihilators at the lowest possible degree.

Definition 2. Given f ∈ Bn, by #LDAn(f), we denote the number of inde-
pendent annihilators of f at AIn(f).

Theorem 3.

1. Take f ∈ Bn, with AIn(f) = d + 1 < �n
2 . Then #LDAn(f) ≤

(
n

d+1

)
.

2. Take balanced f ∈ Bn, n even with AIn(f) = n
2 . Then #LDAn(f) ≥

(n
n
2
)

2 .
3. Take a balanced function f ∈ Bn, n odd such that AIn(f) = �n

2 . Then
#LDAn(f) =

(
n

	 n
2 

)
.



98 D.K. Dalai, K.C. Gupta, and S. Maitra

Proof. The proof of item 1 is as follows. It is given that there is no non zero
annihilator up to degree d. If one considers an annihilator of degree d, then the
only solution would become the trivial zero function. The rank of the coefficient
matrix M is equal to number of variables, i.e., equal to

∑d
i=0

(
n
i

)
. Now the

function f has annihilator at degree d + 1. The corresponding coefficient matrix
(say M ′) is obtained from M by adding

(
n

d+1

)
columns. Thus the rank of M ′

will be greater or equal to the rank of M , i.e.,
∑d

i=0

(
n
i

)
. Number of independent

solutions will be ≤
∑d+1

i=0

(
n
i

)
−
∑d

i=0

(
n
i

)
=
(

n
d+1

)
.

Now we prove item 2. Here wt(f) = 2n−1. The function f has annihilator at
degree n

2 . In this case the corresponding coefficient matrix (say M) will have 2n−1

many rows and
∑n

2
i=0

(
n
i

)
= 2n−1 +

(n
n
2
)

2 many columns. Thus rank of M will be

≤ 2n−1. Number of independent solutions will be ≥ (2n−1 +
(n

n
2
)

2 )−2n−1 =
(n

n
2
)

2 .
Here we present the proof of item 3. Here wt(f) = 2n−1. It is given that there

is no non zero annihilator up to degree �n
2 �. If one considers an annihilator of

degree ≤ �n
2 �, then the only solution would become the trivial zero function. In

this case the number of variables (the a’s) is
∑� n

2 �
i=0

(
n
i

)
= 2n−1. So the coefficient

matrix M is a 2n−1 × 2n−1 square matrix. As it has no nontrivial solution,
its rank r = 2n−1. The function f has annihilator at degree �n

2 . In this case
the corresponding coefficient matrix (say M ′) will have 2n−1 many rows and
2n−1 +

(
n

	 n
2 

)

many columns. Thus rank of M ′ will be equal to that of M , i.e.,

2n−1. Number of independent solutions = (2n−1 +
(

n
	 n

2 

)
) − 2n−1 =

(
n

	 n
2 

)
. ��

In the next section, we will study certain constructions of cryptographically
significant Boolean functions in terms of algebraic immunity.

4 Studying Functions for Their Algebraic Immunity

It has been studied using statistical techniques in [13] that any randomly chosen
balanced function on large number of variables will have good algebraic immunity
with very high probability. This result is in a similar direction that most of the
Boolean functions are of high algebraic degree or of high nonlinearity in general.
That is if one chooses a Boolean function randomly, the probability that these
properties will be good is high. However, when considering a specific construction
technique, the number of functions constructed by that method is much lower
than the total space of Boolean functions and generally such statistical analysis
does not work.

4.1 Experimental Results on Rotation Symmetric Boolean
Functions

Let us consider that we want to construct (n, m, d, x) functions with best possible
parameters along with the best possible algebraic immunity. In this direction



Algebraic Attack 99

we first refer to a small subset of Boolean functions, the rotation symmetric
Boolean functions (RSBFs), which received a lot of attention recently [20, 21,
10, 12]. These functions are invariant under circular translation of indices in
the input variables. We present experimental results related to the algebraic
immunity of the RSBFs which are available in [20, 21, 10, 12].

Experiment 1: Here we test the algebraic immunity for (7, 2, 4, 56) RSBFs. It
is given in [20] that there are 36 such functions with f(0) = 0. Out of them,
24 functions contain linear terms. For these functions, AIn(f) = 3, which is 1
less than highest value �n

2  = 4. Out of them 12 functions have #LDAn(f) = 3
and the rest 12 have #LDAn(f) = 4. The algebraic immunity of the other
12 functions, where the linear terms are not there, AIn(f) = 4, which is the
highest possible value. According to Theorem 3(item 3) (we have also checked
by experiment), for these functions #LDAn(f) =

( 7
	 7

2 

)

= 35.

Experiment 2: Here we examine the (8, 1, 6, 116) RSBFs with f(0) = 0 which
are 10272 in number [21]. Out of them, 6976 numbers attains highest algebraic
immunity, i.e., 4 and we find that for these functions #LDAn(f) = 35. From

Theorem 3(item 2), in this case the value should be ≥
( 8

8
2
)

2 = 35. Thus we find an
example, where the bound is tight. For the rest 10272− 6976 = 3296 functions,
the algebraic immunity is 3. Out of them 1536 many functions f have only
one annihilator at degree 3 (but no degree 3 annihilator for 1 + f), 1504 many
functions f have no annihilator at degree 3 (but one degree 3 annihilator for 1+f)
and 256 many functions f have one annihilator at degree 3 (also one degree 3
annihilator for 1+f). According to Theorem 3(item 1), #LDAn(f) ≤

(8
3

)
= 56.

So for these functions, the bound is not sharp.

Experiment 3: In the above two experiments, we examined the functions which
are balanced. Now we consider the [9, 3, 5, 240] RSBFs which are not balanced.
We consider the functions with f(0) = 0, and these are 8406 in number [10, 12].
According to Corollary 1(item 1), the algebraic immunity of these functions will
be strictly less than 5. Here after experiment we get the algebraic immunity of
all 8406 functions as 4. From Theorem 3(item 1), #LDA9(f) ≤

(9
4

)
= 126. In

the following table, we present the number of functions satisfying a particular
#LDA9(f) and #LDA9(1 + f).

#LDA9(f) 16 17 18 19 20 21
#LDA9(1 + f) 0 1 2 3 4 5
#f 5658 1758 774 180 12 24

Studying the resilient functions on 7 and 8 variables and unbalanced cor-
relation immune functions on 9-variables for this rotation symmetric class of
Boolean functions, it is evident that there exists functions which are good in
terms of algebraic immunity. It will be interesting to study such functions on
higher number of variables.



100 D.K. Dalai, K.C. Gupta, and S. Maitra

4.2 Analysis of Some Construction Methods

Let us start with a technical result. For notational purpose, given f ∈ Bn, we
denote the set LDGAn(f) as the set of lowest degree f1’s (f1 ∈ Bn) such that
f ∗ f1 = 0 or (1 + f) ∗ f1 = 0.

Proposition 1. Let f, g ∈ Bn on variables x1, x2, · · · , xn with AIn(f) = d1 and
AIn(g) = d2. Let h = (1 + xn+1)f + xn+1g ∈ Bn+1. Then

1. if d1 �= d2 then AIn+1(h) = min{d1, d2} + 1.
2. Given d1 = d2 = d, d ≤ AIn+1(h) ≤ d + 1. Further, AIn+1(h) = d iff there

exists f1, g1 ∈ Bn of algebraic degree d such that {f ∗ f1 = 0, g ∗ g1 = 0} or
{(1 + f) ∗ f1 = 0, (1 + g) ∗ g1 = 0} and deg(f1 + g1) ≤ d − 1.

Proof. Let f1 ∈ LDGAn(f) and g1 ∈ LDGAn(g). Thus, either f ∗ f1 = 0 which
gives (1+xn+1)∗f1∗h = 0 or (1+f)∗f1 = 0 which gives (1+xn+1)∗(1+f1)∗h = 0.
Also either g ∗ g1 = 0 implies xn+1 ∗ g1 ∗ h = 0 or (1 + g) ∗ g1 = 0 implies
xn+1 ∗ (1 + g1) ∗ h = 0. Thus,

AIn+1(h) ≤ min{AIn(f), AIn(g)} + 1. (1)

Let p = (1+xn+1)p1 +xn+1p2 ∈ LDGAn+1(h). Let us first consider the case
with h ∗ p = 0 which implies (1+xn+1)f ∗ p1 +xn+1g ∗ p2 = 0. So f ∗ p1 = 0 and
g ∗ p2 = 0. Similarly for the case with (1 + h) ∗ p = 0, i.e., (1 + xn+1) ∗ (1 + f) ∗
p1 + xn+1(1 + g) ∗ p2 = 0, we have (1 + f) ∗ p1 = 0 and (1 + g) ∗ p2 = 0. Now
there could be three cases in both the scenarios.

(a) p1 is zero, but p2 is non zero. So deg(p2) ≥ d2 which gives deg(p) ≥ d2 + 1.
(b) p2 is zero, but p1 is non zero. So deg(p1) ≥ d1 which gives deg(p) ≥ d1 + 1.
(c) Both p1, p2 are non zero. So deg(p1) ≥ d1 and deg(p2) ≥ d2, which gives

deg(p) ≥ max{d1, d2} + 1, when d1 �= d2.

So for d1 �= d2 we get,

AIn+1(h) ≥ min{AIn(f), AIn(g)} + 1. (2)

Equation 1, 2 give the proof of item 1.
Now we prove item 2. Consider p = (1+xn+1)f1+xn+1g1 ∈ LDGAn+1(h). It

could happen that all highest degree terms of xn+1f1 +xn+1g1 in p get canceled
and the over all degree is decreased by one. So, d ≤ AIn+1(h) ≤ d + 1.

Let AIn+1(h) = d. Then the highest degree terms of f1 and g1 must be same
which gives deg(f1 + g1) ≤ d − 1. Now we prove the other side. Let there exist
f1, g1 ∈ Bn of degree d such that deg(f1 + g1) ≤ d − 1 and one of the following
holds

f ∗ f1 = 0, g ∗ g1 = 0, (3)

(1 + f) ∗ f1 = 0, (1 + g) ∗ g1 = 0. (4)

Construct p = (1 + xn+1)f1 + xn+1g1. Thus h ∗ p = 0 (when Equation 3 is
considered) or (1+h)∗p = 0 (when Equation 4 is considered). So, AIn+1(h) = d.

��



Algebraic Attack 101

Corollary 3. Let f ∈ Bn, AIn(f) = d and h = xn+1 + f ∈ Bn+1.

1. Then d ≤ AIn+1(h) ≤ d + 1.
2. AIn(h) = d iff there exist f1, f2 ∈ LDGAn(f) such that f ∗ f1 = 0, (1 + f) ∗

f2 = 0 and deg(f1 + f2) ≤ d − 1.

Proof. Since xn+1 + f = (1 + xn+1)f + xn+1(1 + f), this follows directly from
Proposition 1. ��

In the same line we present one more technical result.

Proposition 2. Let f(x1, . . . , xn) ∈ Bn and AIn(f) = d. Let l be a affine
function with any of the following properties: (i) l is a function on x1, . . . , xn,
(ii) l is a function on variables other than x1, . . . , xn, (iii) l is a function on
x1, . . . , xn and some other variables. Let l+f be a function on m variables. Then
d − 1 ≤ AIm(l + f) ≤ d + 1 for cases (i) and (iii) and d ≤ AIm(l + f) ≤ d + 1
for case (ii).

Proof. Let g ∈ LDGAn(f), which implies f ∗ g = 0 or (1 + f) ∗ g = 0 and
deg(g) = d. So for any affine function l, we have (l + f) ∗ ((1 + l) ∗ g) = 0 if
f ∗g = 0 or (l+f +1)∗((1+l)∗g) = 0 if (1+f)∗g = 0. Hence, AIm(f +l) ≤ d+1.
So, the upper bound for all cases is proved.

Now we consider case (i), where l is an affine function on the variables
x1, . . . , xn. Let there be an l ∈ An such that AIn(f + l) < d − 1. Then
AIn(f) = AIn((f + l) + l) ≤ AIn(f + l) + 1 < d, which contradicts that
AIn(f) = d. Thus, AIm(l + f) ≥ d − 1.

The lower bound of case (ii) follows from repeated application of Corollary 3.
Now we prove lower bound of case (iii). Let l = l1 + l2, where l1 is an affine

function on some or all of the variables x1, . . . , xn and l2 is an affine function on
some other variables. So, following case (i), we have AIn(f + l1) ≥ d − 1. Then
following case (ii), AIm(f + l) = AIm((f + l1) + l2) ≥ AIm(f + l1) = d − 1. ��

In [19] Siegenthaler proposed a construction of resilient functions. Take an ini-
tial (n, m, d, σ) function f(x1, . . . , xn). The function F (x1, . . . , xn+k) = xn+k +
. . . + xn+1 + f(x1, . . . , xn) will be an (n + k, m + k, d, 2kσ) one. From Proposi-
tion 2, we get AIn(f) ≤ AIn+k(F ) ≤ AIn(f) + 1. Thus this construction is not
good in terms of algebraic immunity.

In [22], Tarannikov has proposed an important construction of resilient func-
tions and based on that a similar kind of construction has been proposed in [14].
We will refer the construction in [14] here and study the algebraic immunity of
such functions. Let us first present the construction.

An (n, m, d,−) function f is called to be in desired form if it is of the form
f = (1 + xn)f1 + xnf2, where f1, f2 are (n − 1, m, d − 1,−) functions. Let f be
an (n, m, d, σ) function in desired form, where f1, f2 are both (n−1, m, d−1,−)
functions. Let

F = xn+2 + xn+1 + f and

G = (1 + xn+2 + xn+1)f1 + (xn+2 + xn+1)f2 + xn+2 + xn.



102 D.K. Dalai, K.C. Gupta, and S. Maitra

In the language of [22], the function G above is said to depend quasilinearly
on the pair of variables (xn+2, xn+1). We construct a function H in n+3 variables
in the following way,

H = (1 + xn+3)F + xn+3G.

Then the function H constructed from f is an (n+3, m+2, d+1, 2n+1 +4σ)
function in the desired form. Thus, this construction can be applied iteratively.

Construction 1. Let us describe this construction with some index to present
the iterative effect. Let H0 be the initial function of n variables and Hi be the
constructed function after i-th iteration. Denote Hi′ as the function generated
from Hi by replacing the variable xn+3i by (xn+3i+2 + xn+3i+1). Let F i+1 =
xn+3i+2+xn+3i+1+Hi and Gi+1 = xn+3i+2+xn+3i+Hi′. Then the constructed
function at i + 1-th step, Hi+1 = (1 + xn+3i+3)F i+1 + xn+3i+3G

i+1.
Now we present a technical result.

Proposition 3. For i > 0, Hi = (1 + Yi)H0 + YiH
0′ + Zi where deg(Yi) = i

and deg(Zi) = i + 1.

Proof. The base case is as follows.

H1 = (1 + xn+3)F 1 + xn+3G
1

= (1 + xn+3)H0 + xn+3H
0′ + (1 + xn+3)(xn+2 + xn+1) + xn+3(xn+2 + xn)

= (1 + Y1)H0 + Y1H
0′ + Z1,

where Y1 is a 1-degree polynomial and Z1 is a 2-degree polynomial.
Let us assume that this is true for some k ≥ 1, i.e., Hk = (1+Yk)H0+YkH0′+

Zk, where Yk is a k-degree polynomial and Zk is k + 1-degree polynomial. Now,

Hk+1 = (1 + xn+3k+3)(xn+3k+2 + xn+3k+1 + Hk)
+xn+3k+3(xn+3k+2 + xn+3k + Hk′)

= (1 + xn+3k+3)Hk + xn+3k+3H
k′

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k)
= (1 + xn+3k+3)((1 + Yk)H0 + YkH0′ + Zk)

+xn+3k+3((1 + Yk
′)H0 + Yk

′H0′ + Zk
′)

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k),

where Yk
′ and Zk

′ are generated by replacing the variable xn+3k by (xn+3k+2 +
xn+3k+1) in Yk and Zk respectively. Thus,

Hk+1 = (1 + Yk + Ykxn+3k+3 + Yk
′xn+3k+3)H0

+(Yk + Ykxn+3k+3 + Yk
′xn+3k+3)H0′ + (1 + xn+3k+3)Zk + xn+3k+3Zk

′

+(1 + xn+3k+3)(xn+3k+2 + xn+3k+1) + xn+3k+3(xn+3k+2 + xn+3k).

This implies, Hk+1 = (1+Yk+1)H0 +Yk+1H
0′ +Zk+1, where Yk+1 and Zk+1

are k + 1 and k + 2 degree polynomials respectively. ��

Now we present the lower and upper bound on algebraic immunity of Hi in
terms of the algebraic immunity of H0.



Algebraic Attack 103

Theorem 4. AIn(H0) ≤ AIn+3i(Hi) ≤ AIn(H0) + i + 2.

Proof. To show AIn(H0) ≤ AIn+3i(Hi), it is enough to show AIn+3(H1) ≥
AIn(H0). We have H1 = (1+xn+3)∗F 1+xn+3∗G1 where F 1 = xn+2+xn+1+H0

and G1 = xn+2+xn+H0′. Let AIn(H0) = d. So, AIn(H0′) = d. Following Propo-
sition 2[case (ii)] we have AIn+2(F 1) ≥ d, and following Proposition 2[case (iii)]
we have AIn+2(G1) ≥ d−1. Then following Proposition 1, we have AIn(H1) ≥ d.

Now we prove the upper bound. Following Proposition 3, we get Hi = (1 +
Yi)H0 + YiH

0′ + Zi, where Yi and Zi are degree i and degree i + 1 polynomials
respectively. Let algebraic immunity of H0 be d. Let there be a polynomial
g0 having degree d such that H0 ∗ g0 = 0 or (1 + H0) ∗ g0 = 0. Let H0 =
p + q ∗ xn where p, q are functions on n− 1 variables, free from the variable xn.
So, (1 + Yi)H0 + YiH

0′ = (1 + Yi) ∗ (p + q ∗ xn) + Yi ∗ (p + q ∗ (xn+1 + xn+2)) =
Yi ∗ q ∗ (xn + xn+1 + xn+2) + p + q ∗ xn = Yi ∗ q ∗ (xn + xn+1 + xn+2) + H0.

Construct a function U = g0 ∗ (1 + Zi) ∗ (1 + xn + xn+1 + xn+2) of degree at
most d+ i+2. Now, if H0 ∗g0 = 0 then Hi ∗U = ((1+Yi)H0 +YiH

0′ +Zi)∗U =
(Yi ∗q ∗ (xn +xn+1 +xn+2)+H0 +Zi)∗g0 ∗ (1+Zi)∗ (1+xn +xn+1 +xn+2) = 0.
Similarly for (1 + H0) ∗ g0 = 0, it can be shown that (1 + Hi) ∗ U = 0. ��

During each iteration, the algebraic immunity increases at most by 2. This
is because, Hi+1 = (1 + xn+3i+3)(Hi + xn+3i+2 + xn+3i+1) + xn+3i+3(Hi′ +
xn+3i+2 + xn+3i). If g, h ∈ Bn and deg(g), deg(h) ≤ d such that Hi ∗ g = h then
Hi+1∗(1+xn+3i+3)∗g = (1+xn+3i+3)(h+g∗(xn+3i+2+xn+3i+1)), which shows
algebraic immunity can not increase by more than two during each iteration. On
the other hand, if we go for i many iterations, then the maximum increase in
algebraic immunity is i + 2.

Example 1. Let us start with an initial (5, 1, 3, 12) function H0 = x5(x1x4 +
x3x4 +x2x4 +x2 +x3)+x1x4 +x3x4 +x2 +x1. We found the algebraic immunity
of H0, H1, H2, H3 are 2, 4, 4, 5 respectively. The function H1 is an (8, 3, 4, 112)
function with AI8(H1) = 4. This function is optimized considering order of
resiliency, nonlinearity, algebraic degree and algebraic immunity together. The
function H2 is an (11, 5, 5, 992) function. Since the algebraic degree of this func-
tion is 5, we cannot have AI11(H2) as high as � 11

2  = 6, we can get the value 5
at maximum. We checked that the value is actually AI11(H2) = 4. The function
H3 is a (14, 7, 6, 213 − 28) function. Since the algebraic degree of this function
is 6, we cannot have AI14(H3) as high as 14

2 = 7, we can get the value 6 at
maximum. We checked that the value is actually AI14(H3) = 5.

The original Maiorana-McFarland class of bent function is as follows [3].
Consider n-variable Boolean functions on (x, y), where x, y ∈ {0, 1}n

2 of the
form f(x, y) = x · π(y) + g(y) where π is a permutation on {0, 1}n

2 and g is any
Boolean function on n

2 variables. The function f can be seen as concatenation
of 2

n
2 distinct (upto complementation) affine function on n

2 variables. Similar
kind of concatenation technique has also been used for construction of resilient
functions [18, 16].



104 D.K. Dalai, K.C. Gupta, and S. Maitra

One idea in this direction is to concatenate k-variable affine functions (rep-
etition may be allowed) non degenerate on at least m + 1 variables to generate
an m-resilient function f on n-variables. For such a function f , it is easy to find
an annihilator g of degree n− k + 1 as described in [13]. It has been commented
in [13–Example 1 and the following paragraph] that k is generally greater than
n
2 (this may be true for the Maiorana-McFarland type of functions presented
in [15], but may not be true for some large class of Maiorana-McFarland type of
functions described in [16, 2]) and hence it is possible to get an annihilator g of
degree less than n

2 . However, it should be noted that in construction of resilient
functions, there are lot of techniques [16] that use concatenation of k-variable
affine functions where k < n

2 . In such a case, the annihilators described in [13–
Theorem 2] will be of degree greater than n

2 and will not be of practical use
as there are other annihilators of degree ≤ n

2 which are not of the form given
in [13–Theorem 2].

As example, the function H0 in Example 1 above can be seen as concatenation
of 3-variable affine functions x1 +x2, x2 +x3, x1 +x3, x1 +x2 +x3 non degenerate
on at least two variables. In a similar fashion, the functions H1, H2, H3 can also
be seen as concatenation of only these four linear functions on 3-variables. Thus,
it is clear that the assumption in the paper [13] that k > n

2 is not a valid
assumption for n ≥ 8 in this example.

We also like to present some interesting observations on (9, 1, 7, 240) functions
constructed in [16–Theorem 10(b)]. These functions can be seen as concatenation
of affine functions on 3-variables, non degenerate on at least one variable. To
explain this construction we briefly present some notations from [16].

Take a bit b and a bit string s = s0 . . . sn−1. Then the string b AND s =
s′
0 . . . s′

n−1, where s′
i = b AND si. Take two bit strings x = x0 . . . xn−1 and

y = y0 . . . ym−1. The Kronecker product x⊗ y = (x0 AND y) . . . (xn−1 AND y),
which is a string of length nm. The direct sum of two bit strings x, y is x$y =
(x⊗yc)⊕(xc⊗y), where xc, yc are bitwise complement of x, y respectively. As an
example presented in [16], if f = 01, and g = 0110, then f$g = 01101001. Now
we present the construction for (2p + 1, 1, 2p− 1, 22p − 2p) function as presented
in [16] for p ≥ 4.

Let λ1, λ2, λ3, λ4 be the 3-variable linear functions non degenerate on two
variables (i.e., the functions x1 +x2, x2 +x3, x1 +x3, x1 +x2 +x3) and μ1, μ2, μ3
be the 3-variable linear functions non degenerate on 1 variable (i.e., the functions
x1, x2, x3). Let gi be the concatenation of the 3-variable function μi and its
complement μc

i , for 1 ≤ i ≤ 3. That is gi’s are basically 4-variable functions. Let
h1, h2 be bent functions on 2p − 4 variables, and h3, h4, h5 be bent functions of
2p − 6 variables and h6, h7 be two strings of lengths 22p−6 + 1 and 22p−6 − 1
which are prepared by properly adding and removing 1 bit from the truth table
of (2p− 6)-variable bent functions respectively. Let f be a concatenation of the
following sequence of functions. h1$λ1, h2$λ2, h3$g1, h4$g2, h5$g3, h6$λ3, h7$λ4.

Example 2. For p = 4, we choose the functions: h1 = 0000010100110110, h2 =
0000010100110110, h3 = 0001, h4 = 0001, h5 = 0001, h6 = 00010, h7 = 001. In
this case, we find a (9, 1, 7, 240) function f1 with AI9(f1) = 3. If we change



Algebraic Attack 105

h2 = 0000010100110110 by h2 = 0000010100111001, then we get a (9, 1, 7, 240)
function f2 with AI9(f2) = 4.

Based on the above discussion we like to make the following comments.
(1) There are Maiorana-McFarland type of constructions (concatenation of

affine functions) where the concatenation of affine functions on small number of
variables is exploited. In such a case, the annihilators presented in [13] will be not
of much use. Thus in line of comments presented in [9], we too argue here that
there is no reason to consider that the Maiorana-McFarland type constructions
are inherently weak in terms of algebraic immunity.

(2) In Example 2, we note that changing the order of affine functions can
change the algebraic immunity without any change in order of resiliency, nonlin-
earity and algebraic degree. The change in last four bits in h2 implies that the
concatenation of λ2, 1 + λ2, 1 + λ2, λ2 will be replaced by 1 + λ2, λ2, λ2, 1 + λ2.
This increases the algebraic immunity from 3 to 4. It will be of great interest to
study the functions presented in [16, 17, 2].

Acknowledgment. The authors like to thank the anonymous reviewers for
their excellent comments that improved both the technical and editorial quality
of this paper.

References

1. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In EUROCRYPT 2000, number 1807 in Lecture Notes
in Computer Science, pages 573–588. Springer Verlag, 2000.

2. C. Carlet. A larger class of cryptographic Boolean functions via a study of the
Maiorana-McFarland construction. In Advances in Cryptology - CRYPTO 2002,
number 2442 in Lecture Notes in Computer Science, pages 549–564. Springer Ver-
lag, 2002.

3. C. Carlet. Recent results on binary bent functions. In Proceedings of the Interna-
tional Conference on Combinatorics, Information Theory and Statistics, Journal
of Combinatorics, Information and System Sciences, Vol. 25, Nos. 1-4, pp. 133-149,
2000.

4. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Advances in Cryptology - ASIACRYPT 2002, number
2501 in Lecture Notes in Computer Science, pages 267–287. Springer Verlag, 2002.

5. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Advances in Cryptology - EUROCRYPT 2003, number 2656 in Lecture
Notes in Computer Science, pages 345–359. Springer Verlag, 2003.

6. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Ad-
vances in Cryptology - CRYPTO 2003, number 2729 in Lecture Notes in Computer
Science, pages 176–194. Springer Verlag, 2003.

7. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Number
561 in Lecture Notes in Computer Science. Springer-Verlag, 1991.

8. E. Filiol and C. Fontaine. Highly nonlinear balanced Boolean functions with a good
correlation-immunity. In Advances in Cryptology - EUROCRYPT’98. Springer-
Verlag, 1998.



106 D.K. Dalai, K.C. Gupta, and S. Maitra

9. K. C. Gupta and P. Sarkar. Efficient software implementation of resilient Maiorana-
McFarland S-Boxes. In 5th International Workshop on Information Security Ap-
plications, WISA 2004, to be published in Lecture Notes in Computer Science.
Springer-Verlag.

10. M. Hell, A. Maximov and S. Maitra. On efficient implementation of search strategy
for rotation symmetric Boolean functions. In Ninth International Workshop on
Algebraic and Combinatoral Coding Theory, ACCT 2004, June 19–25, 2004, Black
Sea Coast, Bulgaria.

11. T. Johansson and F. Jonsson. Fast correlation attacks through reconstruction of
linear polynomials. In Advances in Cryptology - CRYPTO 2000, number 1880 in
Lecture Notes in Computer Science, pages 300–315. Springer Verlag, 2000.

12. A. Maximov, M. Hell and S. Maitra. Plateaued Rotation Symmetric Boolean
Functions on Odd Number of Variables. IACR eprint server, eprint.iacr.org, no.
2004/144, 25 June 2004.

13. W. Meier, E. Pasalic and C. Carlet. Algebraic attacks and decomposition of
Boolean functions. In Advances in Cryptology - EUROCRYPT 2004, number 3027
in Lecture Notes in Computer Science, pages 474–491. Springer Verlag, 2004.

14. E. Pasalic, S. Maitra, T. Johansson and P. Sarkar. New constructions of resilient
and correlation immune Boolean functions achieving upper bounds on nonlinearity.
In Workshop on Coding and Cryptography - WCC 2001, Paris, January 8–12, 2001.
Electronic Notes in Discrete Mathematics, Volume 6, Elsevier Science, 2001.

15. E. Pasalic. Degree optimized resilient Boolean functions from Maiorana-McFarland
class. In 9-th IMA conference on Cryptography and Coding, 2003.

16. P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions with impor-
tant cryptographic properties. In Advances in Cryptology - EUROCRYPT 2000,
number 1807 in Lecture Notes in Computer Science, pages 485–506. Springer Ver-
lag, May 2000.

17. P. Sarkar and S. Maitra. Nonlinearity bounds and construction of resilient Boolean
functions. In Advances in Cryptology - Crypto 2000, number 1880 in Lecture Notes
in Computer Science, pages 515–532, Springer-Verlag, 2000.

18. J. Seberry, X. M. Zhang, and Y. Zheng. On constructions and nonlinearity of corre-
lation immune Boolean functions. In Advances in Cryptology - EUROCRYPT’93,
pages 181–199. Springer-Verlag, 1994.

19. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Transactions on Information Theory, IT-30(5):776–
780, September 1984.

20. P. Stănică and S. Maitra. Rotation Symmetric Boolean Functions – Count and
Cryptographic Properties. In R. C. Bose Centenary Symposium on Discrete Math-
ematics and Applications, December 2002. Electronic Notes in Discrete Mathemat-
ics, Elsevier, Volume 15.

21. P. Stănică, S. Maitra and J. Clark. Results on Rotation Symmetric Bent and
Correlation Immune Boolean Functions. In Fast Software Encryption 2004, volume
3017 in Lecture Notes in Computer Science, pages 161–177, Springer-Verlag, 2004.

22. Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlin-
earity. In Progress in Cryptology - INDOCRYPT 2000, number 1977 in Lecture
Notes in Computer Science, pages 19–30. Springer Verlag, 2000.

23. D. Wagner. A generalized birthday problem. In Advances in Cryptology - CRYPTO
2002, number 2442 in Lecture Notes in Computer Science, pages 288–303. Springer
Verlag, 2002.



Generalized Boolean Bent Functions

Laurent Poinsot and Sami Harari

Institut des Sciences de l’Ingénieur de Toulon et du Var (I.S.I.T.V.),
Université du Sud, Toulon-Var (U.S.T.V.),

Laboratoire S.I.S., Avenue G. Pompidou, BP 56,
83162 La Valette du Var cédex, France

{laurent.poinsot, sami.harari}@univ-tln.fr

Abstract. The notions of perfect nonlinearity and bent functions are
closely dependent on the action of the group of translations over IFm

2 .
Extending the idea to more generalized groups of involutions without
fixed points gives a larger framework to the previous notions. In this
paper we largely develop this concept to define G-perfect nonlinearity
and G-bent functions, where G is an Abelian group of involutions, and
to show their equivalence as in the classical case.

1 Introduction

The security of secret-key cryptosystems is essentially based on the resistance
to two famous attacks, differential [1] and linear cryptanalysis [2].

On the one hand the functions that exhibit the best resistance to differential
cryptanalysis, called perfect nonlinear, satisfy to the following conditions

∀α ∈ IFm
2 \ {0IFm

2
},∀β ∈ IFn

2 , |{x ∈ IFm
2 |f(x ⊕ α) ⊕ f(x) = β}| = 2m−n (1)

where f : IFm
2 −→ IFn

2 and ⊕ is the sum over IFm
2 and IFn

2 (the component-wise
modulo-two sum). Then for all α ∈ IFm

2 \ {0IFm
2
}, the derivative of f in the

direction α, dαf : x ∈ IFm
2 �→ f(x⊕α)⊕ f(x), is uniformly distributed over IFn

2 .
On the other hand the linear resistant functions, called bent functions, are defined
with respect to their (discrete) Fourier transform,

∀β ∈ IFn
2 \ {0IFn

2
},∀α ∈ IFm

2 , χ̂β
IFn

2
◦ f(α) = ±2

m
2 (2)

where χβ
IFn

2
: y ∈ IFn

2 �→ (−1)β.y ∈ {±1} is a character, the symbol “.” denotes

the (canonical) dot-product over IFn
2 , F̂ is the Fourier transform of a function

F : IFm
2 −→ C and ◦ is the composition of functions.

Actually these two notions are equivalent as pointed out by Nyberg in [3]
since

a function is perfect nonlinear if and only if it is bent.

The two corresponding attacks are dual one from the other by the Fourier
transform.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 107–119, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



108 L. Poinsot and S. Harari

Now let σα be the translation by α over IFm
2 . We can naturally rewrite the

formula (1)

∀α ∈ IFm
2 \ {0IFm

2
},∀β ∈ IFn

2 , |{x ∈ IFm
2 |f(σα(x)) ⊕ f(x) = β}| = 2m−n . (3)

Thus the concept of perfect nonlinearity is closely linked with the action of
the translations over IFm

2 .
There is a natural way to extend at the same time the notions of perfect

nonlinearity and, by duality, that of bent functions. Suppose G is an Abelian
group of involutions without fixed points of IFm

2 , then we can introduce the
notion of G-perfect nonlinearity of f by considering the action of G over IFm

2 as
follows

∀σ ∈ G \ {Id},∀β ∈ IFn
2 , |{x ∈ IFm

2 |f(σ(x)) ⊕ f(x) = β}| = 2m−n (4)

where Id is the identity function of IFm
2 .

1.1 Our Contributions

In this paper we extend the notion of perfect nonlinearity by using involutions
instead of simple translations. We also establish a dual version of G-perfect
nonlinearity, as in the classical case, in terms of Fourier transform, that allows
us to generalize the notion of bent functions. We exhibit some relations between
the original and new concepts. In order to summarize we offer a larger framework
to the concepts of perfect nonlinearity and bent functions.

1.2 Organization of the Paper

The continuation of this paper is organized as follows. In the next section, we
give the basic definitions from dual groups to Abelian groups of involutions that
are used along the paper. In Sect. 3, we introduce our new notion of G-perfect
nonlinearity based on involutions. Then we study its duality through the Fourier
transform in order to extend the concept of boolean bent functions. In addition,
a construction of a generalized bent function is proposed. The Sect. 4 is devoted
to the links between classical and new notions. Finally in Sect. 5, we show as
in the classical case that our perfect nonlinear functions reach the maximum
distance to a certain kind of affine functions.

2 Notations and Preliminaries

In this part we recall some essential concepts and results on dual groups, Fourier
transform and bent functions. We also introduce several properties of involutions
without fixed points.



Generalized Boolean Bent Functions 109

2.1 Dual Group, (Discrete) Fourier Transform and Bent Functions

The definitions and results of this paragraph come from [4] and [5].
Let G be a finite Abelian group. We denote by eG its neutral element and

by E its exponent i.e. the maximum order of its elements. A character of G is
any homomorphism from G to the multiplicative group of Eth roots of unity.
The set of all characters Ĝ is an Abelian group, called the dual group of G,
isomorphic to G. We fix some isomorphism from G to Ĝ and we denote by χα

G

the image of α ∈ G by this isomorphism. Then χeG

G is the trivial character i.e.
χeG

G (x) = 1∀x ∈ G. For instance if G = IFm
2 , χα

IFm
2

: x ∈ IFm
2 �→ (−1)α.x. Until

the end of this paper, any time we refer to a finite Abelian group, we suppose
that an isomorphism from it to its dual group has been fixed.

The Fourier transform of any complex-valued function f on G is defined by

f̂(α) =
∑
x∈G

f(x)χα
G(x) for α ∈ G .

We have the following and important lemma for the Fourier transform.

Lemma 1. Let f : G −→ C.

1. f(x) = 0 for every x �= eG in G if and only if f̂ is constant.
2. f̂(α) = 0 for every α �= eG in G if and only if f is constant.

Let us introduce some notions needed to define the concept of bent functions.
Let G1 and G2 be two finite Abelian groups. Let f : G1 −→ G2. f is said balanced
if ∀β ∈ G2, |{x ∈ G1|f(x) = β}| = |G1|

|G2| .
The derivative of f in direction α ∈ G1 is defined by

dαf : x ∈ G1 �→ f(α + x) − f(x) ∈ G2 (5)

where “+” is the symbol for the law of G1 and “y − z” is an abbreviation for
“y ∗ z−1” with (y, z) ∈ G2

2, ∗ the law of G2 and z−1 the inverse of z in G2.
The function f is said perfect nonlinear if

∀α ∈ G1 \ {eG1},∀β ∈ G2, |{x ∈ G1|dαf(x) = β}| =
|G1|
|G2|

. (6)

Then f is perfect nonlinear if and only if for all α ∈ G1 \ {eG1}, dαf is
balanced.

Proposition 1. Let f be any function from G1 to G2. Then f is balanced if
and only if, for every β ∈ G2 \ {eG2}, we have

χ̂β
G2

◦ f(eG1) = 0 . (7)

We can recall the notion of bent functions : f is bent if ∀α ∈ G1, ∀β ∈
G2 \ {eG2}, |χ̂

β
G2

◦ f(α)| =
√
|G1| where |z| is the norm for z ∈ C.

Finally we have the following theorem due to Nyberg.



110 L. Poinsot and S. Harari

Theorem 1. f : G1 −→ G2 is perfect nonlinear if and only if it is bent.

In this paper we refer to these notions as original, classical or traditional, as it
has been already done, so as to differentiate them from ours which are qualified
as new, extended or generalized.

2.2 Involutions Without Fixed Points

Let S(IFm
2 ) be the symmetric group of IFm

2 . Let σ ∈ S(IFm
2 ). σ is an involution

if σ2 = σ ◦ σ = Id or in other terms σ−1 = σ. Moreover σ is without fixed points
if ∀x ∈ IFm

2 , σx �= x. We denote by Inv(IFm
2 ) the set of involutions without fixed

points. By definition, we can easily see that an element of Inv(IFm
2 ) is the product

of 2m−1 transpositions with disjoint supports. So Inv(IFm
2 ) is a conjugacy class

of S(IFm
2 ). Its cardinality is given by the formula 2m!

2m−1!22m−1 .
Let T (IFm

2 ) be the (Abelian) group of translations of IFm
2 (subgroup of S(IFm

2 )).
Then we can easily check that T (IFm

2 ) \ {Id} ⊂ Inv(IFm
2 ) and since for m > 2,

|Inv(IFm
2 )| > |T (IFm

2 )| = 2m there exists (lots of) nonlinear involutions without
fixed points.

In the sequel we adopt the following usual notations, for (σ, τ) ∈ S(IFm
2 )2, στ

and σx denote respectively σ ◦ τ and σ(x). The small Greek letters are kept to
name the permutations and we use the small Roman letters to denote the points
of IFm

2 .
We have these interesting and useful properties concerning involutions with-

out fixed points.

Property 1. Let G be a subgroup of S(IFm
2 ) such that G\{Id} ⊂ Inv(IFm

2 ) (such
a group is called a group of involutions of IFm

2 ). Then G is Abelian.

Proof. Let (σ, τ) ∈ G2. Since στ ∈ G then either στ = Id or στ ∈ Inv(IFm
2 ). In

the first case, σ = τ−1 = τ then στ = τσ. In the second case, (στ)2 = Id ⇔
στστ = Id ⇔ τστ = σ−1 = σ ⇔ στ = τ−1σ = τσ.
The property follows. ��

Property 2. Let G be a group of involutions of IFm
2 . Then |G| ≤ 2m.

Proof. Suppose on the contrary that |G| > 2m. Then there exists (σ, τ) ∈ G2

such that σ �= τ and σ0IFm
2

= τ0IFm
2

. If not then f0IFm
2

: σ ∈ G �→ f0IFm
2

(σ) =
σ0IFm

2
∈ IFm

2 is injective and |{f0IFm
2

(σ)|σ ∈ G}| = |G| ≤ |IFm
2 | = 2m which is

impossible by hypothesis. So let (σ, τ) ∈ G2 such that σ �= τ and σ0IFm
2

= τ0IFm
2

.
Then στ0IFm

2
= σσ0IFm

2
= σ20IFm

2
= 0IFm

2
. Consequently 0IFm

2
is a fixed point

for στ . Since σ �= τ then στ �= Id and στ has no fixed point. Thus we have a
contradiction with the assumption that |G| > 2m. ��

Property 3. For m > 2, there exists G a group of involutions of IFm
2 such that

|G| = 2m and G �= T (IFm
2 ).

Proof. Let α ∈ IFm
2 \ {0IFm

2
} and σα ∈ T (IFm

2 ) the corresponding translation.
Let τ ∈ Inv(IFm

2 ) \ T (IFm
2 ) (such a nonlinear involution exists since m > 2).



Generalized Boolean Bent Functions 111

Since τ and σα are conjugate, there exists π ∈ S(IFm
2 ) such that τ = πσαπ−1.

It is easy to see that πT (IFm
2 )π−1 is a group of involutions (a conjugate group

of T (IFm
2 )) such that |πT (IFm

2 )π−1| = 2m and πT (IFm
2 )π−1 �= T (IFm

2 ) (since
τ ∈ πT (IFm

2 )π−1 and τ �∈ T (IFm
2 )). ��

Remark 1. In the previous property, the fact “m > 2” is needed to obtain a
group of involutions G such that |G| = 2m and G �= T (IFm

2 ). If m = 1 or m = 2
we have only one group of involutions of maximal size G = T (IF2) or G = T (IF2

2).

We call maximal group of involutions of IFm
2 a group of involutions G of IFm

2
such that |G| = 2m.

Property 4. Let G be a maximal group of involutions of IFm
2 . Then the action

φ : G −→ S(IFm
2 ) such that φ(σ) : x �→ σx is simply transitive.

Proof. Let us define for x ∈ IFm
2 the orbital function fx : σ ∈ G �→ fx(σ) =

φ(σ)(x) = σx ∈ IFm
2 . Then for all x ∈ IFm

2 , fx is injective. Indeed let (σ, τ) ∈ G2

such that σ �= τ . If fx(σ) = fx(τ) then we have the following chain of equivalences
σx = τx ⇔ τσx = x ⇔ x is a fixed point of τσ which is impossible since τσ �= Id .
In addition we have |G| = |IFm

2 | then fx is bijective. That concludes the proof.
��

Finally for a group of involutions G of IFm
2 , since the exponent of G is 2 (all

the elements distinct from the identity have an order two) and it is an Abelian
group, the dual group Ĝ is the set of homomorphisms from G to {±1} and is
isomorphic to G.

3 Generalized Boolean Bent Functions

In this section we introduce a new notion of perfect nonlinearity that extends
and offers a larger framework for the classical one. We also study its dual ver-
sion through the Fourier transform which leads us to introduce a generalized
definition for the concept of bent functions.

3.1 Definitions and Properties

Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→ IFn
2 . We define

the derivative of f in direction σ ∈ G by

Dσf : IFm
2 −→ IFn

2

x �→ Dσf(x) = f(σx) ⊕ f(x) . (8)

We define Δf = sup
σ =Id,β

|{x ∈ IFm
2 |Dσf(x) = β}|.

We have the following bound for Δf .

Theorem 2. For any function f : IFm
2 −→ IFn

2 , Δf ≥ 2m−n.



112 L. Poinsot and S. Harari

Proof. For each fixed σ ∈ G \ {Id}, the collection of sets {{x ∈ IFm
2 |Dσf(x) =

β}}β∈IFn
2

is a partition of IFm
2 . Then

∑
β∈IFn

2

|{x ∈ IFm
2 |Dσf(x) = β}| = 2m, which

implies the result. ��

Definition 1. A function f : IFm
2 −→ IFn

2 is G-perfect nonlinear if Δf = 2m−n.

According to the previous theorem, for a G-perfect nonlinear function f , we
have

Δf = inf
g:IFm

2 −→IFn
2

Δg . (9)

We can state a first result similar to the traditional case.

Theorem 3. f : IFm
2 −→ IFn

2 is G-perfect nonlinear if and only if for all σ ∈
G \ {Id}, the derivative Dσf is balanced.

Proof. f is G-perfect nonlinear if and only if the maximum of the sequence of
integers {|{x ∈ IFm

2 |Dσf(x) = β}|}σ∈G\{Id},β∈IFn
2

is equal to its mean. This is
possible if and only if the sequence is constant. Then the constant must be 2m−n

which ensures the result. ��

From the theorem above we obtain the following immediate results which
embeds classical notions in our framework.

Proposition 2. Let f : IFm
2 −→ IFn

2 . f is T (IFm
2 )-perfect nonlinear if and only

if f is perfect nonlinear in the classical way.

Proof. f is T (IFm
2 )-perfect nonlinear if and only if Dσα

f is balanced for every
σα ∈ T (IFm

2 ) \ {Id} if and only if Dσα
f is balanced for every α ∈ IFm

2 \ {0IFm
2
}.

We conclude the proof since Dσα
f(x) = dαf(x) for all x ∈ IFm

2 . ��

We now develop the dual description of G-perfect nonlinear functions through
the study of their Fourier transform.
Let f and g be two functions from IFm

2 to IR. We define

Φf,g : G −→ IR

σ �→ Φf,g(σ) =
∑

x∈IFm
2

f(x)g(σx) (10)

which can be seen as a kind of convolution product with respect to the action
of G over IFm

2 . Let us compute its Fourier transform. Let σ ∈ G.

Φ̂f,g(σ) =
∑
τ∈G

Φf,g(τ)χσ
G(τ)

=
∑
τ∈G

∑
x∈IFm

2

f(x)g(τx)χσ
G(τ)

=
∑

x∈IFm
2

f(x)
∑
τ∈G

g(τx)χσ
G(τ) . (11)



Generalized Boolean Bent Functions 113

Moreover the sum “
∑
τ∈G

g(τx)χσ
G(τ)” is invariant by translations 1 over G i.e.

∀π ∈ G,
∑
τ∈G

g(τx)χσ
G(τ) =

∑
τ∈G

g(τπx)χσ
G(τπ) =

∑
τ∈G

g(τπx)χσ
G(τ)χσ

G(π). Then

we have

(11) =
∑

x∈IFm
2

f(x)χσ
G(π)

∑
τ∈G

g(τπx)χσ
G(τ)

=
∑

x∈IFm
2

f(πx)χσ
G(π)

∑
τ∈G

g(τx)χσ
G(τ) (since π−1 = π)

=
∑

x∈IFm
2

f(πx)χσ
G(π)ĝx(σ) (12)

where gx : G −→ IR such that gx(σ) = g(σx). Since (12) is true for all π ∈ G,
by integration over G, we obtain

∑
π∈G

Φ̂f,g(σ) = |G|Φ̂f,g(σ) = 2mΦ̂f,g(σ)

=
∑

x∈IFm
2

∑
π∈G

f(πx)χσ
G(π)ĝx(σ)

=
∑

x∈IFm
2

f̂x(σ)ĝx(σ) . (13)

And finally this gives us

∀σ ∈ G, Φ̂f,g(σ) =
1

2m

∑
x∈IFm

2

f̂x(σ)ĝx(σ) (14)

which is equivalent, in our context, to the trivialization of the convolution prod-
uct by the Fourier transform.

Proposition 3. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 , β ∈ IFn
2 and Fβ,f : G −→ IR such that Fβ,f (σ) = ̂

χβ
IFn

2
◦ Dσf(0IFm

2
). Then

we have
∀σ ∈ G, F̂β,f (σ) =

1
2m

∑
x∈IFm

2

( ̂
χβ

IFn
2
◦ fx(σ))2.

Proof. First of all, Fβ,f is real-valued since the characters of IFm
2 and IFn

2 are
{±1}-valued.

1 τ ∈ G 
→ τπ ∈ G is the translation by π ∈ G.



114 L. Poinsot and S. Harari

Let us compute the Fourier transform of Fβ,f .

F̂β,f (σ) =
∑
τ∈G

Fβ,f (τ)χσ
G(τ)

=
∑
τ∈G

∑
x∈IFm

2

(χβ
IFn

2
◦ Dτf)(x)χσ

G(τ)

=
∑
τ∈G

∑
x∈IFm

2

χβ
IFn

2
(f(x) ⊕ f(τx))χσ

G(τ)

=
∑
τ∈G

∑
x∈IFm

2

(χβ
IFn

2
◦ f)(x)(χβ

IFn
2
◦ f)(τx)χσ

G(τ)

=
∑
τ∈G

Φχβ
IFn

2
◦f,χβ

IFn
2

◦f (τ)χσ
G(τ)

= ̂Φχβ
IFn

2
◦f,χβ

IFn
2

◦f (σ)

=
1

2m

∑
x∈IFm

2

̂(χβ
IFn

2
◦ f)x(σ) ̂(χβ

IFn
2
◦ f)x(σ) (according to (14))

=
1

2m

∑
x∈IFm

2

( ̂(χβ
IFn

2
◦ f)x(σ))2

=
1

2m

∑
x∈IFm

2

( ̂
χβ

IFn
2
◦ fx(σ))2 .

��

Then we have one of the most important theorem which allows us to define
an extended notion of bent functions.

Theorem 4. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 . f is G-perfect nonlinear if and only if ∀σ ∈ G, ∀β ∈ IFn
2 \ {0IFn

2
},∑

x∈IFm
2

( ̂
χβ

IFn
2
◦ fx(σ))2 = 22m .

Proof. f is G-perfect non linear ⇔ ∀σ ∈ G \ {Id}, Dσf is balanced over IFm
2

⇔ ∀σ ∈ G \ {Id}, ∀β ∈ IFn
2 \ {0IFn

2
}, ̂

χβ
IFn

2
◦ Dσf(0IFm

2
) = 0 (by proposition 1)

⇔ ∀β ∈ IFn
2 \ {0IFn

2
}, ∀σ ∈ G \ {Id}, Fβ,f (σ) = 0

⇔ ∀β ∈ IFn
2 \ {0IFn

2
}, F̂β,f is constant over G (according to lemma 1).

By Parseval equation we have
1

2m

∑
σ∈G

(F̂β,f (σ))2 =
∑
σ∈G

(Fβ,f (σ))2 =(Fβ,f (Id))2.

Thus since F̂β,f is constant, (F̂β,f (σ))2 = (Fβ,f (Id))2 for all σ ∈ G. More-

over Fβ,f (Id) = ̂
χβ

IFn
2
◦ DIdf(0IFm

2
) =

∑
x∈IFm

2

χβ
IFm

2
(0IFm

2
) = 2m. Then according to

proposition 3 we deduce the result. ��



Generalized Boolean Bent Functions 115

We can then define the new boolean bent functions by the duality through
the Fourier transform previously exhibited as follows.

Definition 2. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 . f is called G-bent if ∀σ ∈ G, ∀β ∈ IFn
2 \ {0IFn

2
},
∑

x∈IFm
2

( ̂
χβ

IFn
2
◦ fx(σ))2 = 22m.

By this way we keep the equivalence (by theorem 4) between the new no-
tions of perfect nonlinearity and bent functions as it is the case for the original
concepts.

3.2 Construction of a G-Perfect Nonlinear Function

Let π ∈ S(IFm
2 ) and Gπ = πT (IFm

2 )π−1 the conjugate group of T (IFm
2 ) by π (it is

a maximal group of involutions). Suppose that there exists g : IFm
2 −→ IFn

2 such
that g is perfect nonlinear in the classical way (so g is also bent in the classical
way). Let define f : IFm

2 −→ IFn
2 by f(x) = g(π−1x). We have then the following

proposition.

Proposition 4. The function f previously defined is Gπ-perfect nonlinear.

Proof. Let σ ∈ Gπ \ {Id} and β ∈ IFn
2 . We have

|{x ∈ IFm
2 |f(σx) ⊕ f(x) = β}| = |{x ∈ IFm

2 |f(πσαπ−1x) ⊕ f(x) = β}| (15)

since there exists one and only one α ∈ IFm
2 \ {0IFm

2
} such that the translation

σα is conjugated by π with σ. Then we have

(15) = |{y ∈ IFm
2 |f(πσαy) ⊕ f(πy) = β}| (change of variable : y = π−1x)

= |{y ∈ IFm
2 |g(σαy) ⊕ g(y) = β}|

= 2m−n (by perfect nonlinearity of g) .

That concludes the proof. ��

4 Links Between Classical and New Notions

In this section we present some relations between our new notions and the clas-
sical ones.

Theorem 5. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀x ∈ IFm

2 , fx : G −→ IFn
2 such that

fx(σ) = f(σx) is perfect nonlinear in the traditional sense.

Proof.

⇒) Suppose that f is G-perfect nonlinear. We have to prove that ∀x ∈ IFm
2 ,

∀σ ∈ G \ {Id} and ∀β ∈ IFn
2 ,



116 L. Poinsot and S. Harari

|{τ ∈ G|fx(στ) ⊕ fx(τ) = β}| = |G|
2n = 2m−n.

We have |{τ ∈ G|f(στx)⊕f(τx) = β}| = |{y ∈ IFm
2 |f(σy)⊕f(y) = β}| by

the change of variables τx = y (one must remember that τ �→ τx is bijective
since the action of G on IFm

2 is simply transitive). That concludes the first
implication.

⇐) Suppose that ∀x ∈ IFm
2 , fx is perfect nonlinear in the classical way. Then

fx is bent (also in the original sense) i.e. ∀β ∈ IFn
2 \ {0IFn

2
}, | ̂

χβ
IFn

2
◦ fx(σ)| =√

|G| = 2
m
2 . Then we have

∑
x∈IFm

2

( ̂
χβ

IFn
2
◦ fx(σ))2 =

∑
x∈IFm

2

|G| = 22m. So f is

G-perfect nonlinear by theorem 4. ��

Then we have the immediate following corollary, similar to the traditional
case.

Corollary 1. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀x ∈ IFm

2 , ∀β ∈ IFn
2 \ {0IFn

2
}, ∀σ ∈ G,

| ̂
χβ

IFn
2
◦ fx(σ)| = 2

m
2 .

5 Distance to “Affine” Functions

A well-known result is that bent functions have the maximum distance to the
set of affine functions defined by the canonical dot-product. In this section we
show a similar result. The bent functions with respect to the extended notion
reach the maximum distance between a certain kind of affine functions as in the
classical context.

Let f and b be functions from E1 to E2 (two sets and E1 is finite), we define
the Hamming distance between f and g by

d(f, g) = |{x ∈ E1|f(x) �= g(x)}| . (16)

If A is a (finite) set of functions from E1 to E2 we define the distance of a
function f : E1 −→ E2 to the set A by

d(f, A) = min
g∈A

d(f, g) . (17)

Let G be a maximal group of involutions of IFm
2 . We define the set of “affine

functions” over G as

AG = {f : G −→ {±1}|∃(λ, c) ∈ Ĝ × {±1} such that f(σ) = cλ(σ)}
= {±χσ

G|σ ∈ G}

i.e. AG is the set of affine forms over G.



Generalized Boolean Bent Functions 117

Let (β, x) ∈ (IFn
2 \ {0IFn

2
}) × IFm

2 . We have

̂
χβ

IFn
2
◦ fx(σ) =

∑
τ∈G

χβ
IFn

2
(f(τx))χσ

G(τ)

= |{τ ∈ G|χβ
IFn

2
(f(τx)) = χσ

G(τ)}| − |{τ ∈ G|χβ
IFn

2
(f(τx)) �= χσ

G(τ)}|

(since both χβ
IFn

2
and χσ

G are {±1} − valued)

= |G| − 2d(χβ
IFn

2
◦ fx, χσ

G) .

Thus we obtain

d(χβ
IFn

2
◦ fx, χσ

G) = 2m−1 − 1
2

̂
χβ

IFn
2
◦ fx(σ) . (18)

Let us compute d(χβ
IFn

2
◦ fx,−χσ

G).

d(χβ
IFn

2
◦ fx,−χσ

G) = |{τ ∈ G|χβ
IFn

2
(f(τx)) �= −χσ

G(τ)}|

= |{τ ∈ G|χβ
IFn

2
(f(τx)) = χσ

G(τ)}|

= |G| − |{τ ∈ G|χβ
IFn

2
(f(τx)) �= χσ

G(τ)}|

= |G| − d(χβ
IFn

2
◦ fx, χσ

G)

= 2m−1 +
1
2

̂
χβ

IFn
2
◦ fx(σ) .

It follows that d(χβ
IFn

2
◦fx, {±χσ

G}) = min({d(χβ
IFn

2
◦fx, χσ

G), d(χβ
IFn

2
◦fx,−χσ

G)})

= 2m−1 − 1
2 |

̂
χβ

IFn
2
◦ fx(σ)|.

Since AG = ∪σ∈G{±χσ
G}, we have

d(χβ
IFn

2
◦ fx,AG) = min

α∈AG

d(χβ
IFn

2
◦ fx, α)

= min
σ∈G

d(χβ
IFn

2
◦ fx, {±χσ

G})

= min
σ∈G

(2m−1 − 1
2
| ̂
χβ

IFn
2
◦ fx(σ)|)

= 2m−1 − 1
2

max
σ∈G

| ̂
χβ

IFn
2
◦ fx(σ)| . (19)

Proposition 5. Let G be a maximal group of involutions of IFm
2 and f : IFm

2 −→
IFn

2 .
f is G-perfect nonlinear if and only if ∀(β, x) ∈ (IFn

2 \ {0IFn
2
}) × IFm

2 ,

d(χβ
IFn

2
◦ fx,AG) = 2m−1 − 2

m
2 −1 .



118 L. Poinsot and S. Harari

Proof.

⇐) Let g : IFm
2 −→ IFn

2 . By Parseval equation, we have
∑
σ∈G

| ̂
χβ

IFn
2
◦ gx(σ)|2 =

|G|
∑
σ∈G

|χβ
IFn

2
◦gx(σ)|2 = |G|2 (since χβ

IFn
2

is {±1}-valued). So max
σ∈G

| ̂
χβ

IFn
2
◦ gx(σ)|

≥
√
|G| = 2

m
2 and then inf

g:IFm
2 −→IFn

2

max
σ∈G

| ̂
χβ

IFn
2
◦ gx(σ)| ≥ 2

m
2 . Moreover sup-

pose that we have d(χβ
IFn

2
◦fx,AG) = 2m−1−2

m
2 −1, then according to formula

(19), we deduce that ∀(β, x) ∈ (IFn
2 \{0IFn

2
})× IFm

2 , max
σ∈G

| ̂
χβ

IFn
2
◦ fx(σ)| = 2

m
2 .

Then ∀σ ∈ G, | ̂
χβ

IFn
2
◦ fx(σ)| ≤ 2

m
2 . The lower absolute bound previously

exhibited implies then that ∀σ ∈ G, | ̂
χβ

IFn
2
◦ fx(σ)| = 2

m
2 . The result is given

by corollary 1.
⇒) By corollary 1, if f is G-perfect nonlinear then ∀(β, x) ∈ (IFn

2 \{0IFn
2
})× IFm

2 ,

∀σ ∈ G, | ̂
χβ

IFn
2
◦ fx(σ)| = 2

m
2 . Therefore we deduce the result by applying

the formula (19). ��

Corollary 2. Let G be a maximal group of involutions of IFm
2 . Let f : IFm

2 −→
IFn

2 . If f is G-perfect nonlinear then ∀(β, x) ∈ (IFn
2 \ {0IFn

2
})× IFm

2 , χβ
IFn

2
◦ fx has

the maximal distance to AG.

Proof. Suppose f G-perfect nonlinear. The same way as in the proof of proposi-

tion 5, we deduce the | ̂
χβ

IFn
2
◦ fx(σ)| = inf

g:IFm
2 −→IFn

2

max
σ∈G

| ̂
χβ

IFn
2
◦ gx(σ)| = 2

m
2 . Then

∀g : IFm
2 −→ IFn

2 , according to formula (19),

d(χβ
IFn

2
◦ fx,AG) ≥ 2m−1 − 1

2
max
σ∈G

| ̂
χβ

IFn
2
◦ gx(σ)| = d(χβ

IFn
2
◦ gx,AG) .

��

6 Conclusion and Further Works

We have extended both notions of perfect nonlinearity and bent functions, while
respecting the equivalence between them, by considering groups of involutions
rather than the simple translations. Moreover we have shown that our concepts
and the original ones are closely dependent. Finally we have obtained a similar
result to the traditional case with regard to the distance to the set of affine
functions.

The existence of G-perfect nonlinear functions is proved by our construction
of such function in the case where G is a conjugate group of the group of trans-
lations T (IFm

2 ). A problem remaining to solve is to show if the conjugacy class of
T (IFm

2 ) is equal to the set of all maximal groups of involutions of IFm
2 . If it is not

the case, we should also construct a G-bent function for G a group of involutions
which is not in the same conjugacy class than T (IFm

2 ), or we should prove their
nonexistence.



Generalized Boolean Bent Functions 119

References

[1] E. Biham, A. Shamir : Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology, Vol. 4, No. 1, pp. 3-72, 1991

[2] M. Matsui : Linear Cryptanalysis Method for DES Cipher. Advances in Cryptology,
Proc. Eurocrypt’93, LNCS 809, pp. 1-17, 1994

[3] K. Nyberg : Perfect nonlinear S-boxes. In Lecture Notes in Computer Science,
Advances in Cryptology - EUROCRYPT’91, volume 547, pp. 378-385. Springer-
Verlag, 1991

[4] C. Carlet, C. Ding : Highly nonlinear mappings. In Journal of Complexity, Volume
20, Issue 2-3, Special issue on Coding and Cryptography, pp. 205-244, 2004

[5] O.A. Logachev, A.A. Salnikov, V.V. Yashchenko : Bent functions on a finite Abelian
group, Discrete Math. Appl. 7(6), pp. 547-564, 1997



On Boolean Functions with Generalized
Cryptographic Properties�

An Braeken1,��, Ventzislav Nikov2, Svetla Nikova1,� � �, and Bart Preneel1

1 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
{an.braeken, svetla.nikova}@kuleuven.ac.be

2 Department of Mathematics and Computing Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
v.nikov@tue.nl

Abstract. By considering a new metric, we generalize cryptographic
properties of Boolean functions such as resiliency and propagation char-
acteristics. These new definitions result in a better understanding of the
properties of Boolean functions and provide a better insight in the space
defined by this metric. This approach leads to the construction of “hand-
made” Boolean functions, i.e., functions for which the security with re-
spect to some specific monotone sets of inputs is considered, instead of
the security with respect to all possible monotone sets with the same
cardinality, as in the usual definitions. This approach has the advantage
that some trade-offs between important properties of Boolean functions
can be relaxed.

1 Introduction

For any two binary vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn
2 ,

define the sets δ(x, y) = {i : xi �= yi} and sup(x) = {i : xi �= 0}. Denote
the size of a set A with |A|. Then the Hamming distance between the binary
vectors x and y is equal to d(x, y) = |δ(x, y)| and the Hamming weight of x is
wt(x) = | sup(x)|. It was noted that δ(x, y) has properties similar to metric and
sup(x) has properties similar to norm [NN03].

Our goal is to use δ(x, y) instead of the Hamming distance and sup(x) instead
of the Hamming weight and to explore the properties of this new space. For this

� The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT and
Concerted Research Action GOA-MEFISTO-666 of the Flemish Government.

�� The author is research assistant of the Fund for Scientific research - Flanders (Bel-
gium).

��� The author was partially supported by IWT STWW project on Anonymity and
Privacy in Electronic Services.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 120–135, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



On Boolean Functions with Generalized Cryptographic Properties 121

purpose we consider monotone increasing and monotone decreasing sets. A set
Δ is called monotone decreasing if for each set in Δ, its subsets belong to Δ.
Similarly, a set Γ is said to be monotone increasing if for each set in Γ its
supersets belong to Γ .

As it has already been shown in [NN03], this new space with monotone sets
can be used to generalize notions such as codes, minimum distance of a code,
minimal codewords, generator and parity check matrices of a code, packing and
covering, error-correcting capabilities, etc. In addition, monotone sets are widely
used in Secret Sharing Schemes (SSS) to describe the sets of players which are
allowed (disallowed) to reconstruct a secret. It has been recently pointed out
[NN03] that the security of (verifiable) SSS can be derived from the properties
of this space.

This paper focuses on Boolean functions. In particular, we generalize the def-
inition of t-resilient functions to functions which are resilient with respect to a
monotone decreasing set Δ. Analogously, the parameters for defining the prop-
agation characteristics (PC) of functions are replaced by monotone decreasing
sets. Our aim is to provide a new insight to the previous results and to give a
better understanding of which structural properties contribute in which way to
known results.

Very often the properties of resiliency and PC imply strong requirements to
the rest of the parameters of a Boolean function. This leads to some trade-offs
between them, since all relevant properties cannot be satisfied simultaneously.
For example, Siegenthaler’s inequality [S84] states that d ≤ n − t − 1, where d
is the algebraic degree, n is the dimension and t is the order of resiliency. By
exactly defining which components need to satisfy a certain order of resiliency
or PC, we can strengthen the weaker components by using other constructions
and achieve in this way an optimal design.

By means of example, we present a modified version of the combination
generator (see Section 3.5 for concrete examples). Let Δ be the set consisting of
all subsets of LFSRs for which the sum of the lengths is shorter than the security
parameter for the (fast) correlation attack [S85, MS92, JJ99]. It is known that
the feedback polynomials of the combining LFSRs should be primitive with
distinct degrees, not necessary co-prime, in order to obtain maximum linear
complexity [RS87]. Using t-resilient functions the degrees of LFSRs’ polynomials
are uniformly chosen. But considering Δ-resilient functions instead, allows us to
choose the degrees non-uniformly as well as to relax the requirements to the
rest of the function parameters like nonlinearity, algebraic degree, etc. Using a
Δ-resilient function as combiner f , the (fast) correlation attack can be avoided.
Moreover, the degree of the function f should be high in order to counter the
linear synthesis by Berlekamp-Massey [M69] and algebraic attacks [CM03]. Note
that in this model the trade-off defined by the Siegenthaler’s inequality can be
relaxed to another form as shown in Section 3.2.

In order to preclude more recent algebraic attacks, we should also require that
the function has no low degree multiples [CM03]. To get even better security, but
a small trade-off in speed, one can replace some linear feedback shift registers



122 A. Braeken et al.

by nonlinear feedback shift registers or clock controlled linear feedback shift
registers, since the algebraic attacks of [CM03] do not apply on this model. The
set Δ for defining the resiliency contains again the subsets of LFSRs for which
the sum of the lengths is smaller than the security parameter for the (fast)
correlation attack.

The first steps in considering generalizations of classical t-resiliency and func-
tions satisfying PC properties has been made in [CCCF00]. The authors extended
the properties of resiliency and propagation characteristics with respect to sub-
spaces. So, our definitions can be seen as natural extensions of the definitions
by Canteaut et al., instead of subspaces, to collections of subspaces.

We also refer to the research on almost resilient functions and functions satis-
fying almost PC properties [KJS01, K99, DSS01]. There, the concept is different
and is based on probabilities but it is also introduced for relaxing the parameters
and for avoiding (or relaxing) the trade-offs.

The paper is organized as follows. In Section 2, we give some background and
preliminaries. Section 3 deals with Δ-resilient functions. We first investigate the
notions of algebraic degree, nonlinearity and divisibility results for the Walsh co-
efficients. Then different constructions are identified amongst the other we men-
tion the constructions of Siegenthaler, Camion et al., Maiorana-MacFarland,
and the Direct sum constructions. We also give two concrete example of Δ-
resilient functions that have better trade-off between degree/nonlinearity and
resiliency compared with the classical theory. In Section 4 we generalize func-
tions which satisfy SAC and PC for some monotone decreasing sets. Then a
relation between them and Δ-resilient functions is proven. In this setting we
also investigate the question when a function may possess linear structures. Fi-
nally we investigate the algebraic degree and show a generalization of Kurosawa
and Satoh’s construction of PC functions using a relation between monotone
span programs and linear codes. Most of the proofs are skipped due to the page
limit.

2 Background

Define the set P = {1, . . . , n} and denote the power set of P by P (P). The set Γ
(Γ ⊆ P (P)) is called monotone increasing if for each set A in Γ , each set contain-
ing A is also in Γ . Similarly, the set Δ (Δ ⊆ P (P)) is called monotone decreasing,
if for each set B in Δ each subset of B is in Δ. A monotone increasing set Γ can
be described efficiently by the set Γ− consisting of the minimal elements (sets)
in Γ , i.e., the elements in Γ for which no proper subset is also in Γ . Similarly,
the set Δ+ consists of the maximal elements (sets) in Δ, i.e., the elements in
Δ for which no proper superset is also in Δ. We set Γ = Δc (Δc = P (P) \ Δ).
Note that Γ is monotone increasing if and only if Δ is monotone decreasing.

The dual sets Δ⊥ and Γ⊥ are defined by Γ⊥ = {A : Ac ∈ Δ} and Δ⊥ =
{A : Ac ∈ Γ}. It is easy to see that Δ⊥ is monotone decreasing and Γ⊥ is
monotone increasing. For two monotone decreasing sets Δ1 and Δ2 let us define



On Boolean Functions with Generalized Cryptographic Properties 123

Δ1 ! Δ2 = {A = A1 ∪ A2; A1 ∈ Δ1, A2 ∈ Δ2}. Note that Δ1 ! Δ2 is again a
monotone decreasing set.

As it has been pointed out in [NN03], δ(x, y) satisfies the properties of a metric
and sup(x) the properties of a norm. Notice that sup(x) and δ(x, y) = sup(x−y)
are subsets of P and that P is partially ordered (i.e., x " y if and only if
sup(x) ⊆ sup(y)). For a vector u ∈ Fn

2 , let u = u ⊕ 1 (where 1 denotes the all-1
vector), i.e., sup(u) = sup(u)c. The dot product w ·x is equal to the component-
wise inner product.

For an element A ∈ Δ \ {0}, the subspace defined by A is given by UA = {u :
sup(u) ⊆ A}. The dual U⊥

A of the subspace UA is the subspace consisting of the
elements x such that x · y = 0 for all y ∈ UA. Consequently, U⊥

A is defined by
Ac, i.e., U⊥

A = UAc = {u : sup(u) ⊆ Ac}.
Let f(x) = f(x1, . . . , xn) be a Boolean function on Fn

2 . The Walsh transform
Wf of a Boolean function f(x) plays an important role in our work. It is a
real-valued function, which is defined as follows Wf (w) =

∑
x∈Fn

2
(−1)f(x)+w·x .

A function with equally distributed outputs is called a balanced function. It is
clear that for balanced functions Wf (0) = 0. A Boolean function f(x) on Fn

2
is said to be a plateaued function [CaPr03, ZZ99b] if its Walsh transform Wf

takes only 0 and ±λ, where λ is a positive integer, called the amplitude of the
plateaued function.

The nonlinearity Nf of a Boolean function f is defined by the minimum
distance of the function to the set of affine functions A, i.e., Nf = ming∈A d(f, g),
or also Nf = 2n−1 − 1

2 maxw∈Fn
2
|Wf (w)|.

Another representation of a Boolean function f(x) is the algebraic normal
form (ANF) f(x) =

⊕
u∈Fn

2
auxu, au ∈ F2 . The degree of the ANF is called the

algebraic degree or shortly degree (denoted by deg(f)) of the Boolean function.
The autocorrelation rf of a Boolean function f on Fn

2 is a real-valued transfor-
mation, defined by rf (u) = 2−n

∑
x∈Fn

2
(−1)f(x)+f(x+u) . We will also need an

important property of the sum of characters (see [J92–p. 263]).

Lemma 1. For any subspace V ⊆ Fn
2 , we have∑

x∈V

(−1)w·x =
{
|V | if w ∈ V ⊥;
0 otherwise.

3 Δ-Resilient Functions

3.1 Definition and Relation with the Classical Definition of
Resiliency

In this section we generalize the definitions of resilient and correlation-immune
(CI) functions with respect to a monotone decreasing set Δ. We assume that the
set Δ is the maximal possible monotone decreasing set for which the function sat-
isfies the corresponding property. The monotone increasing set Γ corresponding
to Δ is defined by Γ = Δc.



124 A. Braeken et al.

Definition 1. Let f(x) = f(x1, . . . , xn) be a Boolean function on Fn
2 and Δ

be a monotone decreasing set. Then f(x) is called Δ-resilient if and only if
f(x)⊕w ·x is a balanced function for all w such that sup(w) ∈ Δ. Furthermore,
f(x) is called Δ-CI if and only if f(x) ⊕ w · x is a balanced function for all w
such that sup(w) ∈ Δ \ {∅}.

When Δ = {A : |A| ≤ t} the definitions of Δ-resilient function and t-resilient
function, (resp. Δ-CI function and t-CI function) coincide. The balancedness
property of f(x) ⊕ w · x can be translated in terms of Walsh spectrum into
Wf (w) = 0. Denote the set of vectors which have zero Walsh value by ZWf ,
then Δ ⊆ {sup(u) : u ∈ ZWf}. Note that ZWf ∩ Γ is not necessarily empty.

Example 1. Consider the sets Δ+ and Γ− in the set F4
2: Δ+ = {{1, 2}, {3, 4}}

and Γ− = {{1, 4}, {2, 4}, {1, 3}, {2, 3}}. It is easy to verify that Γ = Δc and
Γ ∩ Δ = ∅. A function which is Δ-resilient has zero Walsh coefficients for the
inputs w, where sup(w) ∈ {∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}, i.e., for the vectors
w ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1)}.

Next we establish the relationship with the classical definition of resiliency.
For the monotone sets Γ and Δ define the parameters

t1 = min{|A| : A ∈ Γ−} and t2 = max{|A| : A ∈ Δ+} .

From the definition of t1 and the fact that Γ is a monotone increasing set, each
subset of size t1−1 belongs to Δ, which implies that a Δ-resilient function is also
(t1 − 1)-resilient. Analogously, a Δ-CI function is (t1 − 1)-CI. The parameter t2
defines the maximum dimension of a subspace in which the Δ-resilient function
is resilient.

The following theorem shows a necessary and sufficient condition for Δ-
resilient functions concerning their balancedness properties on affine subspaces.

Theorem 1. A Boolean function f on Fn
2 is Δ-resilient if and only if f is

balanced when restricted to any of the affine subspaces a + UA, where A ∈ Δ⊥.

Remark 1. From the definition of resiliency, we deduce that if at most t com-
ponents of a t-resilient function are fixed (this defines a subspace V of di-
mension n − t), the output is balanced. The previous theorem generalizes this
property by proving that the function is also balanced on all affine subspaces
of V ⊥.

Example 2. A possible truth table of the Δ-resilient function defined by Exam-
ple 1 is given by the vector (0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0). This function
is exactly 1-resilient. Moreover the function is resilient with respect to two sub-
spaces of dimension 2 whose bases are given by < e1, e2 > and < e3, e4 >, where
ei is the all zero vector except for position i. One can check that the conditions
of Theorem 1 are satisfied.



On Boolean Functions with Generalized Cryptographic Properties 125

3.2 Algebraic and Numerical Degree

Theorem 2. For a Δ-resilient function f on Fn
2 all ANF coefficients au of f

with sup(u) ∈ Γ⊥ and wt(u) > 1 are equal to zero. If sup(u) ∈ Γ⊥ and wt(u) = 1
then au = 1.

Proof. The Siegenthaler’s inequality deg(f) ≤ n − t − 1 for t-resilient functions
on Fn

2 relies on the observation that the coefficient au of the term xu in the ANF
of f satisfies the following relation [XM88]

au = 2wt(u)−1 − 2−wt(u)−1
∑
w�u

Wf (w) mod 2 . (1)

Consider now u with sup(u) ∈ Γ⊥: then sup(u) ∈ Δ and sup(w) ⊆ sup(u) ∈
Δ for all w " u. By definition of Δ-resilient functions Wf (w) = 0 for sup(w) ∈ Δ.
Therefore au = 0 for all u such that sup(u) ∈ Γ⊥ and wt(u) > 1, but when
sup(u) ∈ Γ⊥ and wt(u) = 1 we obtain au = 1. Note that this is a generalization
of the Siegenthaler’s inequality for t-resilient functions: if Δ = {A : |A| ≤ t} we
have Γ⊥ = {B : |B| ≥ n − t}. ��

Remark 2. Notice that because of the factor mod 2 in (1) the coefficient au is
1 for any u such that sup(u) ⊆ [Δ⊥]+ and Wf (u) = ±2n−wt(u)+1. The max-
imum weight of such a u defines the normal algebraic degree of the Boolean
function. Knowledge of the coefficients of the ANF of f enables us to derive
(upper and lower) bounds on the nonlinearity as shown in [ZZI99–Theorem 18
and 30].

We now generalize the definition of degree to this new setting.

Definition 2. Define a monotone decreasing set Deg={A :A ⊆ sup(u), au �=0}.
We call the set Deg+ the ”degree-set” of f .

Remark 3. The “degree-set” of f satisfies the following relation Deg ⊆ Δ⊥∪{A :
A ∈ Γ⊥, |A| = 1}. Moreover, the equality does not always hold; it is even possible
that Deg+ ∩ [Δ⊥]+ = ∅.

Example 3. Applying Theorem 2 to the function of Example 1, we obtain that
all coefficients au for u such that sup(u) ∈ Γ⊥ are zero, which gives addi-
tional information compared to the Siegenthaler’s inequality. Note that [Γ⊥]− =
{{3, 4}, {1, 2}} and [Δ⊥]+ = {{2, 4}, {2, 3}, {1, 4}, {1, 3}}. Because the ANF of
f is given by x1x3 ⊕ x1x4 ⊕ x2x3 ⊕ x2x4 ⊕ x1 ⊕ x3, the equality Deg+ = [Δ⊥]+

holds in this example.

Theorem 3. For a Δ-resilient function f(x) on Fn
2 all coefficients λu from NNF

of g(x) = f(x)⊕x1 ⊕ · · ·⊕xn with sup(u) ∈ Γ⊥ are equal to zero. Moreover, all
coefficients λu from NNF of g with sup(u) ∈ [Δ⊥]+ are non-zero.



126 A. Braeken et al.

3.3 Nonlinearity

In this section we improve the divisibility results on the Walsh coefficients of
resilient functions which leads to an upper bound on the nonlinearity. Let fv

be the (n − wt(v))-variable function formed from f for which xj = 0 if vj = 1.
The divisibility result by Sarkar and Maitra [SM00] can be generalized in the
following way:

Theorem 4. Let f be a Δ-resilient function on Fn
2 . Then the Walsh coefficients

of f satisfy the following divisibility conditions:

Wf (v) = 0 mod 2t3(v)+1, where sup(v) ∈ Γ and
t3(v) = min{wt(w) : w " v, sup(w) ∈ Γ−} .

Remark 4. Note that t3(v) ≥ t1 = t + 1 for v with sup(v) ∈ Γ , therefore we
have a stronger result comparing to the divisibility of 2t+2 proven in [SM00] for
t-resilient functions.

Now we extend the divisibility result of Carlet and Sarkar in [CS02], namely
that Wf (v) = 0 mod 2t+2+�n−t−2

deg(f) �.

Theorem 5. Let f be a Δ-resilient function on Fn
2 . Then the Walsh coefficients

of f satisfy the following divisibility conditions:

Wf (v) = 0 mod 2t3(v)+1+
⌊

n−t3(v)−1
t4(v)

⌋
,

where sup(v) ∈ Γ and with parameters t3(v) (as defined in Theorem 4) and
t4(v) = max{|A| : A ∈ Deg+, A ⊆ sup(u) with u " v, sup(u) ∈ Γ−}.

Proof. In [CS02], the following relation has been proven∑
u�v

Wf (u) = 2wt(v)Wfv
(0) = 2n − 2wt(v)+1wt(fv) . (2)

Let f be a Δ-resilient function. If sup(v) ∈ Γ−, then for any u � v we
have u ∈ Δ and thus Wf (u) = 0. Hence, Equation (2) reduces to Wf (v) =
2n − 2wt(v)+1wt(fv). Applying McEliece’s [MS] theorem for cyclic codes on fv

we obtain that wt(fv) = 0 mod 2
⌊

n−t3(v)−1
t4(v)

⌋
, since t3(v) = wt(v) and t4(v) =

deg(fv). This proves the result for v with sup(v) ∈ Γ−.

Let sup(v) ∈ Γ \Γ−. By the hypothesis Wf (u) = 0 mod 2t3(u)+1+
⌊

n−t3(u)−1
t4(u)

⌋

for any u � v and sup(u) ∈ Γ . Since t4(u) is increasing with respect to wt(u) we

obtain that Wf (u) = 0 mod 2t3(u)+1+
⌊

n−t3(u)−1
t4(v)

⌋
for any u � v and sup(u) ∈ Γ .

Note that by Remark 3 the degree of fv is less than or equal to t4(v). Rewrite (2)
in the form Wf (v) = 2n − 2wt(v)+1wt(fv)−

∑
u�v Wf (u). To conclude the proof

note that t3(u) is decreasing with respect to wt(u) and that t4(v) ≥ deg(fv). ��



On Boolean Functions with Generalized Cryptographic Properties 127

Remark 5. The parameters t3(v) and t4(v) satisfy t3(v) + t4(v) ≤ n, which is
similar to the Siegenthaler’s inequality. Thus, Theorem 5 improves the result
from Theorem 4 when t3(v) and/or t4(v) are smaller.

Example 4. Consider again the function of Example 1. By definition of Γ− and
Deg+ (see Example 3), the parameters t3(v) = 2 and t4(v) = 1 for all v ∈ Γ .
Consequently, the Walsh values of the function are divisible by 8.

The divisibility results of the Walsh coefficients for Δ-resilient functions result
in bounds on the nonlinearity of these functions similar to the one of [CS02].

3.4 Constructions of Δ-Resilient Functions

Lemma 2. If f is a Δ-resilient function on Fn
2 , then g(x) = f(x) ⊕ 1 and

h(x) = f(x1 ⊕ c1, . . . , xn ⊕ cn), where c ∈ Fn
2 are Δ-resilient.

The Constructions of Siegenthaler and Camion et al.

Theorem 6. Let f1 and f2 be two Δ-resilient functions on Fn
2 . The function f

on Fn+1
2 defined by

f(x1, . . . , xn+1) = xn+1f1(x1, . . . , xn) ⊕ (1 ⊕ xn+1)f2(x1, . . . , xn)

is Δ̃-resilient, where Δ̃ = Δ ! P ({n + 1}). Furthermore, if w ∈ Γ and for
any u " w it holds that Wf1(u) + Wf2(u) = 0 then f is Δ̂-resilient, where
Δ̂ = Δ̃ ∪ P (sup(w)).

Remark 6. We extend Siegenthaler’s result [S84] that states ”if f1 and f2 are t-
resilient then f is t-resilient” by showing that if f1 and f2 are Δ-resilient, then f
is Δ̃-resilient. Similarly, we generalize the result of Camion et al. [CCCS92] which
states ”if also for all v such that wt(v) = t + 1 holds that Wf1(v) + Wf2(v) = 0,
then f is (t + 1)-resilient”. This is here reflected in the Δ̂-resiliency of f .

The following construction can be seen as a special case of the previous one.

Lemma 3. Let f1 be a Δ-resilient function on Fn
2 . Then the functions

f(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ 0.xn+1

g(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ xn+1(f1(x1, . . . , xn)⊕f1(x1 ⊕ 1, . . . , xn ⊕ 1))

are Δ ! P ({n + 1})-resilient functions on Fn+1
2 , and the function

h(x1, . . . , xn+1) = f1(x1, . . . , xn) ⊕ xn+1

is a (Δ ! P ({n + 1})) ∪ P ({1, . . . , n})-resilient function on Fn+1
2 .

The following corollary can be derived from Theorem 3.

Corollary 1. Let f(x) = w · x be a linear function on Fn
2 and wt(w) = d, i.e.,

without lost of generality we can suppose that f(x) = x1 ⊕ . . . ⊕ xd. Then f(x)
is (∪d

i=1P ({1, . . . , n} \ {i}))-resilient function.



128 A. Braeken et al.

Direct Sum and Secondary Constructions

Theorem 7. Let f1 be a Δ1-resilient function on Fn1
2 and f2 be a Δ2-resilient

function on Fn2
2 then the direct sum

f : Fn1
2 × Fn2

2 : (x, y) �→ f(x, y) = f1(x) ⊕ f2(y)

is a (Δ̃ = Δ1!Δ2!S)-resilient function on Fn1+n2
2 where S = {∅, {1}, · · · , {n1},

{n1 + 1}, · · · , {n2 + n1}}.

Remark 7. The classical theorem says that for the direct sum of a t1-resilient
function and t2-resilient function yields a (t1 + t2 + 1)-resilient function [ZZ97],
which is reflected here by the set Δ̃.

The following lemma shows how to construct new Δ′-resilient functions from
a given Δ-resilient function where Δ′ ⊆ Δ. This theorem is an extension of
Theorem 3 [C97a].

Lemma 4. Consider a Boolean function f on Fn
2 which is Δ-resilient. If there

exists a subspace W and a subset Δ′ ⊆ Δ such that UA ∩ W = ∅ for all A ∈ Δ′

and the restriction of f to W⊥ is equal to the constant c, then the function f ′

obtained from f by replacing the constant c by the constant c⊕1 for all elements
of W⊥ is Δ′-resilient.

The following construction is a generalization of the change of basis construc-
tion.

Lemma 5. Let Δ be a set containing less than n elements. Then any Boolean
function f on Fn

2 which has at least n linearly independent vectors w ∈ Fn
2 such

that Wf (w) = 0 can be transformed into a Δ-resilient function.

The Maiorana-MacFarland Construction

Theorem 8. Let φ be a function from Fn−r
2 into Fr

2 and let g be an arbitrary
Boolean function on Fn−r

2 , then the function f defined by

Fr
2 × Fn−r

2 → F2 : (x, y) �→ f(x, y) = x · φ(y) ⊕ g(y)

is Δ-resilient with Δ = {A : ∃y ∈ Fn−r
2 , such that sup(φ(y)) ⊆ A}c. Moreover,

if φ is injective (resp. takes each value exactly 2 times), the function is plateaued
with amplitude 2r (resp. 2r+1).

Remark 8. This construction always leads to P ({r + 1, . . . , n}) ⊆ Δ because φ
is a mapping from Fn−r

2 into Fr
2. It is clear that the higher the weight of the

elements in the image of φ are, the higher the values t2 and |Δ| are.



On Boolean Functions with Generalized Cryptographic Properties 129

3.5 Example of Modified Combination Generator

We give some concrete examples of the modified combination generator as ex-
plained in the introduction.

1. Suppose the generator consists of 5 LFSRs of lengths 61, 63, 21, 31, and 33
respectively. Let the security parameter for the (fast) correlation attack be
equal to 60. Consequently in order to be secure against the (fast) correlation
attack, we need a combination function which is resilient with respect to the
3rd, 4th, 5th and also the 3rd+4th, 3rd+5th LFSR, i.e. a Δ resilient function
with Δ = {{3, 4}, {3, 5}}. The function f(x1, . . . , x5) = x2x3x4x5⊕x1x2x3⊕
x1x4 ⊕ x3x5 ⊕ x1 ⊕ x2 satisfies this property. Remark that this function
has degree 4 and nonlinearity 10. High degree and high nonlinearity are
important properties for resisting other attacks like for instance Berlekamp-
Massey attack [M69], algebraic attack [CM03] and best affine approximation
attack [DXS91].

2. The function f(x1, . . . , x5) = x1x2x3⊕x1x4⊕x2x5⊕x4 is a Δ-resilient func-
tion with Δ = {{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}}. Moreover, the function
has degree 3 and maximum nonlinearity 12. The LFSRs of the correspond-
ing modified combination generator with security parameter 60 should have
for instance lengths 19, 21, 61, 31, and 33 respectively.

When we consider the same models of combination generators in the classi-
cal theory, the combination function should be in both cases 2-resilient in order
to resist (fast) correlation attacks. Following Siegenthaler’s inequality, the cor-
responding function has degree less than or equal to 2. Note that now using
Δ-resilient functions the choice of the lengths of the LFSRs may not be uniform,
which is the case when we use t-resilient functions. This also allows to relax the
requirements to the rest of the parameters like nonlinearity, algebraic degree, etc.
Moreover, by Carlet-Sarkar’s result on the divisibility of the Walsh coefficients,
the maximum Walsh value is greater or equal than 16, resulting in a nonlinearity
less than or equal to 8.

These examples are just illustrative and need to be scaled up in order to be
used in reality. However, it already shows the advantages of considering resiliency
with respect to specified monotone sets since the strong trade-offs between re-
siliency and degree, resiliency and nonlinearity can be avoided.

4 Functions Satisfying Propagation Characteristics with
Respect to Δ-Sets

Analogously to the definitions of Δ-resilient and Δ-correlation immune (CI)
function, we define functions which satisfy the propagation characteristic of de-
gree Δ1 and of order Δ2 (PC(Δ1) of order Δ2), the propagation characteristic of
degree Δ1 (PC(Δ1)), and the strict avalanche criteria of order Δ2 (SAC(Δ2)),
where Δ, Δ1, Δ2 are monotone decreasing sets.



130 A. Braeken et al.

Definition 3. For two monotone decreasing sets Δ1 and Δ2 the function f
satisfies PC(Δ1) of order Δ2 if and only if for every w, such that sup(w) ∈
Δ1 \ {∅} the function f(x) ⊕ f(x ⊕ w) is Δ2-CI. If Δ2 = ∅, the function f is
said to be PC(Δ1). If Δ1 = {A : |A| = 1}, the function f satisfies SAC(Δ2).

Again if Δ1 = {A : |A| ≤ �} and Δ2 = {B : |B| ≤ k} the definitions of
PC(Δ1) function of order Δ2 and PC(�) function of order k, PC(Δ1) function
and PC(�) function; SAC(Δ2) function and SAC(k) function coincide. The prop-
erty balancedness of f(x)⊕ f(x⊕w) implies for the autocorrelation rf (w) = 0.

4.1 A Relation with Δ-Resilient Functions

We generalize the well-known relation p+t ≤ n−1 between the order of resiliency
t and the degree of propagation p of a Boolean function on Fn

2 as proven in
[ZZ00, ChPa02].

Theorem 9. For a Δ1-resilient function on Fn
2 which satisfies PC of degree Δ2,

we have that Δ2 ∩ Γ⊥
1 = ∅ and Δ1 ∩ Γ⊥

2 = ∅.

Proof. The following relation, with respect to any linear subspace V , was derived
in [CCCF01]: ∑

u∈V

rf (u) =
1

|V ⊥|
∑

x∈V ⊥
Wf (x)2 . (3)

Let A be an arbitrary element of Δ2 \ {0}. Note that the coefficient rf (0)
is equal to 2n. Now applying the definition of PC of degree Δ2 we obtain∑

u∈UA
rf (u) = rf (0) = 2n = 1

|U⊥
A |
∑

x∈U⊥
A

Wf (x)2 .

Thus |U⊥
A | 2n =

∑
x∈U⊥

A
Wf (x)2 =

∑
x∈UAc

Wf (x)2. As a consequence Ac /∈
Δ1 or also A /∈ Γ⊥

1 because otherwise the right side of the equation above would
be zero. This holds for all A ∈ Δ2 and thus Δ2 ∩Γ⊥

1 = ∅, which is equivalent to
Δ2 ⊆ Δ⊥

1 . This in turn is equivalent to Γ⊥
2 ⊆ Γ1, equivalent to Δ1 ⊆ Δ⊥

2 and
finally equivalent to Δ1 ∩ Γ⊥

2 = ∅. ��

4.2 Linear Structures

Next we derive a condition for the existence of linear structures for a Δ1-resilient
function which satisfies PC(Δ2). A linear structure of a function is an element
a ∈ Fn

2 for which f(x) ⊕ f(x ⊕ a) is a constant. Linear structures should be
avoided, for example, in order to resist differential attacks [B93].

Theorem 10. Let f be a Δ1-resilient function on Fn
2 that satisfies PC(Δ2). If

there exists a non-empty element A ∈ Δ+
2 ∩ [Δ⊥

1 ]+, then all b with sup(b) = B,
B ∈ Γ−

2 and A ⊂ B are linear structures of f .

Proof. Let A ∈ Δ+
2 ∩ [Δ⊥

1 ]+. From (3) for V = UA and the assumption, we
deduce that there exists x, such that sup(x) = Ac ∈ Γ−

1 and Wf (x)2 = 2n|U⊥
A |



On Boolean Functions with Generalized Cryptographic Properties 131

since Wf (y) = 0 ∀y ∈ U⊥
A , y �= x (sup(y) ∈ Δ1). Next we apply (3) for V = UB ,

where B ∈ Γ−
2 and A ⊂ B:

rf (0) + rf (b) =
2

|U⊥
A |
∑

x∈U⊥
B

Wf (x)2 .

Because U⊥
B ⊆ U⊥

A , there are two possibilities: either sup(x) ⊆ U⊥
B , which

leads to rf (b) = 2n; or sup(x) � U⊥
B , which leads to rf (b) = −2n. The fact that

|rf (b)| = 2n implies that b is a linear structure of f . ��

The following theorem gives a condition on the existence of linear structures
for functions which satisfy PC(Δ). The proof is similar to the one of Theorem 10.

Theorem 11. Let f be a Boolean function on Fn
2 that satisfies PC(Δ). If there

exists an element x ∈ Fn
2 \{0} such that sup(x) ∈ A⊥ for A ∈ Δ+ which satisfies

Wf (x) = 2n− |UA|
2 , then all b with sup(b) = B and B ∈ Γ−, A ⊆ B are linear

structures of f .

4.3 Algebraic Degree

First note that the functions satisfying PC(P(P )) are the perfect nonlinear
functions (bent functions of characteristic two). From the definition of resiliency,
we deduce that for a Boolean function on Fn

2 which satisfies PC(Δ1) of order
Δ2, the functions f(x) ⊕ f(x ⊕ w) are Δ2-resilient for all w ∈ Δ1 \ {0}. By
Theorem 1, the functions f(x) ⊕ f(x ⊕ w) are balanced for all w ∈ Δ1 \ {0} on
any of the subspaces a + UA, where A ∈ Δ⊥

2 .
The following theorem generalizes the bound on the degree d of a function

on Fn
2 satisfying the SAC(k) property [PVV+91], namely d ≤ n − k − 1.

Theorem 12. If f satisfies SAC of order Δ then all coefficients au from the
ANF of f with sup(u) ∈ Γ⊥ are equal to zero. Moreover, for all sets A ∈ Γ⊥ :
|A| > 1.

Corollary 2. For functions satisfying PC(Δ1) of order Δ2, where ∀ A ∈ Γ⊥
2 :

|A| > 1, the ANF coefficients au of f with sup(u) ∈ Γ⊥
2 are equal to zero.

4.4 Constructions

The set of functions which satisfy PC(Δ1) of order Δ2 are globally invariant
under the complementation of any of its coordinates, composition with any per-
mutation on {1, . . . , n} which keeps Δ1, Δ2 invariant, and the addition of any
affine function. We first generalize the change of basis construction.

Theorem 13. Let Δ be a set containing less than n elements. Then any Boolean
function f on Fn

2 which has at least n linearly independent vectors w such that
rf (w) = 0 can be transformed into a function that satisfies the PC criterion of
degree Δ.



132 A. Braeken et al.

In [NN03], many coding theoretic notions are generalized in this new setting.
A generalization of the linear [n, k, d]-code is called an error-set correcting code.
We slightly change the original notation here and call an [n, k, Δ]-code C̃ a code
of dimension k, length n and for which codewords x satisfy sup(x) ∈ Γ , where
Γ = Δc. The generator matrix of the code C̃ can be defined by using the matrix
M of a Monotone Span Program.

Definition 4. [KW93] A Monotone Span Program (MSP) M is defined by the
quadruple (F, M, ε, ψ), where F is a finite field, M is a matrix (with m rows and
d ≤ m columns) over F, ψ : {1, . . . , m} → {1, . . . , n} is a surjective functions
and ε = (1, 0, . . . , 0) is a fixed non-zero vector, called target vector. The size of
M is the number of rows and is denoted as size(M).

The properties that matrix M posses are in one-to-one correspondence with
a monotone increasing set Γ . It is said that M computes Γ .

Definition 5. [NN03] An MSP is called Δ-non-redundant (denoted by Δ-rMSP)
when v ∈ ker(MT ) ⇐⇒ sup(v) ∈ Γ (Γ = Δc).

It is shown in [NN03] how the generator matrix of an [n, k, Δ]-code can be
deduced from the previous results.

Theorem 14. Let M be a Δ-rMSP computing Γ and let M⊥ be the matrix of
the dual M⊥ MSP computing Γ⊥. Then a generator matrix G of an [n, k, Δ]-
code is given by G = (M⊥)T .

The best known and general construction for PC(�) functions of order k is
due to Kurosawa and Satoh [KS97]. This construction uses linear codes. It was
later generalized by Carlet [C97b] who also takes nonlinear codes into account.
We present a further generalization.

Theorem 15. Let g be an arbitrary function on Fs
2 and Q be an s × t-matrix.

Define Δ1 on {1, . . . , t} and Δ2 on {t + 1, . . . , t + s}. Let M1 be a matrix in
Δ1-rMSP computing Γ1 and M⊥

1 be the matrix in Δ⊥
1 -rMSP computing Γ⊥

1 . Let
M2 be a matrix in Δ2-rMSP computing Γ2 and M⊥

2 be the matrix in Δ⊥
2 -rMSP

computing Γ⊥
2 . Let G1 = (M⊥

1 )T be the generator matrix of a [t, h, Δ1]-code and
let G2 = (M⊥

2 )T be the generator matrix of a [s, h, Δ2]-code. Define the function
f on Fs+t

2 as follows:

f(x1, . . . , xs, y1, . . . , yt) = [x1, . . . , xs]Q[y1, . . . , yt]T ⊕ g(x1, . . . , xs) .

Set Q = GT
2 G1 then the function f satisfies PC(Δ�) of order Δk, where

Δ� = Δ⊥
1 ! Δ⊥

2 and Δk = Δ1 ! Δ2.

Remark 9. It is easy to verify that Δk ⊆ Δ⊥
l , which corresponds to k+� ≤ n−1.

5 Conclusions and Open Problems

In this paper we have shown that many classical notions, constructions and
results from the theory of cryptographic properties of Boolean functions can



On Boolean Functions with Generalized Cryptographic Properties 133

be extended to a more general setting: t-resiliency and PC properties can be
represented as Δ-resiliency or PC properties with respect to Δ, where Δ =
{A : |A| ≤ t}. Instead of working with numbers, we work with sets, which give
us more flexibility in satisfying incompatible requirements as shown in Section
3.5. We have also defined an analogous notion for the algebraic degree of a
Boolean function. Then we have proven equivalent results to most of the known
inequalities in this new setting. It is much easier to adjust the parameters of
a function, when one works with sets compared to numbers. When a trade-off
needs to be achieved between parameters of a function, we can easily reduce a set
(e.g., Δ) with some of its elements in order to satisfy the condition, comparing
to the previous case where we need to reduce the number (e.g., t to t − 1 for
example) discarding all sets of a fixed cardinality (e.g., with cardinality t).

This approach gives more insight and better understanding in the behaviour
of a Boolean function. More precisely, it allows us to determine which structural
properties contribute to different known results like for instance the Siegen-
thaler’s inequality. Future work will investigate if these insights lead to new
constructions of t-resilient functions (functions satisfying PC properties) by go-
ing over special monotone set resilient functions (PC functions).

We leave as an open question whether such functions exist for any Δ. In the
theory of Secret Sharing Schemes (SSS), a scheme (or equivalently a monotone
increasing set) is called ideal if each player has a share of minimal size. But it
is known that for “many” monotone sets there is no ideal scheme, i.e., there is
no finite field in which the SSS is ideal. For Boolean functions we consider only
this ideal case, since every coordinate (input) in the function is considered as
a player’s share. Thus in the binary field there are monotone sets Γ for which
there does not exist a corresponding MSP (equivalently SSS). We do not know a
relation between MSPs and Δ-resilient functions, but it seems likely that there
exist sets Δ for which there does not exist a corresponding Δ-resilient function.

Acknowledgments

The authors would like to thank Yuri Borissov and the anonymous referees for
the helpful remarks and comments.

References

[B93] E. Biham, Differential Cryptanalysis of the Full 16-Round DES, Crypto
1992, LNCS 740, Springer-Verlag, pp. 487-496, 1993.

[CCCS92] P. Camion, C. Carlet, P. Charpin, N. Sendrier, On Correlation Immune
Functions, Crypto 1991, LNCS 576, Springer-Verlag, pp. 86-100, 1992.

[CCCF00] A. Canteaut, C. Carlet, P. Charpin, C. Fontaine, Propagation Character-
istics and Correlation-Immunity of Highly Nonlinear Boolean Functions,
Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp. 507-522, 2000.

[CCCF01] A. Canteaut, C. Carlet, P. Charpin, C. Fontaine, On Cryptographic
Properties of the Cosets of RM(1, m), IEEE Trans. Information Theory,
Vol. 47(4), pp. 1494-1513, 2001.



134 A. Braeken et al.

[C97a] C. Carlet, More Correlation-Immune and Resilient Functions over Galois
Fields and Galois Rings, Eurocrypt 1997, LNCS 1233, Springer-Verlag,
pp. 422-433, 1997.

[C97b] C. Carlet, On Cryptographic Propagation Criteria for Boolean Functions,
Information and Computation, Vol. 151(1-2), pp. 32-56, 1999.

[CaPr03] C. Carlet, E. Prouff, On Plateaued Functions and Their Constructions, FSE
2003, LNCS 2887, Springer-Verlag, pp. 57-78, 2003.

[ChPa02] P. Charpin, E. Pasalic, On Propagation Characteristics of Resilient Func-
tions, SAC 2002, LNCS 2595, Springer-Verlag, pp. 356-365, 2002.

[CS02] C. Carlet, P. Sarkar, Spectral Domain Analysis of Correlation Immune and
Resilient Boolean Functions, Finite fields and Applications, Vol. 8, pp. 120-
130, 2002.

[CM03] N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, LNCS 2656, Springer-Verlag, pp. 345-359, 2003.

[DSS01] Y. Dodis, A. Sahai, A. Smith, On Perfect and Adaptive Security in Exposure
Resilient Functions, Eurocrypt 2001, LNCS 2045, Springer-Verlag, pp. 301-
324, 2001.

[DXS91] C. Ding, G. Xiao, W. Shan, Stability Theory of Stream Ciphers, Springer,
1991.

[J92] D. Jungnickel, Finite Fields. Structure and Arithmetics, BI, Wis-
senschaftverslag, 1992.

[JJ99] T. Johansson, F. Jönsson, Fast Correlation Attacks Based on Turbo Code
Techniques, Crypto 1999, LNCS 1666, Springer-Verlag, pp. 181-197, 1999.

[K99] K. Kurosawa, Almost Security of Cryptographic Boolean Functions, Cryp-
tology e-print archive, http://eprint.iacr.org/2003/075.

[KJS01] K. Kurosawa, T. Johansson, D.R. Stinson, Almost k-wise Independent
Sample Spaces and Their Cryptologic Applications, Journal of Cryptology,
Vol. 14(4), pp. 231-253, 2001.

[KS97] K. Kurosawa, T. Satoh, Design of SAC/PC(�) of order k Boolean Func-
tions and Three Other Cryptographic Criteria, Eurocrypt 1997, LNCS 1233,
Springer-Verlag, pp. 434-449, 1997.

[KW93] M. Karchmer, A. Wigderson, On Span Programs, Proc. of 8-th Annual
Structure in Complexity Theory Conference, pp. 102-111, 1993.

[MS] F.J. MacWilliams, N.J. Sloane, The Theory of Error Correcting Codes,
North Holland, Amsterdam, 1977.

[M69] J.L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. In-
formation Theory, pp. 122-127, 1969.

[MS92] W. Meier, O. Staffelbach, Fast Correlation Attacks on Certain Stream Ci-
phers, Journal of Cryptology, pp. 67–86, 1992.

[NN03] V. Nikov, S. Nikova, On a Relation Between Verifiable Secret Sharing
Schemes and a Class of Error-Correcting Schemes, Cryptology e-print
archive, http://eprint.iacr.org/2003/210.

[PVV+91] B. Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts, J. Vande-
walle, Propagation Characteristics of Boolean Functions, Eurocrypt 1990,
LNCS 473, Springer-Verlag, pp. 161-173, 1991.

[RS87] R.A. Rueppel, O.J. Staffelbach, Products of Linear Recurring Sequences
with Maximum Complexity, IEEE Trans. Information Theory, Vol. 33(1),
pp. 124–131, 1987.

[S84] T. Siegenthaler, Correlation-Immunity of Nonlinear Combining Functions
for Cryptographic Applications, IEEE Trans.Inf.Theory, 776–780, 1984.



On Boolean Functions with Generalized Cryptographic Properties 135

[S85] T. Siegenthaler, Decrypting a Class of Stream Ciphers Using Ciphertext
Only, IEEE Trans. Computers, pp. 81–85, 1985.

[SM00] P. Sarkar, S. Maitra, New directions in Design of Resilient Boolean Func-
tions, Cryptology e-print archive, http://eprint.iacr.org/2000/009.

[XM88] G.Z. Xiao, J.L. Massey, A spectral Characterization of Correlation-Immune
Combining Functions, IEEE Trans.Inf.Theory, Vol. 34, pp. 569-571, 1988.

[ZZ97] Y. Zheng, X.M. Zhang, Cryptographically Resilient Functions, IEEE Trans.
Information Theory, Vol. 43(5), pp. 1740-1747, 1997.

[ZZ99b] Y. Zheng, X.M. Zhang, Plateaued Functions, Int.Conf. on Inf. and Com-
munic. Security, LNCS 1726, Springer-Verlag, pp. 284-300, 1999.

[ZZI99] Y. Zheng, X.M. Zhang, H. Imai, Connections Between Nonlinearity and
Restrictions, Terms and Hypergraphs of Boolean Functions, IEEE Interna-
tional Symposium on Inform. Theory 1998, IEEE Press, pp. 439, 1998.

[ZZ00] Y. Zheng, X.M. Zhang, On Relationship Among Avalanche, Nonlinearity,
and Propagation Criteria, Asiacrypt 2000, LNCS 1976, Springer-Verlag,
pp. 470-483, 2000.



Information Theory and the Security of Binary
Data Perturbation

Poorvi L. Vora

George Washington University, Washington DC 20052
poorvi@gwu.edu

Abstract. Random data perturbation (RDP) has been in use for several
years in statistical databases and public surveys as a means of providing
privacy to individuals while collecting information on groups. It has re-
cently gained popularity as a privacy technique in data mining. To our
knowledge, attacks on binary RDP have not been completely character-
ized, its security has not been analyzed from a complexity-theoretic or
information-theoretic perspective, and there is no privacy measure of bi-
nary RDP that is related to the complexity of an attack. We characterize
all inference attacks on binary RDP, and show that if it is possible to
reduce estimation error indefinitely, a finite number of queries per bit of
entropy is enough to do so. We define this finite number as the privacy
measure of the binary RDP.

1 Introduction

The general problem solved by random data perturbation (RDP) is that of pro-
viding statistics while protecting individual values. This is done by adding noise
to the individual values. The larger the probabilistic perturbation of the data, the
more privacy provided to the individual values, and the less accurate the statis-
tics. RDP has been in use for about twenty years in statistical database security
[1, 12], and has recently been proposed as a means of personal privacy protec-
tion in data mining applications [2, 3]. In this paper, we analyze the amount of
privacy provided by binary RDP.

The purpose of a statistical database is to provide statistics to researchers
while keeping individual values “private”. For example, a health database would
keep “private” whether individual X had Hepatitis A or not, but would reveal
how many members in a community had Hepatitis A. The general technical
problem is as follows:

- Database A contains two (possibly intersecting) sets of binary variables:
Q = {q1, q2, ...qi, ...} (queryable bits) and S = {s1, s2, ...si, ...} (sensitive
bits).
- Data collector B queries the value of f(a1, a2, ..., ak)ai∈Q = X ∈ {0, 1},
for any f . In particular, B can query combinations of queryable values
across records such as “the most common gender among records 1, 2
and 3”.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 136–147, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Information Theory and the Security of Binary Data Perturbation 137

- Q and S are probabilistically-related, i.e. the mutual information be-
tween the two (the change in uncertainty in one on knowing values in
the other) is non-zero: I(S;Q) �= 0.
- The bits in S are to be “protected”.

One approach is to compute the value of f(a1, a2, ...ak) so that no other
information is revealed. This can be done using secure multiparty computation
[9]. However, secure multiparty computation cannot prevent inference attacks
[6, 12], which involve the determination of information on bits in S from several
queried values Ai = fi(a1, a2, ...ak), i = 1, 2, ...n. It is not straightforward to
recognize such attacks.

Example 1. The general inference attack. Consider
s1 “gender”
s2 “Over 40”
q1 “Losing Calcium”
q2 “Balding”
q3 “Greying”
q4 “Gaining weight”

Suppose B wishes to determine bits s1 and s2. To do so, B may query func-
tions of the bits q1, q2, q3, q4, which would reveal information about the sensitive
bits, but would not determine them completely. For example, women over 40 are
more likely to be losing Calcium than any of the three other categories. Similarly,
men over 40 are almost the only category balding. However, it is possible for a
man over 40 to have the same responses as a man under 40.

The RDP of Ai = fi(a1, a2, ...ak) before revealing the values, whether com-
puted using trusted multiparty computation or not, makes the task of inference
more difficult. Binary RDP proceeds as follows:

B requests bit X from A and receives the variable φ(X) = Y ∈ {0, 1}
generated according to P (Y |X),

P (Y |X) =
{

ρ Y = X
1 − ρ Y �= X

i.e. B receives the requested bit flipped with probability 1 − ρ. There
are no conditions on the amount of information A has about what B
received, i.e. we do not consider private information retrieval.

The simplest attack on RDP is the repeated query attack, where B repeatedly
asks for the same bit x ∈ Q ∩ S and guesses the correct value of x to be the
one received most often (assuming ρ > 1

2 ). Clearly, the estimation error can be
decreased without bound by increasing queries without bound, i.e. if ωm is the
probability of error using m repeated queries of a bit, limm→∞ ωm = 0.

However, this is the best B can do with repeated queries, i.e. if ηm is the number
of queries per bit determined, ηm increases indefinitely if ωm is not bounded below.

lim
m→∞

ωm = 0 ⇒ lim
m→∞

ηm = ∞ (1)



138 P.L. Vora

There are a number of attacks other than a repeated query attack, which
is very recognizable. However, because these are not well characterized, it is
typically assumed that expression (1) represents a best-case scenario for B. In
[16] it is stated that, if C is the channel capacity of the protocol viewed as a
communication channel, attacks in which

lim
m→∞

ωm = 0 for ηm =
1
C (2)

exist, i.e. that inference attacks can be more efficient than the repeated query
attack - if the queries x are functions of the bits B wants to determine, and if B
and A are willing to participate in a large enough number of queries.

In this paper we show that expression (2) is the best an attacker can do, i.e.
that

lim
m→∞

ωm = 0 ⇒ lim
m→∞

ηm ≥ 1
C

for all inference attacks if limm→∞ ηm exists. Note that the lower bound obvi-
ously does not hold for attacks that do not seek to reduce error arbitrarily. We
define the asymptotic lower bound on ηm as the privacy measure of the protocol;
it is the inverse of the channel capacity of the protocol viewed as a communi-
cation channel. Note that, we use “asymptotic” as used by mathematicians, to
mean: “in the limit”.

When the protocol has a small bias β (i.e. each bit is flipped with probability
0.5 + β, β small), Chernoff-type bounds [11, 10] provide estimates of the query
complexity of a repeated query attack. For example, from the Chernoff bound:

m = ηm =
[ln( 2

δ )]
0.38β2 ⇒ ωm ≤ δ

We show that ηm for an inference attack can be independent of δ, i.e. while
m → ∞, ηm can be finite, though bounded below. In particular we show that
ηm is Θ( 1

β2 ).
Our main contributions are: (a) the framework we have used to study the

security of binary RDP, and the corresponding definitions and associations with
information theory and coding; (b) a general characterization of inference at-
tacks, and (c) the use of our framework in deriving a very general efficiency
result that changes some of the view of the efficiency of inference attacks.

The paper is organized as follows. In section 2 we present a short review of
existing work, and in section 3, definitions motivated by the statistical database
security problem. Section 4 presents our results with proofs. The conclusions are
presented in Section 5.

2 Related Work

The database community has measures of the privacy of randomization [8, 3, 2];
these are, however, not motivated by a security analysis. The security analyses



Information Theory and the Security of Binary Data Perturbation 139

that do exist [12] focus on the variance of the estimation error. [2] proposes
the use of the differential mutual information between the original and per-
turbed continuous-valued data points as a measure of “conditional privacy loss”,
which inspires our measure. The mutual information between two variables is
the change in uncertainty of one on knowing the other. Thus the measure of
conditional privacy loss has some useful properties: (a) it addresses the change
due to a protocol instance, and (b) because it is based on entropy, it distin-
guishes among situations where the two possibilities are almost equally likely
and situations where this is not so. The measure does, however, depend on the
original pdf, and not only on protocol parameters. Our privacy measure, the
inverse of the protocol channel capacity, is closely related to this measure, but
improves on it by being independent of the input pdf (channel capacity is the
maximum value of the mutual information, taken over all possible input pdfs).
Unlike [2], our work also provides a connection between our privacy measure and
the complexity of certain types of attacks.

3 Definitions

In this section we provide the definitions we shall need to prove our results. We
provide a list of symbols in the appendix.

Consider a query sequence x of length m. The number of possible values of
the true responses need not be 2m, because certain bit combinations may not
be possible, as the queries are not generally independent. We denote the size
of the set of all possible values of x by M . Clearly, a “most efficient” query
sequence would use exactly log2M bits to distinguish among the M values, but
most effective query sequences would want to correct for the RDP and would
hence consist of more that log2M queries.

Definition 1. The query complexity per bit, of query sequence x of length m,
as a means of distinguishing among M possible values of x is ηm = m

log2M .

We define the most general inference attack, such as the one of example 1,
next.

Definition 2. An inference attack is a set of queries x such that x and the set
of sensitive bits S are not independent, i.e. I(S;x) �= 0.

The definition is intentionally broad, as we show a lower bound on the query
complexity per bit for an inference attack for which limm→∞ ωm = 0. The def-
inition also assumes nothing about the relationship between queried bit xi and
previously received responses: φ(x1), φ(x2), ...φ(xi−1), and, hence includes adap-
tive inference attacks.

B cannot do any better in reducing the uncertainty of S than is possi-
ble through accurate knowledge of all of Q and unlimited computing power.
Assume, wlog, that B wishes to determine the k bits p = (p1, p2, ...pk) =
{gi(a1, a2, ..aj ...)aj∈Q}k

i=1 from each record in database A. The RDP limits B



140 P.L. Vora

in determining p accurately, but does not affect the uncertainty reduction in S
from complete knowledge of p. In evaluating the RDP, hence, we focus on the
accurate determination of p. We denote the entropy of p as queryable entropy,
(that which can be reduced to zero through queries if there is no RDP). Contrast
this to the entropy of bits in S, which, in general, cannot be reduced to zero
through queries of functions of queryable bits even if there were no RDP.

The maximum probability of estimation error1, denoted ωm, is a measure of
the success of query sequence x, of length m, in estimating p. As the value of m
grows, it is reasonable to expect the error to reduce, or, at least, not increase.
We define attacks in which asymptotic error is zero as small error attacks.

Definition 3. A small error inference attack is one in which limm→∞ ωm = 0.

Clearly, error and query complexity are related, and a lower error could re-
quire a higher query complexity per queryable bit. An RDP that forces a higher
query complexity to reduce error is better from the privacy point of view. We
propose that the measure of the privacy of binary RDP be the minimum value
of the query complexity per bit of queryable entropy required for a small error
attack.

Definition 4. The privacy of binary RDP is the (tightest) asymptotic lower
bound on the query complexity, on average, per bit of queryable entropy, for a
small error attack.

We now review some definitions from information theory necessary for our
results.

Definition 5. [5] A communication channel is a triplet of the following: a set of
input variables, X , a set of output variables, Y, and a a posteriori pdf, P (Y |X),
and is denoted (X , P (Y |X),Y).

We denote the channel corresponding to a protocol by Φ, and the channel
corresponding to binary RDP with probability of lie 1− ρ by ΦB(1 − ρ).

Definition 6. The channel capacity of protocol Φ is the maximum decrease in
entropy of variable X due to the protocol, and is denoted C(Φ).

The channel capacity of the binary symmetric protocol with probability of a
lie 1 − ρ is

C(ΦB(1 − ρ)) = 1−H(ρ) = 1 + ρlog2ρ + (1− ρ)log2(1 − ρ)

bits, where H(ρ) is the entropy of the binary variable with ρ being the probability
of one of its values. When the protocol has a small bias, i.e. ρ = 0.5+β for small
β, its capacity is determined by the second order term of the Taylor expansion
(zeroth and first order terms are zero):

C(ΦB(0.5 ± β)) =
2β2

ln2
, β small (3)

1 The estimation error calculation assumes a maximum likelihood estimation.



Information Theory and the Security of Binary Data Perturbation 141

4 Our Results

We wish to determine the privacy of binary RDP. To do so, we demonstrate an
asymptotic lower bound on the query complexity, per bit of queryable entropy,
for a zero error inference attack. [16] implies that the bound is tight. However,
attacks that achieve the bound might be recognizable.

We approach the problem by viewing binary RDP as a communication chan-
nel as in [16]. The analogy with communication over a channel is as follows: the
protocol is a channel and p a message. The channel coding (“Shannon’s second”)
theorem [14, 5] provides a tight upper bound of channel capacity on the inverse
of ηm for a zero error attack - if each query is a function of p, and ηm is constant
as m increases. Hence, when the query sequence x is a function of p, inference
attacks are channel codes; η−1

m are the rates of the codes; when such attacks are
zero-error with constant ηm = η, the inverse of channel capacity is the minimum
value of η, achieved by attacks that correspond to Shannon codes.

The most general inference attack (see example 1, section 1 and definition 2,
section 3) is not one in which the query sequence is a function of the required
values p. Nor does an inference attack require constant ηm as m increases. By
modifying the proof of the converse of the channel coding theorem using Fano’s
inequality [5–pg. 205] - the main ingredient for demonstrating channel capacity as
a bound on the rate of a code - we show that the tight asymptotic lower bound on
the query complexity per bit for the (more general) small error inference attack is
also the inverse of the channel capacity of the protocol. Fano’s inequality provides
the asymptotic lower bound on ηm, and the result in [16] and the channel coding
theorem provide the existence of zero error inference attacks that achieve it.

Theorem 1. Given a binary RDP Φ, an asymptotic lower bound on ηm, for a
small error inference attack, is 1

C(Φ) . More formally,

lim
m→∞

ωm = 0 ⇒ ∃ {Λm}∞
m=1 such that ηi ≥ Λm∀i ≥ m and lim

m→∞
Λm =

1
C(Φ)

Proof. The proof is similar to the proof of the converse of the channel coding
theorem [5], except for two differences: (a) in an inference attack, queries x are
not necessarily a function of bits required p, and (b) inference attacks do not
have constant ηm as m increases.

Assume limm→∞ ωm = 0, i.e. the attack is small error. Then limm→∞ Em = 0
where Em is the average probability of error. Consider the case when the values
of pm are equally likely. Then,

log2M = H(pm) = H(pm|φ(x1), φ(x2), ...φ(xm)) + I(pm; φ(x1), φ(x2), ...φ(xm))

From equation (8.95) (Fano’s inequality), [5–pg. 205],

H(pm|φ(x1), φ(x2), ...φ(xm)) ≤ 1 + Emlog2M

and hence,

log2M ≤ 1 + Emlog2M + I(pm; φ(x1), φ(x2), ...φ(xm)) (4)



142 P.L. Vora

Further,

I(pm; φ(x1), φ(x2), ...φ(xm))
= H(φ(x1), φ(x2), ...φ(xm)) −H(φ(x1), φ(x2), ...φ(xm)|pm)
= H(φ(x1), φ(x2), ...φ(xm)) −

∑
i H(φ(xi)|φ(x1), φ(x2), ...φ(xi−1),pm)

≤ H(φ(x1), φ(x2), ...φ(xn)) −
∑

i H(φ(xi)|φ(x1), φ(x2), ...φ(xi−1),pm, xi)
= H(φ(x1), φ(x2), ...φ(xm)) −

∑
i H(φ(xi)|xi)

≤
∑

i H(φ(xi)) −
∑

i H(φ(xi)|xi)
=
∑

i I(xi; φ(xi))
≤ mC(Φ)

From equation (4),

log2M ≤ 1 + Emlog2M + mC(Φ)

Hence,

ηm =
m

log2M
≥ 1 − Em

1
m + C(Φ)

= Λm

and
lim

m→∞
Λm =

1
C(Φ)

ηm = Ω(1)

Theorem 2. For a binary RDP Φ, ∀Λ > 1
C(Φ) , there exists a small error infer-

ence attack on Φ with ηm = Λ, ∀m.

Proof. Follows from the channel coding theorem [14].

Theorem 1 indicates that ηm = Ω(1). Theorem 2, that ηm = Θ(1).
Attacks that correspond to codes are those where the queries x are deter-

ministic functions of the desired bits p. These are rare but not impossible. We
provide an example of such an attack.

Example 2. The deterministically-related query attack. Consider a database of
records of all residents of a county. From each record, consider the set of the
following bits:

x1. “location = North”;
x2. “virus X test = positive”;
x3. “gender = male” AND “condition Y = present”.
Suppose it is also known that, for this county,

(location = North) ⊕ (virus X test = positive) ⇔ (gender = male)AND
(5)

(condition Y = present)

i.e,
x1 ⊕ x2 = x3 (6)

for all records, where ⊕ represents the XOR operation. This could be determined,
for example, from county health statistics.



Information Theory and the Security of Binary Data Perturbation 143

Suppose B chooses as desired bits p = (x1, x2) for all records, and designs an
over-determined query sequence by also requesting x3. Without randomization,
B would not need to do so; with randomization, x3 serves as a parity check for
the values of x1 and x2, or, in the communication channel framework, as an
error-detecting symbol. The queries x = (x1, x2, x3) may be thought of as the
code bits. In general, one can have an over-determined sequence of m queries
whose values are completely determined by p - through a set of m equations
known to be satisfied by p and x. Equation (6) is one such equation.

If the attack is recognized, A could:
(a) refuse to respond
(b) respond with φ(x1) ⊕ φ(x2) instead of φ(x1 ⊕ x2).
Recognizing the attack is not trivial. If, instead of “male with condition Y”,

x3 were, “(location = North)⊕ (virusXtest = positive)”, it may be recognized
by A, through extensive record keeping, as a logical combination of previously
provided bits. But in the form of a request for a bit about gender and condition
Y, and in the absence of knowledge of the specific relationship of equation (5),
or a causal relationship - as opposed to a statistical one in a limited population -
gender and condition Y are not readily seen to be revealing information regarding
infection with virus X. Such an attack is fairly difficult to recognize, and hence
to counter.

An approach like that of the source-channel coding theorem shows that B
cannot do better using another procedure. This gives our final result, that the
tight asymptotic lower bound on query complexity for zero asymptotic error is
the ratio of queryable entropy to protocol channel capacity. As a corollary, the
privacy of binary RDP is the inverse of its channel capacity.

The values of pm are not necessarily uniformly distributed, and hence the
entropy of p, the queryable entropy, is not necessarily log2M . From the source
coding theorem, if the entropy of p is H(p), then p is represented by H(p)
bits on average (over many records). This observation can be combined with a
reasoning similar to that in Theorem 1 to obtain a result similar to that of the
source-channel coding theorem, except, as with Theorem 1, inference attacks are
not of constant ηm, and do not consist of queries x that are deterministic com-
binations of the required bits p. Again, we derive the asymptotic lower bound,
and Shannon’s results show it is tight.

Theorem 3. The tight asymptotic lower bound on the query complexity, on av-
erage, per record, for a small error inference attack, is H(p)

C(Φ) if the record sequence
is stationary, i.e. if the number of records is Nr, and γm the number of queries
per record of sequence x,

lim
m→∞

ωm → 0 ⇒ ∃ Γm such that γm ≥ Γm ∀ i ≥ m and lim
Nr→∞

Γm =
H(p)
C(Φ)

Proof. H(p)
C(Φ) is an asymptotic lower bound: Assume the existence of a small error

attack with asymptotic query sequence length K = H(p)
C(Φ) − Δ per record on

average, Δ > 0. This means that, given ε, δ > 0, a query sequence of length at



144 P.L. Vora

most m = Nr(K +ε) for Nr records, Nr large enough, can result in a probability
of error at most δ. By Theorem 1, for any given ν, ηm for the attack must be
at least 1

C(Φ) − ν, for large enough m, and hence the length of p, m
ηm

, at most
Nr(K+ε)
( 1

C(Φ) −ν) = Nr(H(p)−C(Φ)(Δ−ε))
1−νC , i.e. each record is represented, on average, by a

number of bits strictly smaller than the record entropy for small enough ε, δ, ν.
This violates Shannon’s source coding theorem [5–pg. 89, Thm. 5.4.2] and [14].

H(p)
C(Φ) can be achieved from above (i.e. tightness): straightforward from Shan-

non’s source-channel coding theorem [5].

Thus Theorem 3 says that the query complexity per record, on average, for
a zero error attack, is independent of the error.

Theorem 2 says that small error attacks in which ηm remains the same (but
decrease in error is paid for by increase in total query complexity) exist if ηm ≥

1
C(Φ) . It does not say anything about how the attacks will be constructed, and
while the query complexity is tightly bounded below, the information-theoretic
result does not indicate whether the processes of determining the values of x and
p are computationally feasible. Recall that the value of x is computed by the
database, A, and its complexity is measured by the number of logical operations
performed to produce a response to a query from points in the database.

Some results since Shannon’s work help address the issue of feasibility and
construction. Forney’s work, originally published in [7], shows that Shannon
codes that are encodable and decodable in polynomial time exist. This implies
that polynomial-time small-error attacks of constant finite ηm exist. More re-
cent work, that of Spielman, [15] shows how to construct linear time encodable
and decodable codes that approach the channel coding theorem’s limits. Thus,
linear time attacks with ηm approaching ηmin, and arbitrarily low error, can be
constructed. It is likely that attacks modeled on good, computationally feasi-
ble, error-correcting codes would consist of queries x that are rather contrived
combinations of queryable bits from Q. It is not clear how easy it would be to
recognize such attacks. Recognizability constraints, ignored by us, could affect
the existence result.

Corollary 1. The tight asymptotic lower bound on the query complexity, per bit
of queryable entropy, for a small error inference attack on ΦB(0.5 ± β) is ln2

2β2 .
Hence ηm is Θ( 1

β2 ).

Proof. The result follows from Theorem 1-3 and equation (1).

Corollary 2. The privacy of Φ is 1
C(Φ) .

Proof. Follows from Theorems 1-3 and Definition 4.

Corollary 3. The privacy of ΦB(0.5 ± β) is Θ( 1
β2 ).

Proof. Follows from Corollary 1 and Definition 4.



Information Theory and the Security of Binary Data Perturbation 145

In statistical databases, it is typically assumed that a larger number of queries
(per attribute desired) is required for a lower error. Our proof of the existence of
small error attacks for all asymptotic rates below channel capacity implies that
a finite, fixed number of queries, per attribute desired, can ensure asymptotic
error is zero; i.e. while total cost needs to increase to reduce error, the cost per
bit of entropy need not.

Further, our work demonstrates that some inference attacks, which may not
be as recognizable as repetition queries, are less expensive per bit. Last, at first
glance it might appear that combinations of a greater number of bits for a query
provides greater protection of the bits. But we have shown that combinations of
a greater number of bits may also reduce error considerably through B’s use of
efficient error correcting codes.

Though our results follow very easily from classical results in information
theory and coding, our view of the protocol as a channel has one important point
of difference from the view of a channel in communication theory. The goal of
communication theory is to increase information transfer over a channel given
certain constraints. The goal of a privacy protocol is to decrease the information
transfer over the protocol given certain constraints (such as the error in statistics
that use these perturbed data points). Because of this, A would be interested in
channels with small capacity, i.e. “good” privacy protocols. On the other hand,
B is interested in the efficient transfer of bits over a particular protocol, typically
a channel with small capacity, and a number of the constructive results from the
theory of coding are of interest to him.

5 Conclusions

Our result on the correspondence between channel codes and certain types of
inference attacks is an example of the study of attacks on non-perfect protocols
using results from coding theory. Interesting further results could follow from
viewing non-perfect anonymous delivery protocols - such as Crowds [13] and
non-perfect combinations of mixes - as channels. Ramp secret sharing schemes
[4] might also be amenable to this approach. An even more interesting direction
of further work is to determine if our approach provides ingredients for a theory
of statistical attacks on block and stream ciphers known to leak information.

References

1. Nabil R. Adam and John C. Worthmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, Vol. 21, No. 4, pp.
515-556, December 1989.

2. D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy pre-
serving data mining algorithms. Proceedings of the Twenteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Santa Barbara,
California, USA, May 21-23 2001.



146 P.L. Vora

3. R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. Proc. of the ACM
SIGMOD Conference on Management of Data, Dallas, May 2000.

4. G. R. Blakley and C. Meadows. Security of ramp schemes. Proc. of Crypto’84,
Lecture Notes on Comput. Sci., 196, pp. 242–268, Springer Verlag, 1984.

5. Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John
Wiley and Sons, 1991.

6. Csilla Farkas and Sushil Jajodia. The inference problem: a survey. ACM SIGKDD
Explorations Newsletter Volume 4, Issue 2, pp. 6-11, December 2003.

7. David G. Forney. Concatenated Codes, MIT Press, Cambridge, Mass., 1966.
8. Diane Lambert. Measures of Disclosure Risk and Harm. Journal of Official Statis-

tics, 9, pp. 313-331, 1993.
9. Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Journal of Cryptology,

15 (3), 177-206, 2002.
10. Michael Luby. Pseudorandomness and cryptographic applications. Princeton Com-

puter Science Notes, 1996.
11. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms, pp. 67-73,

Cambridge University Press, New York, NY, 1995.
12. Krishnamurty Muralidhar and Rathindra Sarathy. Security of random data per-

turbation methods. ACM Transactions on Database Systems (TODS) vol. 24, no.
4, Dec. 1999, pp. 487 - 493

13. Michael K. Reiter and Aviel Rubin. Crowds: Anonymity for Web Transactions.
ACM Transactions on Information and System Security, Vol. 1, No. 1, pp. 66-92,
November 1998.

14. Claude Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, vol. 27, pp. 379-423, July 1948.

15. Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes.
IEEE Transactions on Information Theory, Vol 42, No 6, pp. 1723-1732, 1996.

16. Poorvi Vora. The channel coding theorem and the security of binary randomization.
Proc., 2003 IEEE International Symposium of Information Theory, Yokohama,
Japan, June 30 - July 4, pp. 306, 2003.

A Appendix: List of Symbols

A Database
B Data collector
Q set of queryable bits
qi a queryable bit
S set of sensitive bits
si a sensitive bit
X, xi, Ai a single queried bit
I(α; β) the mutual information between α and β
Y = φ(X) a single response to a query X
ρ probability of truth
Σ {0, 1}
P (Y |X) posterior pdf, (or a posteriori pdf) of protocol/channel
m number of queries or length of query sequence x
ωm maximum probability of error for x
ηm ratio of queries to bits determined for x



Information Theory and the Security of Binary Data Perturbation 147

x a query sequence
M number of values of x
p sequence of queryable bits B wishes to determine
k number of required bits or length of p
Φ protocol/channel
C(Φ) capacity of Φ
ΦB binary protocol
β small bias of a binary protocol
Em average probability of error of protocol using x
H entropy of q
Nr number of records



Symmetric Authentication Codes with Secrecy
and Unconditionally Secure Authenticated

Encryption

Luke McAven1, Reihaneh Safavi–Naini1, and Moti Yung2

1 School of Information Technology and Computer Science, University of
Wollongong, Wollongong, NSW 2522, Australia

{lukemc, rei}@uow.edu.au
2 Department of Computer Science, Columbia University, New York, NY 10027, USA

moti@cs.columbia.edu

Abstract. Unconditional security provides security independent of as-
sumptions regarding adversaries resources. Considerable research has
been carried out into unconditionally secure authentication codes with-
out secrecy, wherein the confidentiality of the plaintext is unimportant.
Unconditionally secure encryption has been less thoroughly studied. The
traditional framework for considering integrity and confidentiality in an
unconditionally secure environment is that of authentication codes with
secrecy. We extend this framework, in the symmetric case, to encompass
aspects of recent work on unconditionally secure formulations of authen-
tication codes and encryption systems. This will allow for a systematic
analysis of unconditionally secure authenticated encryption schemes.

1 Introduction

There exist scenarios where communicating parties cannot reliably know the re-
sources of potential adversaries. Typically this is true for small mutually distrust-
ing groups of entities that do not know each others computational or technologi-
cal advantages, e.g. advances in quantum computations, as is the setting between
nations. In such cases unconditionally secure (US) schemes provide security inde-
pendent of resources of the adversary. Furthermore, one can obtain information
theoretic bounds on the probability of adversaries succeeding in particular at-
tacks, and combinatorial bounds on the relative sizes of system parameters.

The two main goals of security are authenticity and confidentiality. Uncon-
ditional security has its roots in Shannon’s theory of unconditional secrecy [19],
with the goal of confidentiality. Shannon’s original framework and later exten-
sions [25] considered ciphertext only attacks where the adversary observes cipher-
texts and tries to learn the associated plaintext. US encryption was extended [12]
to include adaptive adversaries who access encryption and decryption oracles,
bringing US models closer to computationally secure ones.

US authentication codes (A–codes) were first considered by Gilbert et al. [7]
and later formalised [22] and extended [10, 11, 15, 24]. The main attack consid-
ered in authentication systems is spoofing of order L where the adversary has

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 148–161, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Symmetric Authentication Codes with Secrecy 149

access to L authenticated messages and wants to construct a fraudulent mes-
sage acceptable to the verifier. US authentication was extended [16] to include
adaptive attackers with access to authentication and/or verification oracles. [16]
developed a general framework for “general group–based unconditionally secure
authentication codes” that extends traditional A–codes so as to encompass the
strong notions of security necessary for US digital signatures [8, 20].

Simmons [22] model of US A–codes provides both secrecy and authentication.
Bounds and characterisations of such A–Codes with Secrecy have been given
[3, 4, 25, 27], as well as numerous constructions [26]. We consider A–codes with
secrecy under strong attacks where the attacker accesses oracles in the manner
of [12, 16]. We evaluate security of such codes for secrecy and authenticity goals,
and, following computational security, we refer to the systems as authenticated
encryption (AE) systems.

We restrict ourselves to symmetric US authenticated encryption, with the
aim of systematically analysing A–codes with secrecy against strong attacks.
The approach is, however, extendible to asymmetric and group based systems.
We follow [12] in modelling perfect secrecy, and extend this to the integrity
related attacks. We give some relationships between security notions, and relate
some AE notions to those in classical A–codes.

Several questions motivate us. We would like to find the relationship between
AE systems under strong attacks and A–codes and US secrecy codes, both un-
der strong attacks. We would also like to examine security of the composite
constructions; MAC–then–encrypt, encrypt–then–MAC and MAC–and–encrypt
which can all be seen as A–codes with secrecy. We would also like to construct
AE systems with the ‘best’ performance.

Related Work

Shikata et al [21] considered models for US authentication encryption, and
analysed methods for composing US secure encryption and US authentication
schemes. They built on [9], who considered a US analogy of public key encryp-
tion, which they called Unconditionally Secure Asymmetric Encryption (USAE).
In parallel with developments in public key cryptography, they considered goals
associated with secrecy and non–malleability (NM). These papers all consider the
scenario that multiple receivers and that adversaries may corrupt some of them.
We focus on two party systems and develop the relationship between different
notions of security for AE systems (A–codes with secrecy).

The rest of this paper is structured as follows. In section 2 we introduce
authentication codes with secrecy, and consider the oracles used in modelling
authentication and encryption. Section 3 considers security notions for AE. Sec-
tion 4 contains some bounds, old and new, relevant to AE systems. In section 5
we describe three methods of composing AE systems from an A–code and an
encryption scheme. Section 6 contains a directly constructed AE scheme. We
summarise our results in section 7.



150 L. McAven, R. Safavi–Naini, and M. Yung

2 US Authentication Codes with Secrecy

An A–code with secrecy satisfies the two goals of secrecy and authenticity, hence
can be seen as an AE system. The following definition reflects.

An authentication code with secrecy [26](or an authenticated encryption sys-
tem) is a tuple AS = (S,M,K, E ,D). Each tuple element is a set: S of plaintexts
(source states), M of ciphertexts (messages sent over the channel), K of keys,
E of authenticated encryption functions, each an injective mapping from S to
M, while D is the set of verified decryption functions. The sets E and D are
indexed by elements of K, so Ek is the AE function in E associated with k ∈ K,
and Dk is the verified decryption function in D associated with k ∈ K. We
have E : K × S ⇒ M, Ek(s) = m, and D : K × M ⇒ S, Dk(m) = s if
Ek(s) = m. That is the encryption and decryption functions have the property
that, ∀s ∈ S, m ∈ M, we have Dk(Ek(s)) = s. This implies |M| ≥ |S|.

We abbreviate the processes of authenticated encryption and verified decryp-
tion to AuthEnc and VerDec, respectively.

We assume an a priori probability distribution PS on plaintexts, and a prob-
ability distribution on the key space, both of which are public. We let M(k) be
a subset of M generated by Ek(s),∀s ∈ S. A plaintext, ciphertext pair (s,m) is
valid if there exists a key k for which Ek(s) = m.

The E functions may be probabilistic. That is, given k ∈ K and s ∈ S, the
ciphertext could be one of a set of possible values. Such probabilistic A–codes are
called A–codes with splitting [5]. The splitting strategy of the sender determines
the ciphertext used for a given k and s. Functions in D are deterministic however,
so for a given k and m, always output s.

Authenticated Encryption in Computational Security

AE schemes are used in computationally secure settings [1]. Generic AE gives the
outcome of a verified decryption function as a valid source state, or a statement
⊥ that verification has failed. The process by which this result comes about
is treated as a black box. If an AE scheme is constructed as a composite of
an authentication and an encryption scheme, however, this outcome is usually
achieved through one of two methods. In the first, one decrypts the m ∈ M and
then verifies it, while in the second, one verifies the m ∈ M and then decrypts
it if verification succeeds.

While computationally security adopts an inviolable black box, we may con-
sider side–channels allowing testing of component algorithms independently. We
discuss this further in section 3.4.

2.1 Modelling Security for A–Codes and US Encryption

Attacks in A–codes with secrecy [22] are traditionally [26] taken as spoofing
attacks, where an adversary passively observes the channel then attempts to
construct a fraudulent message. In spoofing of order L the adversary observes
L ciphertexts. Impersonation and substitution [22] are spoofing of order 0 and 1,



Symmetric Authentication Codes with Secrecy 151

respectively. The secrecy property of A–codes have also been considered [10, 22,
23, 25].

The traditional goal of an adversary in an encryption scheme was to obtain
information about the plaintext of a given ciphertext. In assessing these systems
one assumed the adversary has access to L ciphertexts.

Security evaluation of A–codes and US encryption systems under strong at-
tacks was considered in [12, 16]. In these attacks the adversary has access to
oracles implementing system algorithms with participant key information. An
oracle receives a query and produces a response. For each query the adversary
may use the result of all previous queries. In other words the adversary adaptively
constructs queries. It has been observed [16] that adaptivity in the construction
of queries does not increase the power of the attack in the US setting.

[12, 21] introduced non–malleability as a goal for US encryption systems. In
encryption systems secrecy relates to observers being unable to gain information
about the plaintext associated with an observed ciphertext and is a passive at-
tack. Non–malleability relates to observers being unable to modify a challenge
ciphertext so as to produce a new ciphertext where the plaintexts of the cipher-
texts are related in a known way.

Oracles and oracle queries: [16] developed a framework for security evalua-
tion of generalised A–codes. They used oracles to model adversaries power. For
such codes two oracles types were defined.

Authentication oracles (A–oracles) implement the authentication algorithm
with the signer’s key. When presented with an Authentication query (A–query),
consisting of a source state s ∈ S, the A–oracle generates the authenticated
message m ∈ M.

Impersonation and substitution attacks in traditional A–codes correspond to
the case that 0 and 1 A–queries are allowed, respectively.

Verification oracles (V –oracles) implement the verification algorithm with
the verifying key. On input m ∈ M, the V –oracle generates a True/False result.
The queries to this oracle are called V –queries.

In [12], US encryption systems were considered under strong attacks where
the adversary may access encryption and/or decryption oracles.

Encryption (Decryption) oracles (E(D)–oracles) implement the encryp-
tion (decryption) algorithm with the senders (receivers) key. When presented
with an encryption (decryption) query (E(D)–query), consisting of a plaintext
(ciphertext) s ∈ S (m ∈ M), the E(D)–oracle generates the corresponding
ciphertext (plaintext).

In this definition the message space is without redundancy and any message
is a possible output of the source. With redundancy a D–oracle returns ⊥ if no
s corresponding to the query m exists.



152 L. McAven, R. Safavi–Naini, and M. Yung

3 Security Notions for Authenticated Encryption

We consider notions of security obtained by pairing a security goal and an attack
[13]. A goal represents what the attacker is trying to achieve, while an attack
represents the type of information available to the attacker.

In AE schemes we need to consider notions of security associated with both
confidentiality and integrity. We use A∧B to indicate a system satisfies security
notions A and B.

Goals related to confidentiality: [12] defined notions of security for US en-
cryption with two goals of secrecy and non–malleability. In section 3.1 we recall
and adapt parts of that formalism relating to secrecy.

Goals related to integrity: [2] define two integrity related goals:

Ciphertext integrity (IntC) provides protection against an adversary who at-
tempts to produce an acceptable ciphertext which isn’t the result of a query or
observation.
Plaintext integrity (IntP) provides protection against an adversary who attempts
to produce an acceptable ciphertext where neither the ciphertext nor the decryp-
tion of it are the result of a query or observation.

Oracles: For AE we follow [2] in adopting oracles which implement the algo-
rithms AuthEnc and VerDec.

AuthEnc oracles (AE–oracles) implement AuthEnc with the sender’s key.
When presented with an AuthEncquery (AE–query), consisting of a plaintext
s ∈ S, the AE–oracle generates the ciphertext m.

VerDec oracles (V eD–oracles) implement VerDec with the receiver’s key (which
is the same as the sender’s in a symmetric system). When presented with an
VerDec query (V eD–query), consisting of a ciphertext m ∈ M, the V eD–oracle
generates a plaintext s ∈ S or ⊥ if there is no valid (s,m) pair under receiver’s
key.

We also let V eD∗ be an oracle which returns ⊥ if the V D oracle returns ⊥,
and ' otherwise. In section 3.4 we consider other oracles.

Attack models: We consider three attack models, adapted to unconditional
security from the symmetric computationally secure setting [2].

Ciphertext only (COAL): This corresponds to the adversary observing the
output of an AE–oracle, but not the input. The net result is a set of L ci-
phertexts. As Stinson [25] did, for US encryption, we consider only the set, and
not the order of ciphertexts. For L = 1 this directly extends Shannon’s perfect
secrecy model.

Chosen plaintext (CPAL): The adversary has access to an AE oracle, submits
L plaintexts, and receives L associated ciphertexts.



Symmetric Authentication Codes with Secrecy 153

Chosen ciphertext (CCAL): The adversary accesses a V eD–oracle, submits
L ciphertexts, and receives the corresponding plaintexts.

One may also consider the adversaries to have access to some combination
of these queries. For example, one could consider a (COA4,CPA2) attack where
the adversary observes four ciphertexts and has two queries to an AE–oracle.
One defines security against a fixed set of query types.

3.1 Secrecy in US Encryption

We follow [12] in defining the source view and advantage of an adversary.
We define the knowledge set R of an adversary to be the set of oracles queries

and responses, and also the set of observations of the output of AE–oracle (that
is without having access to the corresponding plaintext).

Definition 1. We say the source view PAS,S(R) of an adversary, given the
knowledge set R, is the conditional probability distribution on the plaintexts in S\
R. Here AS denotes authentication with secrecy. The source view is a probability
distribution PAS,S(R) : S \ R → [0, 1] satisfying∑

s̃∈S\R
PAS,S(s̃|R) = 1 .

Definition 2. The advantage AdvPS−ATT
AS

(R) of an adversary with R is defined
as, for challenge ciphertext m,

AdvPS−ATT
AS

(R) = max
s̃∈S

∣∣∣∣PAS,S\R(s̃|m,R)
PS\R(s̃)

− 1
∣∣∣∣ .

In AdvPS−ATT
AS

(R) we replace ATT by the attack, specifying one of the attacks
defined earlier. AS denotes A–codes with secrecy.

We define ε–perfect and perfect (ε = 0) secrecy following [12].

Definition 3. An US AE system provides ε–perfect secrecy under an attack
ATT if AdvPS−ATT

AS
= maxm∈M AdvPS−ATT

AS
(m;R) ≤ ε.

3.2 Modelling IntC and IntP

The computational advantage of an adversary for IntC is calculated [2] by deter-
mining the probability that a randomly chosen message is acceptable under the
key k. We model the US analysis of IntC using the view and advantage notions.
We firstly define the Validity View, similar to the source view but associated
with the ciphertext space. We use Vk(m) to represent the result of submitting
m ∈ M to the V eD–oracle with key k.

Definition 4. The Validity view PAS,M(R) of an adversary, given a knowledge
set R, is the distribution on the message space in M\R. The validity view is a
probability distribution PAS,M(R) where PAS,M(m), m ∈ M, is the probability of
m being valid R.



154 L. McAven, R. Safavi–Naini, and M. Yung

PAS,M(m is valid |R) =
∑

k∈K:V eD∗
k(m)=�

P (k|R) .

Since decryption must be unambiguous, every plaintext goes to a distinct
message. For any key there exist |S| elements of |M| which are valid under
that key. To define the advantage of an adversary in breaking the integrity of
a system, following [2], we consider two types of attackers denoted Actxt and
Aptxt. Both attackers have similar access to AE and V eD oracles, however their
success is defined differently.

Attackers may query AE–oracle L1 times (CPAL1), V eD–oracle L2 times
(CCAL2) and observe the output of AE–oracle L3 times.

Let RAE = {(s1,m1) · · · (sL1 ,mL1)} denote the knowledge set resulting from
querying AE–oracle L1 times. Similarly, from the L2 queries to the V eD–oracle
we obtain RV eD = {(mv

1, r1), · · · (mv
L2

, rL2}, ri ∈ S
⋃
{⊥}. Finally we have

Ro
AE = {mo

1) · · ·mo
L3
} consisting of observing L3 outputs of AE–oracle with-

out having access to the corresponding input. Then R = RAE

⋃
RV eD

⋃
Ro

AE .
Attacker Actxt succeeds if they construct a ciphertext m̃ such that (i) The

V eD∗–oracle outputs ', and (ii) m̃ /∈ R. That is m̃ is a valid ciphertext not in
the knowledge set.

Attacker Aptxt succeeds if they construct a ciphertext m̃ such that (i) V eD∗–
oracle outputs ', (ii) m̃ /∈ R, and (iii) s̃ = VerDec(m̃) /∈ R. Here the attacker
needs to generate a valid ciphertext such that neither the ciphertext nor it’s
decryption are in the knowledge set.

We define the advantages of the above adversaries as

AdvIntC−ATT
AS

(R) = max
m̃,m′

PActxt,M\R,(m̃ valid |R)

AdvIntP−ATT
AS

(R) = PAptxt,M\R,(m̃ valid , s̃ /∈ R|R)

While the two adversaries have access to the same knowledge set obtained
through the attacks, they have different success criterion. Each adversary Actxt

(or Aptxt) may also use different strategies in choosing m̃.

Definition 5. The advantages AdvIntC−ATT
AS

(R) and AdvIntP−ATT
AS

(R) of an ad-
versary with the knowledge set R obtained through the attack types ATT and
constructed as above is defined as

AdvIntC−ATT
AS

= max
Actxt

AdvIntC−ATT
AS

(R)

AdvIntP−ATT
AS

= max
Aptxt

AdvIntP−ATT
AS

(R)

Theorem 1. IntC and IntP are related through two results:

1. IntC ⇒ IntP
2. In A–codes without splitting, IntC ⇔ IntP.

Proof. (sketch) For 1, note that for any adversary Aptxt with knowledge set R
who succeeds, the corresponding Actxt, using the the same strategy, succeeds
too. So, AdvIntP−ATT

AS
(R) ≤ AdvIntP−ATT

AS
(R).



Symmetric Authentication Codes with Secrecy 155

For 2, note that in A–codes without splitting a plaintext uniquely determines
a ciphertext. Thus any s̃ /∈ R must correspond to m̃ /∈ R. It follows that for
every Actxt who succeeds, there is a corresponding adversary Aptxt who succeeds
with the same strategy. That is AdvIntP−ATT

AS
(R) = AdvIntP−ATT

AS
(R). It follows

that AdvIntC−ATT
AS

= AdvIntP−ATT
AS

. �

Theorem 1, part 1, matches the result in [2–Thm. 3.1]. Theorem 1 shows
that for A–codes without splitting, that is deterministic A–codes, we need not
consider IntP as it is equivalent to IntC. In the rest of this section we only
consider A–codes without splitting.

We now define ε–perfect and perfect (ε = 0) IntC.

Definition 6. An A–code without splitting and with secrecy (or an US AE sys-
tem) provides ε–perfect ciphertext integrity under an attack ATT if it satisfies

AdvIntC−ATT
AS

= max
m∈M

AdvIntC−ATT
AS

(m;R)∣∣∣∣AdvIntC−ATT
AS

− |S| − ts
|M| − tm

∣∣∣∣ ≤ ε .

where ts is the number of plaintexts whose associated ciphertext is known through
interaction with AE or V eD oracles, and tm is the number of ciphertexts iden-
tified as valid under the active key.

This means, in particular, that when there are no observed messages, the
maximum advantage of an adversary (highest probability of success) in breaking
the integrity of the ciphertext is |S|/|M|. For a system with COAL1 , CPAL2

and CCAL3 we have ts ≤ L1 + L2 + L3 and tm ≤ L1 + L2 + L3. In CCA and
CPA both plaintext and ciphertext will be known except for the cases when the
query to the V eD–oracle results in ⊥.

In unconditional security providing protection against integrity requires re-
dundancy, so there are more ciphertexts than plaintext.

We would like to consider results analogous to those obtained in computa-
tional security, for example theorem 3.2 of [2], relating to obtaining PS–CCA by
having IntC∧PS–CPA.

3.3 Relationship with Classical A–Codes

Here we consider the relationship between the security notion IntC–COAL and
the notions of security considered in traditional A–codes.

Impersonation and substitution attacks in A–codes correspond to attempts
to produce an acceptable message after observing 0 or 1 messages, respectively.
These generalise to IntC–COA0 and IntC–COA1 respectively. Stinson [25] gave
results for codes providing authentication and secrecy, in particular for systems
satisfying the notions PS–COAt∧IntC–COAt−1 or PS–COAt∧IntC–COAt. See
section 4.

We use a well–known A–code, the polynomial A–code of [6], to illustrate view
and advantage for authentication codes. The A–code is defined by f(x) = a+bx,



156 L. McAven, R. Safavi–Naini, and M. Yung

where (a, b) ∈ F 2
q is the key, and the tag for the source state s ∈ Fq is f(s). The

code satisfies PI = PS = 1/q, that is the probabilities of impersonation or
substitution attacks succeeding is 1/q. Consider the case s ∈ F3, so we have an
authentication table

(a, b) 0 1 2 (a, b) 0 1 2 (a, b) 0 1 2
(0, 0) 0 0 0 (0, 1) 0 1 2 (0, 2) 0 2 1
(1, 0) 1 1 1 (1, 1) 1 2 0 (1, 2) 1 0 2
(2, 0) 2 2 2 (2, 1) 2 0 1 (2, 2) 2 1 0

.

In the table the rows, with (a, b), label the keys and the columns are labelled
by source states. A particular entry is the tag for the source state under the key.
To apply our definitions we interpret the plaintext and tag as the ciphertext, i.e.
m = (s, f(s)). Thus there are nine different ciphertexts, (i, j), i, j ∈ F3, rather
than 3 different authentication tags. We assume the keys are chosen with equal
probability.

Consider impersonation, with an empty knowledge set R. The probability
PA,M(m) = 1/3,∀m ∈ M as required, since each message is valid under three of
the nine keys and the keys are equally likely to be chosen.

Consider substitution or IntC–COA1. Consider the adversary observing (0, 0).
The possible valid keys are now (0, 0), (0, 1) and (0, 2), while the ciphertexts of
interest are (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2). Under any particular key
only 2 messages are valid, and so the probability of substitution is also 1/3. In
terms of the formula, PA,M(m′|m) = 1/3.

3.4 Partial Information (Side–Channel) Oracles and Attacks

As mentioned in section 2 we allow side–channels which access some, or parts
of, the component algorithms. We refer to them as partial information channels,
since they obtain only part of the information output by a system algorithm.
Consider one such example;
Verification Oracles (V –Oracles): [16, 20] implement the verification oracle
with a particular verifier’s key. On input m, the V –oracle generates a result from
{',⊥}. The queries to this oracle are called V –queries.

One can consider more oracles if access to individual components of the AE
scheme is available. For example, one may have an oracle which takes a plaintext
s and returns the first component of a ciphertext pair m = (c1, c2), such as
an oracle holding the EncGen algorithm for an Encrypt–then–MAC composition
construction. The V –oracle is particularly useful since the veracity of a ciphertext
may be made public anyway. For integrity attacks it is often enough to consider
existential attacks where acceptance can be measured against a V –oracle without
needing to specify a particular target plaintext. That is, if the V –oracle returns
' for a fradulent ciphertext, the adversary succeeds. We see the V –oracle is the
same as the V eD∗–oracle.

The availability of this oracle means we can consider a new attack.



Symmetric Authentication Codes with Secrecy 157

Chosen ciphertext verification (CCVAL):The adversary accesses a V –
oracle and submits L ciphertexts to it. For each query mi the oracle responds
with ' or ⊥, the former if there exists an s ∈ S such that (s,mi) is a valid pair,
the latter if no such pair exists.

Attacks with V –queries can either increase, if they return ⊥, or decrease, if
they return ', the chance of attacks against integrity succeeding.

4 Bounds on Authenticated Encryption Codes

An important aspect of modelling in an US environment is the possibility of ob-
taining bounds of two types: Information theoretic bounds on the success prob-
ability of attacks in terms of information theoretic measures, and combinatorial
bounds on the relative sizes of the system spaces. In this section we summarise
existing bounds on AE codes, and give some new bounds.

Stinson [24] showed the key bound for (L–fold PS)–COAL systems [12, 25],
also holds for systems satisfying IntC–COAL−1.

Theorem 2. [24–Thm. 2] If a system is (L–fold PS)–COAL∧IntC–COAL−1

then |K| ≥
(
|S|
L

)
.

More realistically one expects that if an adversary has COAL queries for
attacking confidentiality they will use them against integrity too. Stinson [25]
gives a bound for this system too.

Theorem 3. [25–Thm. 4.1] If a system is (L–fold PS)–COAL∧IntC–COAL

then |K| ≥
(
|S|
L

)
|M|−L
|S|−L .

Let PGOAL
ATT be the probability of an adversary succeeding in the GOAL given

the information under the attack model ATT. One then has

Theorem 4. [3] If a system is (L–fold PS)–COAL∧IntC–COAL−1 then

|K| ≥ |S|!
(|S| − L)!

L−1∏
i=0

1
P IntC

COAL

. (1)

It was also shown [14, 18] that the probabilities above satisfy

P IntC
COAL

≥ |S| − L

|M| − L
P IntC

COAL
≥ 2H(E|ML+1)−H(E|ML) .

Exploration of information theoretic bounds for more complex systems will
be left to later work. Equation (1) motivates the following theorems, which we
do not have space to explore here.

Theorem 5. If a system is (L–fold PS)–CPAL∧IntC–CPAL−1 then

|K| ≥ (|S| − L)
|M|!

(|M| − L)!
L!

L−1∏
i=0

1
P IntC

CPAL

.



158 L. McAven, R. Safavi–Naini, and M. Yung

Theorem 6. If a system is (L–fold PS)–CCAL∧IntC–CCAL−1 then

|K| ≥ (|S| − L)
|M|!L!

(|S| − L)(|M| − |S|)!

L−1∏
i=0

1
P IntC

CCAL

.

There are several open problems regarding bounds. We would like to obtain
bounds for relatively simple schemes as PS–CCAL∧IntC–CCAL, as well as more
complicated ones where multiple queries to different types of oracles are allowed.
We would also like to relate the bounds on keysizes of general composite systems
to the bounds on keysize for component systems. The composite keysize for any
given construction is directly related to the components and the composition
method.

5 Construction Composition

The form of AuthEnc may follow one of three composition methods, described
by [2] for the symmetric key setting, [1] for the public key setting and applied in
[21] to the asymmetric US setting. These assume one has an encryption scheme
E , with encryption algorithm EncGen and a MAC (authentication scheme) A,
with authentication algorithm MACGen.

• Encrypt–and–MAC: For a plaintext s one generates the ciphertext to be
transmitted as the pair (EncGen(s), MACGen(s)). That is, the component
schemes are independently applied to the plaintext.

• MAC–then–encrypt: For a plaintext s one generates the ciphertext to be
transmitted as the pair (EncGen(s), EncGen(MACGen(s))). That is, the plain-
text is tagged and then both parts are encrypted.

• Encrypt–then–MAC: For a plaintext s one generates the ciphertext to be
transmitted as the pair (EncGen(s), MACGen(EncGen(s))). That is, the plain-
text is encrypted and then MAC’d.

Shikata et al [21] consider only the third to be always “secure” as a com-
position method if the components are “secure”. In the asymmetric setting,
including the public key setting, the MAC component is replaced by a signature
component.

6 A Direct Construction for Authenticated Encryption

Composition is a standard method for constructing authentication codes with
secrecy, but not the only method. In this section we use a simple example to
illustrate “direct” US AE. In this scheme the verified decryption process cannot
be broken into independent verification and decryption processes, a returned
plaintext is always valid.

Let S = {0, 1} be the set of plaintexts, and M = {0, 1, 2, 3} the set of
ciphertexts. The algorithms for the AE are:



Symmetric Authentication Codes with Secrecy 159

1. KeyInt: The trusted initialiser chooses 2 distinct elements {a0, a1} of M.
The elements ai are sent to Alice and Bob.

2. AuthEnc: For a chosen plaintext s ∈ S Alice broadcasts as.
3. VerDec: Upon receiving as Bob finds the value of s for which a′

s=as, and
accepts s as authentic. If no such s exists, m is rejected.
There are 12 keys, corresponding to pairs of distinct elements from M. We

assume the keys are all equally likely to be used, and furthermore that the
plaintexts are equally likely to be used.

Without observing a ciphertext the probability of any (s,m) pair being valid
is 1/4. The probability of impersonation is 1/2, since out of the four messages
two are valid under a key. Consider that Oscar observes a valid ciphertext m. The
probability of Oscar generating another valid ciphertext is now 1/3, since only
one of the unobserved ciphertexts corresponds to a plaintext. The probability of
substitution is therefore lower than the probability of impersonation, unlike in
Cartesian A–codes.

For confidentiality we consider the probability of Oscar associating an ob-
served ciphertext m with the correct plaintext s. The probability is 1/2, and
is so even if both valid ciphertexts are observed. If Oscar is allowed a query
which identifies a valid pair (s′,m′) then the association between an observed
message and the correct source state is obvious. Thus this system doesn’t satisfy
IntC–CPA1, IntC–CCA1 or IntC–CCVA1.

We have argued this system satisfies the notion PS–COA2∧IntC–COA1.
From Equation (1) we have, for P IntC

COA0
= 1/2 and P IntC

COA1
= 1/3, |K| ≥ 12.

This system is optimal with respect to meeting the number of keys and also,
examining the other bounds in section 4, with respect to meeting the bounds on
attack probabilities.

This direct scheme can be generalised, but it more interesting to note that
every A–code with secrecy is of this form. The verified decryption in an A–code
with secrecy can be represented by a lookup table. For ciphertext m and key k
then column m and row k contains either the plaintext s or nothing, the latter
corresponding to an invalid ciphertext. Every A–code with secrecy is equivalent
to a generalisation with a subset of all permutations as the keys.

7 Summary

We have developed a framework for US AE using recent formulations of US A–
codes [16] and US encryption schemes [12]. We have restricted our attention to
symmetric AE in order to clarify and observe subtleties which may be lost in a
direct analysis of asymmetric AE.

We have defined the goals, attack models and oracles used to build security
notions. We have summarised some bounds relevant to authenticated encryption.
Due to space limitations we have only analysed a simple direct construction to
illustrate some issues for symmetric AE schemes.

We have given several open questions related to bounds, entropy, probabil-
ities and composition in section 4. It is expected some of these questions will



160 L. McAven, R. Safavi–Naini, and M. Yung

require significant effort to solve. There is also the need to extend this work to
the asymmetric case. An analysis of the relationships between the various se-
curity notions, as considered extensively in computational security [1, 2], would
be useful. Applying this framework to the analysis of specific US AE [26, 27] is
important also.

Acknowledgement

The authors appreciate discussions with Dr. Joosang Baek.

References

1. J. An, Y. Dodis & T. Rabin ‘On the security of joint signature and encryption.’
EuroCrypt’02 LNCS 2332 (2002) 83–107.

2. M. Bellare & C. Namprempre ‘Authenticated encryption: relations among no-
tions and analysis of the generic composition paradigm.’ AsiaCrypt’00 LNCS 1976
(2000) 317–30.

3. L.R.A. Casse, K.M. Martin & P.R. Wild ‘Bounds and characterizations of authen-
tication/secrecy schemes.’ Designs, Codes and Cryptography 13 (1998) 107–29.

4. M. De Soete ‘Some constructions for authentication–secrecy codes’ Eurocrypt’88
LNCS 330 (1988) 57–75.

5. M. De Soete ‘Bounds and constructions for authentication–secrecy codes with split-
ting.’ Crypto’88 LNCS 403 (1989) 311–7.

6. Y. Desmedt, Y. Frankel & M. Yung ‘Multi–receiver/multi–sender network security:
efficient authenticated multicast/feedback.’ IEEE Infocom’92 (1992) 2045–54.

7. E.N. Gilbert, F.J. MacWilliams & N.J.A. Sloane ‘Codes which detect deception.’
Bell System Tech. Journal 53 (1974) 405–24.

8. G. Hanaoka, J. Shikata, Y. Zheng & H. Imai ‘Unconditionally secure digital signa-
ture schemes admitting transferability.’ Asiacrypt’00 LNCS 1976 (2000) 130–42.

9. G. Hanaoka, J. Shikata, Y. Hanaoka & H. Imai ‘Unconditionally secure anonymous
encryption and group authentication.’ Asiacrypt’02, LNCS 2501 (2002) 81–99.

10. T. Johansson ‘Contributions to unconditionally secure authentication.’ Ph.D. The-
sis, (Lund University, Sweden, 1994).

11. K. Kurosawa and S. Obana ‘Characterisation of (k, n) multi–receiver authentica-
tion.’ ACISP’97 LNCS 1720 (1997) 204–15.

12. L. McAven, R. Safavi–Naini & M. Yung ‘Unconditionally secure encryption under
strong attacks.’ ACISP 2004 LNCS 3108 (2004) 427–439.

13. M. Naor & M. Yung ‘Public–key cryptosystems provably secure against chosen–
ciphertext attacks.’ 22nd STOC ACM (1990) 427–437.

14. R.S. Rees & D.R. Stinson ‘Combinatorial characterizations of authentication
codes.’ Designs, Codes and Cryptography 7 (1996) 239–59.

15. R. Safavi–Naini and H. Wang ‘Multireceiver authentication codes: Models, bounds,
constructions and extensions.’ Information and Computation 151 (1999) 148–72.

16. R. Safavi–Naini, L. McAven & M. Yung ‘General group authentication codes and
their relation to “Unconditionally secure signatures”.’ Public Key Cryptography
(2004) 231–47.

17. G.J. Simmons ‘A Cartesian product construction for unconditionally secure au-
thentication codes that permit arbitration’ J.Crypt. 2(2) (1990) 77–104.



Symmetric Authentication Codes with Secrecy 161

18. A. Sgarro ‘Information–theoretic bounds for authentication frauds.’ J. Computer
Security 2 (1993) 53–63.

19. C. E. Shannon ‘Communication theory of secrecy systems.’ Bell System Tech. Jour-
nal 28 (1949) 269–79.

20. J. Shikata, G. Hanaoka, Y. Zheng & H. Imai ‘Security notions for unconditionally
secure signature schemes’ Eurocrypt’02 LNCS 2332 (2002) 434–49.

21. J. Shikata, G. Hanaoka, Y. Zheng, T. Matsumoto & H. Imai ‘Unconditionally
secure authenticated encryption.’ IEICE Trans. Fundamentals E87–A(5) (2004).

22. G.J. Simmons ‘Authentication theory/coding theory.’ Crypto’84 LNCS 196 (1984)
411–32.

23. B. Smetts, P. Vanroose & Z.X. Wan ‘On the construction of authentication codes
with secrecy and codes withstanding spoofing attacks of order L ≥ 2.’ (1988) 306–.

24. D. R. Stinson ‘Some constructions and bounds for authentication codes.’ J.Crypt.
1 (1988) 37–51.

25. D. R. Stinson ‘The combinatorics of authentication and secrecy codes.’ J.Crypt. 2
(1990) 23–49.

26. X. Tian & C. Ding ‘A construction of authentication codes with secrecy.’ Progress
in Computer Science and Applied Logic 23 319–30.

27. T. V. Trung ‘On the construction of authentication and secrecy codes.’ Designs,
Codes and Cryptography 5 (1995) 269–80.



Faster Variants of the MESH Block Ciphers

Jorge Nakahara Júnior

jorge nakahara@yahoo.com.br

Abstract. This paper describes new variants of the MESH block ci-
phers, that use the same group operations of the IDEA cipher but oper-
ate on 8-bit words, and are estimated to be faster than the AES on 8-bit
processors. These results corroborate the high flexibility of the MESH
cipher design, demonstrating their high adaptability to 8-bit smart card
processors, such as the 8051. All the design features of the original 16-
bit word-oriented MESH ciphers were preserved for the 8-bit variants:
complete diffusion in a single round; MA-boxes alternating modular ad-
dition and multiplication; asymmetric key-mixing layers for odd and even
rounds; new key schedule algorithms with fast key avalanche; the same
computational framework holds for encryption and decryption. Prelim-
inary Square and algebraic attack results are described, and resistance
to other modern cryptanalytic techniques is also expected.

Keywords: byte-oriented block ciphers, IDEA, smart cards, algebraic
attacks.

1 Introduction

The IDEA block cipher [18] dates back to 1991, and evolved from the PES
cipher with improved resistance against differential cryptanalysis [19]. IDEA has
withstood several cryptanalytic attacks ever since: an attack by Meier in [20] on
up to 2.5 rounds; a differential-linear attack by Borst et al. [7] on 3 rounds; a
truncated-differential attack by Borst et al. [7] on 3.5 rounds; a square attack
by Demirci [14] on up to 4 rounds; an impossible differential attack by Biham et
al. [2] on up to 4.5-rounds; and finally, a meet-in-the-middle attack by Demirci
et al. [15] on 5 rounds. There are attacks on the full 8.5-round IDEA, such as
linear cryptanalysis [11, 26], differential-linear [17], and boomerang attacks [4],
but all of them require the assumption of weak keys, namely, user keys that cause
multiplicative subkeys with particular values.

IDEA became well-known probably because it was embedded in the widely
distributed Pretty Good Privacy software package from Phil Zimmerman [16],
for general purpose file encryption. Curiously, for more than 12 years since the
announcement of IDEA, no IDEA nor PES variant has ever been suggested with
a block size larger than 64 bits, in any worldwide event such as the AES [1],
NESSIE [24] or CRYPTREC [8]. Such variant(s) would certainly be a useful
primitive for the construction of hash functions and MACs [21].

The original MESH ciphers exploited the high flexibility of the MA-box (Mul-
tiplication-Addition box) of IDEA [18], in order to operate on larger text blocks.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 162–174, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Faster Variants of the MESH Block Ciphers 163

All of these ciphers employ three group operations on 16-bit words: exclusive-or,
addition in ZZ216 , and multiplication in GF(216 +1), with the exception that 0 ≡
216. The MA-box is a bijective mapping composed of addition and multiplication
operations alternated and computed in a zig-zag order. Fig. 1 shows an example
of the MA-box.

Previous analyses of 16-bit word-oriented MESH ciphers [22] showed a rela-
tively high margin of security against modern cryptanalytic techniques but the
software performance was estimated to be much lower than that of the AES [1].
This paper explores one further aspect of the MESH ciphers, namely the word
size can be reduced from 16 bits to 8 bits, allowing all internal operations to
be efficiently performed on low-cost 8-bit smart cards. These 8-bit word MESH
variants are denoted with the ”(8)” sufix to distinguish them from the origi-
nal 16-bit word-oriented MESH ciphers. These 8-bit word MESH variants allow
variable block sizes in increments of 16 bits.

This paper is organized as follows: Sect. 2 describes MESH-64(8); Sect. 3 de-
scribes MESH-128(8); Sect. 4 describes Square attacks on reduced-round MESH
variants; Sect. 5 describes preliminary results of algebraic attacks on the MESH
variants; Sect. 6 presents estimates of software performance of the MESH vari-
ants, and compares them to the AES; Sect. 7 concludes the paper.

2 The MESH-64(8) Block Cipher

MESH-64(8) is an iterated block cipher that operates on 64-bit blocks, uses a
128-bit key, and consists of eight rounds plus an output transformation. MESH-
64(8) employs the same three group operations of IDEA, but all internal opera-
tions are on 8-bit words: exclusive-or, denoted ⊕; addition in ZZ28 , denoted �; and
multiplication in GF(28 + 1), denoted �, with the exception that 0 ≡ 28. The
MA-box is the core of a round in MESH-64(8), and contains two layers of mul-
tiplication and addition, interleaved, and computed in a zig-zag order (Fig. 1).
Each layer in the MA-box costs two additions and two multiplications. Although
each additional layer might strengthen the MA-box, it also degrades the cipher
performance because the operations are in series. The use of two layers in the
MA-box, as in IDEA, is a balance between performance and security. The round
structure of MESH-64(8) consists of two halves: a subkey mixing1 and an MA
half-round (Fig. 1). The number of rounds can be increased beyond eight, but
must be set to an even number to allow encryption and decryption to use the
same computational graph. This is a consequence of the asymmetric key mixing
for odd and even rounds. Let X(i) = (X(i)

1 , X
(i)
2 , X

(i)
3 , X

(i)
4 , X

(i)
5 , X

(i)
6 , X

(i)
7 ,

X
(i)
8 ) be the input to the i-th round.

1 Subkeys are denoted Z
(j)
i , where the superscript j is surrounded by parenthesis to

avoid confusion with the power operation.



164 J. Nakahara Jr.

Z
(1) Z(1)

Z
(1)

5 6 7 Z
(1)
8Z 1

(1) Z
4
(1)

Z3
(1)

Z2
(1)

1Y(1)

2Y (1)

Y 3
(1)

Y4
(1)

5Y (1)

6Y (1)

8Y
(1)

7Y (1)

1 2 3 4 5 6 87P P P P P P P P

Z(1)
10

(1)
Z 9

Key Mixing
Half−Round

Odd Round

MA
Box

ZZZ Z Z ZZZ1 2 3 4 5 6 7 8
(2) (2) (2) (2) (2) (2) (2) (2)

5 6 7 81 2 43X X X X X X X X
(2)(2)(2)(2)(2)(2)(2)(2)

(7 more rounds)

Half−Round
Key Mixing
Even Round

1Y 2Y Y 3
(2) Y4

(2)
5Y (2)

6Y (2)
7Y (2)

8Y
(2)(2)(2)

Z Z Z Z5 6 8
Z 1 Z2 Z3 Z

4

5 6 7 81 2 43

5 6 7 81 2 43X X X X X X X X

CCCCCCCC

(9) (9) (9) (9)

(9)(9)(9)(9) (9)

(9) (9)

(9) (9)

(9)

(9)

(9)

7

MA
Half−Round

Transf.
Output

Fig. 1. Computational graph of MESH-64(8)

Then, the output of the i-th key mixing is the Y (i) tuple, for 1 ≤ i ≤ 8:

Y (i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(X(i)

1 � Z
(i)
1 , X

(i)
2 � Z

(i)
2 , X

(i)
3 � Z

(i)
3 , X

(i)
4 � Z

(i)
4 ,

X
(i)
5 � Z

(i)
5 , X

(i)
6 � Z

(i)
6 , X

(i)
7 � Z

(i)
7 , X

(i)
8 � Z

(i)
8 ), for i odd

(X(i)
1 � Z

(i)
1 , X

(i)
2 � Z

(i)
2 , X

(i)
3 � Z

(i)
3 , X

(i)
4 � Z

(i)
4 ,

X
(i)
5 � Z

(i)
5 , X

(i)
6 � Z

(i)
6 , X

(i)
7 � Z

(i)
7 , X

(i)
8 � Z

(i)
8 ), for i even

The Y (i) tuple is the input to the i-th MA half-round. The i-th MA half-
round output is X(i+1) = (Y (i)

1 ⊕W
(i)
1 , Y

(i)
5 ⊕W

(i)
1 , Y

(i)
6 ⊕W

(i)
2 , Y

(i)
7 ⊕W

(i)
3 , Y

(i)
2 ⊕

W
(i)
2 , Y

(i)
3 ⊕ W

(i)
3 , Y

(i)
4 ⊕ W

(i)
4 , Y

(i)
8 ⊕ W

(i)
4 ), where:

W(i)
4 = (((Y (i)

1 ⊕ Y
(i)
5 )  Z

(i)
9 � (Y (i)

2 ⊕ Y
(i)
6 ))  (Y (i)

3 ⊕ Y
(i)
7 )�

(Y (i)
4 ⊕ Y

(i)
8 ))  Z

(i)
10 ,

W(i)
3 = W

(i)
4 � ((Y (i)

1 ⊕ Y
(i)
5 )  Z

(i)
9 � (Y (i)

2 ⊕ Y
(i)
6 ))  (Y (i)

3 ⊕ Y
(i)
7 ) ,

W(i)
2 = W

(i)
3  ((Y (i)

1 ⊕ Y
(i)
5 )  Z

(i)
9 � (Y (i)

2 ⊕ Y
(i)
6 )) ,

and
W(i)

1 = W
(i)
2 � (Y (i)

1 ⊕ Y
(i)
5 )  Z

(i)
9 .



Faster Variants of the MESH Block Ciphers 165

The last half-round, or the output transformation (OT), consists of a fixed invo-
lution of the words in a block, followed by a key mixing half-round.

2.1 The Key Schedule of MESH-64(8)

The key schedule for MESH-64(8) is defined as follows:

– 8-bit constants ci are defined by c0 = 1, and ci = 2 · ci−1 for i ≥ 1,
with multiplication in the field GF(28) represented as GF(2)[x]/p(x), where
p(x) = x8 + x4 + x3 + x + 1 is a primitive polynomial in GF(2)[x]. The
constant ‘2’ is represented by the polynomial ’x’.

– The 128-bit key is partitioned into sixteen 8-bit words Ki, 0 ≤ i ≤ 15.
The first sixteen subkeys are assigned to Z

(1)
i+1 = Ki ⊕ ci, 0 ≤ i ≤ 9, and

Z
(2)
j mod 10+1 = Kj ⊕ cj , 10 ≤ j ≤ 15.

– Each subsequent 8-bit subkey is computed as follows:2

Z
(h(i))
l(i) =

(((
Z

(h(i−16))
l(i−16) � Z

(h(i−12))
l(i−12)

)
⊕ Z

(h(i−3))
l(i−3)

)
�

Z
(h(i−2))
l(i−2)

)
≪ 1 ⊕ ci , (1)

for 16 ≤ i ≤ 87, where ‘≪ 1’ means one-bit left rotation, h(i) = i div 10+1,
and l(i) = i mod 10 + 1.

The key schedule of MESH-64(8) achieves fast avalanche because the h(i) and
l(i) indices in (1) are based on the primitive polynomial r(x) = x16 +x14 +x13 +
x4 +1, and the interleaving of � and ⊕. For example, each subkey starting with
Z

(3)
2 already depends upon all sixteen user key words. The dependence of (1) on

r(x) can be made clear by ignoring the left rotation for a while, changing the �
to ⊕, denoting Z

(h(i))
l(i) simply as Z(i), and adding 16 to the indices: Z(i+16) =

Z(i)⊕Z(i+4)⊕Z(i+13)⊕Z(i+14)⊕ci. The constants ci are used to avoid patterns
in the subkeys. Without these constants, the key with 128 zero bits would result
in all subkeys being equal to zero.

Decryption in MESH-64(8) uses the same framework in Fig. 1 as for encryp-
tion, but with transformed round subkeys. If the encryption subkeys for the r-th
round are denoted (Z(r)

1 , . . . , Z
(r)
10 ), for 1 ≤ r ≤ 8, and (Z(9)

1 , . . . , Z
(8)
8 ) for the

output transformation, then the decryption round subkeys are:

. ((Z(9)
1 )−1, −Z

(9)
2 , (Z(9)

3 )−1, −Z
(9)
4 , −Z

(9)
5 , (Z(9)

6 )−1, −Z
(9)
7 , (Z(9)

8 )−1, Z
(8)
9 ,

Z
(8)
10 ), for the first decryption round.

. (−Z
(10−r)
1 , (Z(10−r)

5 )−1, −Z
(10−r)
6 , (Z(10−r)

7 )−1, (Z(10−r)
2 )−1, −Z

(10−r)
3 ,

(Z(10−r)
4 )−1, −Z

(10−r)
8 , Z

(9−r)
9 , Z

(9−r)
10 ),for the r-th even round,r∈ {2, 4, 6, 8}.

. ((Z(10−r)
1 )−1, −Z

(10−r)
5 , (Z(10−r)

6 )−1, −Z
(10−r)
7 , −Z

(10−r)
2 , (Z(10−r)

3 )−1,
−Z

(10−r)
4 , (Z(10−r)

8 )−1, Z
(9−r)
9 , Z

(9−r)
10 ), for the r-th odd round, r ∈ {3, 5, 7}.

2 Bit rotation has higher precedence than ⊕.



166 J. Nakahara Jr.

. ((Z(1)
1 )−1, −Z

(1)
2 , (Z(1)

3 )−1, −Z
(1)
4 , −Z

(1)
5 , (Z(1)

6 )−1, −Z
(1)
7 , (Z(1)

8 )−1) for the
output transformation.

3 The MESH-128(8) Block Cipher

MESH-128(8) is an iterated block cipher that operates on 128-bit blocks, uses a
256-bit key, and consists of eight rounds plus an output transformation. MESH-
128(8) employs the same three group operations of MESH-64(8). Similar to
MESH-64(8) and IDEA, no two consecutive operations are the same. The round
structure of MESH-128(8) consists of two halves: a key mixing and an MA half-
round (Fig. 2). The computation of intermediate steps in the MA-box follows a
similar procedure as for MESH-64(8).

The last half-round, or the output transformation, consists of a fixed involu-
tion of the words in a block, followed by a key mixing half-round.

3.1 The Key Schedule of MESH-128(8)

The key schedule for MESH-128(8) is defined as follows:

– The same 8-bit constants ci defined in MESH-64(8) are used in MESH-
128(8).

– The 256-bit key is partitioned into 32 8-bit words Ki, 0 ≤ i ≤ 31, which
are assigned to the first 32 subkeys: Z

(1)
i+1 = Ki ⊕ ci, 0 ≤ i ≤ 17, and

Z
(2)
j mod 18+1 = Kj ⊕ cj , 18 ≤ j ≤ 31.

– Each subsequent 8-bit subkey is computed as follows:

Z
(h(i))
l(i) =

(((((
Z

(h(i−32))
l(i−32) � Z

(h(i−31))
l(i−31)

)
⊕ Z

(h(i−30))
l(i−30)

)
�

Z
(h(i−29))
l(i−29)

)
⊕ Z

(h(i−27))
l(i−27)

)
� Z

(h(i−25))
l(i−25)

)
≪ 1 ⊕ ci , (2)

for 31 ≤ i ≤ 159, where ‘≪ 1’ means one-bit left rotation, h(i) = i div 18+
1, and l(i) = i mod 18 + 1.

The key schedule of MESH-128(8) achieves fast avalanche because the h(i)
and l(i) indices in (2) are based on the primitive polynomial q(x) = x32 + x7 +
x5 + x3 + x2 + x + 1, and the interleaving of � and ⊕ (similar to MESH-64(8)).
For example, each subkey from Z

(4)
3 on, already depends upon all 32 key words.

Decryption in MESH-128(8) uses the same framework in Fig. 2 as for encryp-
tion, but with transformed round subkeys. If the encryption subkeys for the r-th
round are denoted (Z(r)

1 , . . . , Z
(r)
18 ), for 1 ≤ r ≤ 8, and (Z(9)

1 , . . . , Z
(9)
16 ) for the

output transformation, then the decryption round subkeys are:

. ((Z(9)
1 )−1, −Z

(9)
2 , (Z(9)

3 )−1, −Z
(9)
4 , (Z(9)

5 )−1, −Z
(9)
6 , (Z(9)

7 )−1, −Z
(9)
8 , −Z

(9)
9 ,

(Z(9)
10 )−1, −Z

(9)
11 , (Z(9)

12 )−1, −Z
(9)
13 , (Z(9)

14 )−1, −Z
(9)
15 , (Z(9)

16 )−1, Z
(8)
17 , Z

(8)
18 ), for

the first decryption round.



Faster Variants of the MESH Block Ciphers 167

1Y(1)

Y (1)
8

Y (1)
7

Y (1)
6

Y(1)
5

Y4
(1)Y 3

(1)2Y (1) Y
(1)
9 Y

(1)
11

Y
(1)
10

Y
(1)
12 Y

(1)
13 Y

(1)
14

Y
(1)
16

Y
(1)
15

3X (2)
4X (2)

X5
(2)

Y 3
(2)

2Y (2)
1Y(2) Y4

(2)

Z
(1)

P 5

5Z 1
(1)

1P

Z2
(1)

2P 3P

Z3
(1) Z

4
(1)

4P P

Z
(1)

P

Z(1)

P

Z
(1)

6

6 7

7 8

8

P

Z
(1)

P

Z
(1)

9

9

10

10 P

Z
(1)

P

Z
(1)

P

Z
(1)

P

Z
(1)

P

Z
(1)

P

Z
(1)

11 12 13 14 15 16

161514131211

(1)
Z

ZZ
3
(2)

Z2
(2)

Z1
(2)

X (2)

(2)

Y(2)

Z
(2)

4
(2)

5

Y

X (2)

Z Z
(2)

Y (2)

X (2)

Z Z
(2)

(2)
5 Y (2)

6 7 8

6 7 8

876

X (2)

Z
(2) (2)

Y (2)

X (2) X X X
Z

(2)

Y (2)

Z
(2)

Y (2)

Z(2)

Y
(2)

Z

(2) (2) (2)

Y (2)

X X X
Z

(2)

Y (2)

Z
(2)

Y (2)

Z(2)

Y
(2)

(2) (2) (2)
9 10 11 12 13 14 15 16

9

9

10

10 11

11 12

12

13

13

14

14

15

15

16

16

1X(2)
2X (2)

MA
Box

17

Z(1)
18

Z 1 Z
X

C 5

5

5

1X

1C

Z2

2

2X

C

Z3

3

3X

C

Z
4

4

4X

C

Z
X

C

Z
X

C

Z
X

C

6 7 8

8

8

7

7

6

6

Z Z
X

C

X

C

Z
X

C

Z
X

C

Z
X

C

Z
X

C

Z
X

C

Z
X

C9

9 10

10 11

11 12

12

13

13 14

14 15

15 16

16

109 11 12 13 14 15 16

Half−Round
Key Mixing

MA 

Half−Round

Key Mixing
Half−Round

(7 more rounds)

(9) (9) (9) (9) (9) (9) (9) (9)

(9)(9)(9)(9)(9)(9)(9)(9) (9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)

(9)
Output
Transf.

Even−Round

Odd−Round

Fig. 2. Computational graph of MESH-128(8)

. (−Z
(10−r)
1 , (Z(10−r)

9 )−1, −Z
(10−r)
10 , (Z(10−r)

11 )−1, −Z
(10−r)
12 , (Z(10−r)

13 )−1,
−Z

(10−r)
14 , (Z(10−r)

15 )−1, (Z(10−r)
2 )−1, −Z

(10−r)
3 , (Z(10−r)

4 )−1, −Z
(10−r)
5 ,

(Z(10−r)
6 )−1, −Z

(10−r)
7 , (Z(10−r)

8 )−1, −Z
(10−r)
16 , Z

(9−r)
17 , Z

(9−r)
18 ), for the

r-th even round, r ∈ {2, 4, 6, 8}.
. ((Z(10−r)

1 )−1, −Z
(10−r)
9 , (Z(10−r)

10 )−1, −Z
(10−r)
11 , (Z(10−r)

12 )−1, −Z
(10−r)
13 ,

(Z(10−r)
14 )−1, −Z

(10−r)
15 , −Z

(10−r)
2 , (Z(10−r)

3 )−1, −Z
(10−r)
4 , (Z(10−r)

5 )−1,
−Z

(10−r)
6 , (Z(10−r)

7 )−1, −Z
(10−r)
8 , (Z(10−r)

16 )−1, Z
(9−r)
17 , Z

(9−r)
18 ), for the

r-th odd round, r ∈ {3, 5, 7}.
. ((Z(1)

1 )−1, −Z
(1)
2 , (Z(1)

3 )−1, −Z
(1)
4 , (Z(1)

5 )−1, −Z
(1)
6 , (Z(1)

7 )−1, −Z
(1)
8 , −Z

(1)
9 ,

(Z(1)
10 )−1, −Z

(1)
11 , (Z(1)

12 )−1, −Z
(1)
13 , (Z(1)

14 )−1, −Z
(1)
15 , (Z(1)

16 )−1), for the output
transformation.

The suggested minimum number of rounds in MESH-128(8) was 8.5 because
it represents a balance between security and efficiency (similarly for the number
of layers in the MA-box).

4 A Square Attack on the MESH Variants

The original Square attack was developed by Knudsen et al. [12] as a dedicated
attack against the Square block cipher, but this attack can be applied similarly
to other word-oriented block ciphers. Since all internal operations in the MESH



168 J. Nakahara Jr.

variants operate on 8-bit words, Square attacks employ preferably this word
size. Recall that Square attacks and its variants are the currently best known
attacks on reduced-round versions of the AES cipher [13]. The terminology for
this attack follows [12]. The design of the MA-box of the MESH variants imply
that the most effective λ-set that can propagate across the MA-box, has the
form (PPPA), and causes the output λ-set 3 (AAAA). The reason is that this
λ-set preserves the highest number of active/passive words across the MA-box,
among all possible input λ-sets. This λ-set for the MA-box translates into the
following one-round λ-sets: (P P P P P P P A) → (A A A A A A A ?), and (P
P P A P P P P ) → (A A A A A A ? A) which can be used to attack 2-round
MESH-64(8). Without loss of generality, an attack on the first two rounds of
MESH-64(8) is as follows:

– choose 256 plaintexts with words according to the λ-set (PPPPPPPA);
the λ-set after 1.5 rounds is (AAAAAAA?), but after 2 rounds the λ-set
becomes (????????);

– guess the subkeys Z
(2)
9 , Z

(2)
10 , and decrypt the last MA half-round for all

texts in the output λ-set;
– keep the subkey for which the decrypted λ-set has the form (A A A A A A

A ?); this is the distinguisher, and each active word is used to test for the
correct key guess;

– for a wrong subkey pair there is a chance of 2−8 that each of the first seven
words is active, each of which works as a distinguisher. Therefore, there is
a chance of 2−56 that any wrong subkey produces all seven active words in
this λ-set. Since there are 216 − 1 wrong subkeys, the expected number of
wrong subkeys that survive this filtering is 2−56 ·(216−1) < 1, and thus only
the correct subkey is expected to survive.

Therefore, the attack requires 28 chosen plaintexts, and time equivalent to
about 28·216 = 224 half-round decryptions, or 1

4 ·224 = 222 2-round computations.
Using the same distinguisher, but extending the attack to 2.5 rounds, one

can guess the 10 subkeys of the last two half-rounds, or 80 subkey bits. With
two λ-sets, the expected number of false alarms (wrong subkeys) that survive
this filtering is (2−56)2 · 280 < 1. The time complexity is 2 · 28 · 280 = 289 1-round
computations, or 1

2.5 · 289 ≈ 288 2.5-round computations.
For 3 rounds, one can use the same distinguisher, but recover 18 subkeys

from the last 1.5 rounds, or 144 subkey bits. With three λ-sets, the expected
number of wrong subkeys surviving this filtering is (2−56)3 · 2144 < 1. The time
complexity is about 3·28 ·2144 ≈ 2153.5 1.5-round computations, or 2152.5 3-round
computations, which is more than the effort of an exhaustive key search.

The attack on 2-round MESH-128(8) has the same complexity as on MESH-
64(8), but the atack on 2.5 rounds recovers 18 subkeys, or 144 subkey bits, and
requires three λ-sets, at the cost of 3 ·28 ·2144 · 1

2.5 ≈ 2152 2.5-round encryptions.
The attack on 3 rounds recovers 20 subkeys of the last 1.5 rounds, and also uses
three λ-sets at the cost of 3 · 28 · 2160 · 1

3 = 2169 3-round computations.

3 ’A’ denotes an active word; ’P’ denotes a passive word and ’?’ an unbalanced word.



Faster Variants of the MESH Block Ciphers 169

5 The Courtois-Pieprzyk Attack

In [10], Courtois and Pieprzyk described a potential attack on the AES. Their
approach initially derived multivariate algebraic equations (with probability one)
from the AES S-box, and further obtained a system of (overdefined) multivariate
equations, more specifically quadratic equations, which would be solved by al-
gorithms called XL [9], or XSL [10], requiring a few known plaintext/ciphertext
pairs.

One requirement of the algebraic attack is that quadratic equations can be
derived from the S-box or other non-linear operations. For the MESH ciphers
the multiplication is the main non-linear operation, and it can be represented
by a combination of two S-boxes, one based on discrete exponentiation and
another on discrete logarithm. Recall that GF(28 + 1) is a cyclic group, which
means that there is a generator g ∈ ZZ∗

28+1, such that < g >= GF(28 + 1).
More precisely, for GF(28 + 1) there are φ(φ(28 + 1)) = 128 generators [21–p.
70, Chap. 2], where φ is Euler’s totient function. Consider, for example, g = 5.
Then, for any x, y ∈ ZZ28 there are a, b ∈ GF(28 + 1) such that 5x = a, and
5y = b. Analogously, a discrete logarithm function can be defined as log5 a =
x ⇔ 5x = a, for x ∈ ZZ28 , and a ∈ GF(28 + 1). It follows that a � b = 5x ·
5y = 5log5 a�log5 b. Therefore, if discrete exponentiation and logarithm tables are
available (at the cost of only 2·28 = 512 bytes of memory), then a � operation in
GF(28+1) can be accomplished in constant time with three table lookups and an
addition.

For the 8× 8-bit exponentiation S-box, and using any generator, there are at
most

(16
0

)
+
(16

1

)
= 17 linear terms,

(16
2

)
= 120 quadratic terms,

(16
3

)
= 560 cubic

terms, and
(16

4

)
= 1820 4th-degree terms. But, there are only 28 = 256 inputs.

Since 256 <
(16

0

)
+
(16

1

)
+
(16

2

)
+
(16

3

)
= 697, and 256 >

(16
0

)
+
(16

1

)
+
(16

2

)
= 137, it

means that there can be at most cubic (multivariate) equations (with probability
1), involving 16 input/output bits. Several computations of potential algebraic
equations for the discrete logarithmic and exponentiation tables, with all possible
128 generators, using the same approach as Biryukov and De Cannière in [3], did
not detect any quadratic equation involving the eight input bits and the eight
output bits of the exponentiation S-box4 for any generator. Similarly, no cubic
nor 4th-degree equations were found, implying that the discrete exponentiation
and logarithmic S-boxes do not present a simple algebraic structure such as that
of the AES.

Nonetheless, from Daemen et al. [11], there are particular subkey values, 0
and 1, that turn the multiplication into a much simpler operation, namely the
identity and modular subtraction operations5, respectively. Notwithstanding, the

4 The analysis can be restricted to one S-box, since the gx S-box is the inverse of the
logg S-box, and any algebraic equation for one of them can be converted to the other
by just changing the input for the output variables.

5 Multiplication by 1 is the identity operation; multiplication by 0, in GF(28 + 1), is
equivalent to multiplying by -1.



170 J. Nakahara Jr.

MESH variants have countermeasures against these cases. Recall that in IDEA
all multiplications always involve one subkey as an operand. Therefore, if the
key schedule is not carefully designed, then the multiplication operations could,
in principle, be weakened or manipulated, by appropriately selecting a key non-
randomly (such that many subkeys end up with value 0 or 1). In the MESH
variants described in this paper there are two provisions to avoid this weakness:

– not all multiplications involve a subkey directly; the MA-boxes of the MESH
variants (Fig. 1 and 2) contain multiplications involving only intermediate
text values; therefore, these operations become text-and-key dependent;

– the key schedule algorithms do not have the key bit overlapping property of
IDEA; consequently, key reconstruction becomes harder in the case of key-
recovery attacks, and it also helps avoid several weak multiplicative subkeys
to happen simultaneously along the full cipher.

6 Software Performance

The software performance of the 8-bit MESH ciphers was estimated from the
number of 8-bit operations in each cipher. This approach did not take into ac-
count the possible paralellisms in the cipher structure, but was used as a rough
measure of computational cost. These ciphers are compared to the AES, which
also perform all internal operations in 8-bit words (Table 1). The measurement
was made in CPU cycles per byte encrypted so that ciphers with different block
sizes can be compared. The diffusion rate in Table 1 is the number of rounds
after which all ciphertext bits depend (non-linearly) on all plaintext bits.

The performance estimates assume that each of the following operations
cost only one CPU cycle: xtime (in AES), ⊕, �, (fixed) bit rotation6. Taking
the 8051 processor as a reference, one table lookup operation will typically cost
twice an ⊕ and an �.

For AES-128, namely AES with a 128-bit key, the number of 8-bit operations
is computed as follows: 16 · 10 = 160 S-box look-ups, 16 · 2 · 9 = 288 xtime
operations, 16 · 11 + 4 · 15 · 9 = 716 ⊕’s, or 1324 cycles per 128-bit block.

For AES-192, the number of 8-bit operations is computed as follows: 16 ·12 =
192 S-box look-ups, 16 · 2 · 11 = 352 xtime operations, 16 · 13 + 4 · 15 · 11 = 868
⊕’s, or 1604 cycles per 128-bit block.

For AES-256, the number of 8-bit operations is computed as follows: 16 ·14 =
224 S-box look-ups, 16 · 2 · 13 = 416 xtime operations, 16 · 15 + 4 · 15 · 13 = 1020
⊕’s, or 1884 cycles per 128-bit block.

The AES requires only 256 bytes for table lookup because the x−1 operation is
its own inverse; only the affine operation following the x−1 transformation needs
to be changed accordingly. For the MESH variants, two S-boxes are needed,
one representing discrete exponentiation and another for discrete logarithm in
GF(28 + 1).

6 Only for the key schedule of MESH variants.



Faster Variants of the MESH Block Ciphers 171

T
ab

le
1.

P
ar

am
et

er
s

an
d

pe
rf

or
m

an
ce

fig
ur

es
fo

r
8-

bi
t

w
or

d-
or

ie
nt

ed
M

E
SH

va
ri

an
ts

an
d

A
E

S

C
ip

he
r

M
E

SH
-6

4(
8)

M
E

SH
-1

28
(8

)
A

E
S-

12
8

A
E

S-
19

2
A

E
S-

25
6

St
ru

ct
ur

e
ID

E
A

ID
E

A
SP

N
SP

N
SP

N
B

lo
ck

Si
ze

(b
it

s)
64

12
8

12
8

12
8

12
8

K
ey

Si
ze

(b
it

s)
12

8
25

6
12

8
19

2
25

6
#

R
ou

nd
s

8.
5

8.
5

10
12

14
W

or
d

Si
ze

(b
it

s)
8

8
8

8
8

D
at

e
20

03
20

03
19

97
19

97
19

97
(E

nc
ry

pt
io

n)
O

pe
ra

to
rs

⊕,
,

�
⊕,

,
�

⊕,
S-

bo
x,

xt
im

e
⊕,

S-
bo

x,
xt

im
e

⊕,
S-

bo
x,

xt
im

e
Su

bk
ey

s
m

ix
ed

vi
a

,
�

,
�

⊕
⊕

⊕
#


pe

r
bl

oc
k

68
13

6
—

—
—

#
�

pe
r

bl
oc

k
68

13
6

—
—

—
#

⊕
pe

r
bl

oc
k

96
19

2
71

6
86

8
10

20
#

S-
bo

x
lo

ok
up

s
—

—
16

0
19

2
22

4
#

xt
im

e
pe

r
bl

oc
k

—
—

28
8

35
2

41
6

#
Su

bk
ey

B
yt

es
pe

r
bl

oc
k

88
14

4
17

6
20

8
24

0
D

iff
us

io
n

R
at

e
1

ro
un

d
1

ro
un

d
2

ro
un

ds
2

ro
un

ds
2

ro
un

ds
E

nc
ry

pt
io

n
of

12
8

bi
ts

60
0

60
0

13
24

16
04

18
84

(#
C

P
U

cy
cl

es
)(

†)
E

nc
ry

pt
io

n
K

ey
Sc

he
du

le
37

6
73

6
24

0
28

8
33

6
(#

C
P

U
cy

cl
es

/b
lo

ck
)(

‡)
R

A
M

Sp
ac

e
fo

r
56

0
60

8
30

4
31

2
32

0
E

nc
ry

pt
io

n
(b

yt
es

)
1s

t
Su

bk
ey

de
pe

nd
in

g
Z

(3
)

2
Z

(4
)

3
W

[2
0]

W
[3

0]
W

[4
0]

on
al

l
us

er
ke

y
by

te
s

T
ot

al
E

nc
ry

pt
io

n
T

im
e

(†+
‡)

97
6

13
36

15
64

18
92

22
20



172 J. Nakahara Jr.

7 Conclusions

The high flexibility of the MA-box of IDEA was the key factor to allow larger
block size variants, such as the 16-bit word-oriented MESH ciphers [22]. This
report described new variants of the MESH ciphers that operate on 8-bit words,
and that are estimated to be faster than the AES on 8-bit platforms such as the
8051 (smart card). The main design features of the 16-bit word-oriented MESH
ciphers were preserved in the 8-bit word-oriented MESH variants, namely:

– flexible block sizes in increments of 16 bits; two variants were described,
MESH-64(8) and MESH-128(8), but ciphers with other block sizes can be
defined with 80, 96 bits and larger;

– larger MA-boxes that are bijective mappings for any fixed internal subkeys
(in order to avoid non-surjective attacks [25]);

– asymmetric key mixing half-rounds, originally designed to avoid slide [6] and
advanced slide attacks [5];

– new key schedule algorithms with fast key avalanche that avoid the key
overlapping property of IDEA (the main source of weakness exploited in
several attacks on the IDEA cipher);

– the same computational graph can be used for both encryption and decryp-
tion as in IDEA (just the round subkeys need to be adequately transformed);

– complete diffusion (namely, all output bits depend on all input bits) is
achieved in a single round, such as in IDEA;

– absence of explicit S-boxes; therefore the design of the MESH variants does
not dependent on strict cryptographic requirements for the S-boxes, such as
in the AES and DES [23].

– resistance to Square attacks which are the best known attack on reduced-
round versions of the AES [1]. Moreover, preliminary analyses of algebraic at-
tacks indicate that the MESH variants do not possess multivariate quadratic
equations, such as found in the AES.

The Square attack complexities on MESH-64(8) and MESH-128(8) are listed
in Table 2. Further analyses, including previous attacks on IDEA and the original
MESH ciphers, are a work in progress but the same level of security as for the
original MESH ciphers is expected, since the main design features of the former
were preserved in the latter.

Table 2. Square attack complexities on MESH variants

Cipher #Rounds # Chosen Plaintexts Time
MESH-64(8) 2 28 222

2.5 29 288

MESH-128(8) 2 28 222

2.5 3 · 28 2152

3 3 · 28 2169



Faster Variants of the MESH Block Ciphers 173

Acknowledgements

Many thanks to Prof. S.W. Song of the CS Dept. of the Institute of Mathemat-
ics and Statistics of the University of São Paulo, Brazil, for the kind logistical
support for this research, and to the anonymous referees for the many useful
comments.

References

1. AES, The Advanced Encryption Standard Development Process, 1997,
http://csrc.nist.gov/encryption/aes/.

2. E. Biham, A. Biryukov, A. Shamir, “Miss-in-the-Middle Attacks on IDEA, Khufu
and Khafre,” 6th Fast Software Encryption Workshop, L.R. Knudsen, Ed., LNCS
1636, 1999, Springer-Verlag, 124–138.

3. A. Biryukov, C. De Cannière, “Block Ciphers and Systems of Quadratic Equa-
tions,” 10th Fast Software Encryption Workshop, T. Johansson, Ed., LNCS 2887,
2003, Springer-Verlag, 274–289.

4. A. Biryukov, J. Nakahara,Jr, B. Preneel, J. Vandewalle, “New Weak-Key Classes
of IDEA,” ICICS 2002, R. Deng and S. Qing and F. Bao and J. Zhou, Eds., LNCS
2513, 2002, Springer-Verlag, 315–326.

5. A. Biryukov, D. Wagner, “Advanced Slide Attacks,” Adv. in Cryptology, Euro-
crypt’00, B. Preneel,Ed., LNCS 1807, 2000, Springer-Verlag, 589–606.

6. A. Biryukov, D. Wagner, “Slide Attacks,” 6th Fast Software Encryption Workshop,
L.R. Knudsen,Ed., LNCS 1636, 1999, Springer-Verlag, 245–259.

7. J. Borst, “Differential-Linear Cryptanalysis of IDEA,” ESAT Dept., COSIC group,
Technical Report 96-2, 1996.

8. CRYPTREC, Evaluation of Cryptographic Techniques Project, 2000-2003,
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html.

9. N.T. Courtois, “Higher Order Correlation Attacks, XL Algorithm and Cryptanal-
ysis of Toyocrypt,” Proc. 5th International Conference, ICISC 2002, Seoul, Korea,
P.J. Lee and C.H. Lim,Eds., LNCS 2587, 2002, Springer-Verlag, 182–199.

10. N.T. Courtois, J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Quadratic Equations,” Adv. in Cryptology, Asiacrypt’02, Y. Zheng,
Ed., LNCS 2501, 2002, Springer-Verlag, 267–287.

11. J. Daemen, R. Govaerts, J. Vandewalle, “Weak Keys for IDEA,” Adv. in Cryptol-
ogy, Crypto’93, D.R. Stinson, Ed., LNCS 773, 1994, Springer-Verlag, 224–231.

12. J. Daemen, L.R. Knudsen, V. Rijmen, “The Block Cipher SQUARE,” 4th Fast
Software Encryption Workshop, E. Biham,Ed., LNCS 1267, 1997, Springer-Verlag,
149–165.

13. J. Daemen, V. Rijmen, “AES Proposal: Rijndael,” 1st AES Conference, California,
USA, 1998, http://www.nist.gov/aes

14. H. Demirci, “Square-like Attacks on Reduced Rounds of IDEA,” 9th Selected Areas
in Cryptography Workshop, SAC’02, K. Nyberg and H. Heys, Eds., LNCS 2595,
2002, Springer-Verlag, 147–159.

15. H. Demirci, E. Ture, A.A. Selçuk, “A New Meet-in-the-Middle Attack on the IDEA
block cipher,” 10th Selected Areas in Cryptography Workshop, SAC’03, M. Matsui
and R. Zuccherato, Eds., LNCS 3006, 2003, Springer-Verlag.

16. S. Garfinkel, “PGP: Pretty Good Privacy,” O’Reilly and Associates, 1994.



174 J. Nakahara Jr.

17. P.M. Hawkes, “Asymptotic Bounds on Differential Probabilities and an Analysis
of the Block Cipher IDEA,” The University of Queensland, St. Lucia, Australia,
Dec, 1998.

18. X. Lai, “On the Design and Security of Block Ciphers,” ETH Series in Information
Processing, J.L. Massey, Ed., vol. 1, 1995, Hartung-Gorre Verlag, Konstanz.

19. X. Lai, J.L. Massey, S. Murphy, “Markov Ciphers and Differential Cryptanalysis,”
Adv. in Cryptology, Eurocrypt’91, D.W. Davies, Ed., LNCS 547, 1991, Springer-
Verlag, 17–38.

20. W. Meier, “On the Security of the IDEA Block Cipher,” Adv. in Cryptology,
Eurocrypt’93, T. Helleseth, Ed., LNCS 765, 1994, Springer-Verlag, 371–385.

21. A.J. Menezes, P.C. van Oorschot, S. Vanstone, “Handbook of Applied Cryptogra-
phy,” CRC Press.

22. J. Nakahara,Jr, V. Rijmen, B. Preneel, J. Vandewalle, “The MESH Block Ci-
phers,” The 4th International Workshop on Info. Security Applications, WISA
2003, K. Chae and M. Yung,Eds., LNCS 2908, 2003, Springer-Verlag, 458–473.

23. NBS, Data Encryption Standard (DES),” FIPS PUB 46, Federal Information Pro-
cessing Standards Publication 46, U.S. Department of Commerce, Jan, 1977.

24. NESSIE, New European Schemes for Signatures, Integrity and Encryption, 2000,
http://cryptonessie.org.

25. V. Rijmen, B. Preneel, E. De Win, “On Weaknesses of Non-Surjective Round
Functions,” Design, Codes and Cryptography, vol. 12, number 3, 1997, 253–266.

26. H.M. Yıldırım, “Some Linear Relations for Block Cipher IDEA,” The Middle East
Technical University, Jan, 2002.



Related-Key Attacks on Reduced Rounds of
SHACAL-2�

Jongsung Kim1, Guil Kim1, Sangjin Lee1,
Jongin Lim1, and Junghwan Song2

1 Center for Information Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu,

Seoul, Korea
{joshep, okim912, sangjin, jilim}@cist.korea.ac.kr

2 Department of Mathematics, Hanyang University,
17 Haengdangdong Seongdongku, Seoul

camp123@hanyang.ac.kr

Abstract. SHACAL-2 is a 256-bit block cipher with up to 512 bits
of key length based on the hash function SHA-2. It was submitted to
the NESSIE project and was recommended as one of the NESSIE selec-
tions. In this paper we present two types of related-key attacks called the
related-key differential-(non)linear and the related-key rectangle attacks,
and we discuss the security of SHACAL-2 against these two types of at-
tacks. Using the related-key differential-nonlinear attack we can break
SHACAL-2 with 512-bit keys up to 35 out of its 64 rounds, and using
the related-key rectangle attack we can break SHACAL-2 with 512-bit
keys up to 37 rounds.

1 Introduction

SHACAL-2 [5] is a 256-bit block cipher based on the compression function of
the hash function SHA-2. The cipher has 64 rounds and supports a variable key
length up to 512 bits. Recently, the SHACAL-2 cipher was recommended as one
of the NESSIE (New European Schemes for Signatures, Integrity, and Encryp-
tion) selections.

The best cryptanalytic result obtained on SHACAL-2 so far is the analysis
of a differential-nonlinear attack on 32-round SHACAL-2 [15]. The attack pre-
sented in [15] uses a nontrivial 3-round nonlinear relation of SHACAL-2. This
nonlinear relation is also used to mount our attack on SHACAL-2.

In this paper we present two types of related-key attacks called the related-
key differential-(non)linear and the related-key rectangle attacks, and we discuss
the security of SHACAL-2 against these two types of attacks.

� This work was supported by the Ministry of Information & Communications, Korea,
under the Information Technology Research Center (ITRC) Support Program.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 175–190, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



176 J. Kim et al.

Table 1. Comparison of our results with the previous attacks on SHACAL-2

Type of Number of Complexity
Attack Rounds Data / Time / Memory

Impossible Differential 30 744CP / 2495.1 / 214.5 [8]
Differential-Nonlinear 32 243.4CP / 2504.2 / 248.4 [15]

Square-Nonlinear 28 463 · 232CP / 2494.1 / 245.9 [15]
Related-Key Differential-Nonlinear 35 242.32RK-CP / 2452.10 / 247.32 (New)

Related-Key Rectangle 37 2233.16RK-CP / 2484.95 / 2238.16 (New)
CP: Chosen Plaintexts, RK-CP: Related-Key Chosen Plaintexts,

Time: Encryption units, Memory : Bytes of memory

The related-key differential-linear attack was introduced in [7]. The attack
presented in [7] uses a related-key differential-linear distinguisher with a proba-
bility of 1. In this paper, however, we enhance this technique into the cases where
the probability of distinguisher is smaller than 1, and we extend it into a tech-
nique called the related-key differential-nonlinear attack which uses a related-key
differential-nonlinear distinguisher. Using the related-key differential-nonlinear
distinguisher we can attack 35-round SHACAL-2 with a data complexity of 242.32

related-key chosen plaintexts and a time complexity of 2452.1 encryptions, which
is faster than exhaustive key search.

The related-key rectangle attack was introduced in [10]. According to [10],
two types of distinguishers can be used in this attack. In this paper we present
one of the two types of distinguishers, which is efficiently used to analyze the
SHACAL-2 cipher. Using the related-key rectangle distinguisher we can attack
37-round SHACAL-2 with a data complexity of 2233.16 related-key chosen plain-
texts and a time complexity of 2484.95 encryptions, which is faster than exhaus-
tive key search. See Table 1 for a summary of our results and their comparison
with the previous attacks.

This paper is organized as follows: In Section 2 we describe the block cipher
SHACAL-2. In Section 3 we present the related-key differential-(non)linear and
the related-key rectangle attacks, which can be useful tools to analyze block
ciphers. Section 4 presents our related-key differential-nonlinear attack on 35-
round SHACAL-2 and Section 5 presents our related-key rectangle attack on
37-round SHACAL-2. Finally, Section 6 concludes the paper.

2 Preliminaries

In this Section we present some notations which are used throughout this paper,
and we briefly describe the SHACAL-2 cipher, and we summarize a 3-round
nonlinear relation of SHACAL-2 presented in [8, 15], which is used in our related-
key differential-nonlinear attack on SHACAL-2.



Related-Key Attacks on Reduced Rounds of SHACAL-2 177

2.1 Notations

We use the following notations, where the right most bit is referred to as the
0-th bit, i.e., the least significant bit.

– P r : A 256-bit input data of the rth round, i.e., P r = (Ar, Br, · · · , Hr).
– P : A 256-bit plaintext, i.e., P = (A, B, · · · , H) = (A0, B0, · · · , H0) = P 0.
– xr

i : The ith bit of 32-bit word Xr where Xr ∈ {Ar, Br, · · · , Hr, W r, Kr, T r
1 }

(The notations W r, Kr, T r
1 will be defined in the next subsection.)

– ? : A 32-bit unknown value.
– ei : A 32-bit word that has 0′s in all bit positions except for bit i.
– ei1,···,ik

: ei1 ⊕ · · · ⊕ eik
.

– ei1,···,ik,∼ : A 32-bit word that has 1′s in the positions of bits i1, · · · , ik, and
unconcerned values in the positions of bits (ik +1) ∼ 31, and 0′s in all other
bit positions, where i1 < · · · < ik. (The unconcerned value can be 0, 1 or an
unknown value.)

2.2 Description of SHACAL-2

SHACAL-2 [5] is a 256-bit block cipher which is based on the compression func-
tion of the hash function SHA-2 [17]. It is composed of 64 rounds and supports
a variable key length up to 512 bits. However, SHACAL-2 is not intended to be
used with a key shorter than 128 bits.

According to our notations, a 256-bit plaintext P is divided into A0, B0, C0,
D0, E0, F 0, G0 and H0, and the corresponding ciphertext C is composed of
A64, B64, C64, D64, E64, F 64, G64 and H64. The rth round of encryption is per-
formed as follows.

T r+1
1 = Hr + Σ1(Er) + Ch(Er, F r, Gr) + Kr + W r

T r+1
2 = Σ0(Ar) + Maj(Ar, Br, Cr)

Hr+1 = Gr

Gr+1 = F r

F r+1 = Er

Er+1 = Dr + T r+1
1

Dr+1 = Cr

Cr+1 = Br

Br+1 = Ar

Ar+1 = T r+1
1 + T r+1

2

for r = 0, ..., 63 where + means the addition modulo 232 of 32-bit words, W r

are the 32-bit round subkeys, and Kr are the 32-bit round constants which are
different in each of the 64 rounds. The functions used in the above encryption
process are defined as follows.

Ch(X, Y, Z) = (X&Y ) ⊕ (¬X&Z)

Maj(X, Y, Z) = (X&Y ) ⊕ (X&Z) ⊕ (Y &Z)

Σ0(X) = S2(X) ⊕ S13(X) ⊕ S22(X)

Σ1(X) = S6(X) ⊕ S11(X) ⊕ S25(X)



178 J. Kim et al.

where ¬X means the complement of 32-bit word X and Si(X) means the right
rotation of X by i bit positions.

The key scheduling algorithm of SHACAL-2 is performed based on a linear
shift feedback register. It accepts a maximum 512-bit key and shorter keys than
512 bits are used by padding the key with zeros to a 512-bit string. Let the
512-bit key string be denoted W = [W 0||W 1|| · · · ||W 15]. The key expansion of
512 bits W to 2048 bits is defined by

W r = σ1(W r−2) + W r−7 + σ0(W r−15) + W r−16, 16 ≤ r ≤ 63.

σ0(x) = S7(x) ⊕ S18(x) ⊕ R3(x)

σ1(x) = S17(x) ⊕ S19(x) ⊕ R10(x)

where Ri(X) means the right shift of 32-bit word X by i bit positions.

2.3 A 3-Round Nonlinear Relation of SHACAL-2

This subsection summarizes the 3-round nonlinear relation of SHACAL-2 pre-
sented in [8, 15].

The value hr
0 can be represented as the output of nonlinear function NF (Ar+3,

Br+3, · · · , Hr+3, Kr, Kr+1, Kr+2, W r, W r+1, W r+2), denoted NF r+3, where 0 ≤
r ≤ 61.

hr
0 = cr+3

0 ⊕ dr+3
2 ⊕ dr+3

13 ⊕ dr+3
22 ⊕ (dr+3

0 &(er+3
0 ⊕ tr+3

1,0 )) ⊕ (dr+3
0 &(fr+3

0 ⊕ tr+2
1,0 ))

⊕ ((er+3
0 ⊕ tr+3

1,0 )&(fr+3
0 ⊕ tr+2

1,0 )) ⊕ hr+3
6 ⊕ hr+3

11 ⊕ hr+3
25

⊕ (hr+3
0 &hr+2

0 ) ⊕ ((¬hr+3
0 )&hr+1

0 ) ⊕ kr
0 ⊕ wr

0

The values hr+1
0 , tr+2

1,0 , hr+2
0 and tr+3

1,0 in the above equation are represented as
follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tr+3
1,0 = ar+3

0 ⊕ br+3
2 ⊕ br+3

13 ⊕ br+3
22 ⊕ (br+3

0 &cr+3
0 ) ⊕ (br+3

0 &dr+3
0 ) ⊕ (cr+3

0 &dr+3
0 )

tr+2
1,0 = br+3

0 ⊕ cr+3
2 ⊕ cr+3

13 ⊕ cr+3
22 ⊕ (cr+3

0 &dr+3
0 ) ⊕ (cr+3

0 &(er+3
0 ⊕ tr+3

1,0 ))⊕
(dr+3

0 &(er+3
0 ⊕ tr+3

1,0 ))

hr+2
0 = tr+3

1,0 ⊕fr+3
6 ⊕fr+3

11 ⊕fr+3
25 ⊕(fr+3

0 &gr+3
0 )⊕((¬fr+3

0 )&hr+3
0 )⊕kr+2

0 ⊕wr+2
0

hr+1
0 = tr+2

1,0 ⊕gr+3
6 ⊕gr+3

11 ⊕gr+3
25 ⊕(gr+3

0 &hr+3
0 ) ⊕ ((¬gr+3

0 )&hr+2
0 )⊕kr+1

0 ⊕wr+1
0

In order to facilitate the description of our related-key differential-nonlinear
attack on SHACAL-2, we use a modified notation MNF r+3 such that MNF r+3=
NF r+3 ⊕ kr

0 ⊕ wr
0.

3 Related-Key Attacks

This Section presents two types of related-key attacks which can be useful tools
to analyze block ciphers. Firstly, we describe the related-key differential-linear



Related-Key Attacks on Reduced Rounds of SHACAL-2 179

attack and extend it into a technique called the related-key differential-nonlinear
attack. Secondly, we describe the related-key rectangle attack.

3.1 The Related-Key Differential-(Non)Linear Attack

In 1994, Langford and Hellman [12] showed that the differential and the linear
attacks can be combined together by a technique called the differential-linear
attack. This attack uses a differential with probability 1 and a linear approxima-
tion with bias q. In [3], Biham, Dunkelman and Keller presented an enhanced
differential-linear attack which can be applied to the cases where the probability
of differential part is smaller than 1. More generally, in [15], Shin et al. showed
that the differential-linear attack can be extended to the cases where a square
characteristic is used instead of a differential when the value of q is very close
to 1/2 or equal to 1/2. Furthermore, these attacks can be extended to the cases
where a nonlinear approximation is used instead of a linear approximation [15].

In 1998, Hawkes [7] presented the related-key differential-linear attack which
is a combination of the related-key and the differential-linear attacks. The at-
tack presented in [7] uses a related-key differential with probability 1 and a linear
approximation with bias 1

2 . However, we can enhance this technique into the gen-
eral cases where the probability of related-key differential is less than or equal to
1 and the bias of linear approximation is less than or equal to 1

2 . Furthermore,
we can extend it into a technique called the related-key differential-nonlinear
attack which uses a related-key differential-nonlinear distinguisher.

The related-key differential-linear attack requires the encryptions of plaintext
pairs P and P ∗ under keys k and k∗, respectively, where k and k∗ be different,
but related keys. We use the notations ΩP, ΩT to present the input and out-
put differences of a differential, and λP, λT, λK to present the input, output
and subkey bit masks of a linear approximation, respectively. Let a block cipher
Ek : {0, 1}n → {0, 1}n be composed of a cascade Ek = E1

k ◦ E0
k where k is a

master key of the cipher. A block cipher Ek can be also denoted E = E1 ◦ E0 :
{0, 1}|k| × {0, 1}n → {0, 1}n. E0 is a subcipher for the related-key differential
ΩP → ΩT with probability p∗ ≤ 1 (i.e., PrX [E0

k(X)⊕E0
k∗(X∗) = ΩT|X⊕X∗ =

ΩP] = p∗) and E1 is a subcipher for the linear approximation λP → λT with
probability 1

2 + q (i.e., PrX [λP · X ⊕ λT · E1(X) ⊕ λK · K = 0] = 1
2 + q where

K be the subkey of the E1 subcipher).
In case the plaintext pair P and P ∗ satisfies the related-key differential

ΩP → ΩT (related to probability p∗), we get the one bit equation λP · (E0
k(P )⊕

E0
k∗(P ∗)) = a with probability 1 where a = λP ·ΩT. In case the plaintext pair P

and P ∗ does not satisfy the related-key differential (related to probability 1−p∗),
we assume that λP · (E0

k(P )⊕E0
k∗(P ∗)) follows a random behavior. Thus, in the

above two cases, we get the one bit equation

λP · (E0
k(P ) ⊕ E0

k∗(P ∗)) = a (1)

with probability 1
2 + p∗

2 (= p∗ · 1 + (1− p∗) · 1
2 ). According to our assumption, we

have also the following two linear approximations

λP · E0
k(P ) ⊕ λT · E1

k(E0
k(P )) ⊕ λK · K = 0 (2)



180 J. Kim et al.

λP · E0
k∗(P ∗) ⊕ λT · E1

k∗(E0
k∗(P ∗)) ⊕ λK · K∗ = 0 (3)

with probability 1
2 + q, respectively. Hence, applying (1), (2), (3) to the basic

linear cryptanalytic method presented in [13] (i.e, summing over (1), (2), (3)),
we have the following equation

λT · E1
k(E0

k(P )) ⊕ λT · E1
k∗(E0

k∗(P ∗)) ⊕ λK · K ⊕ λK · K∗ = a (4)

with probability 1
2 + 2p∗q2(= 1

2 + 23−1 · p∗

2 · q2). That is, we have the following
equation

λT · Ek(P ) ⊕ λT · Ek∗(P ∗) = 0 (5)

with bias 2p∗q2. So the attack using the above related-key differential-linear dis-
tinguisher requires O(p∗−2q−4) related-key chosen plaintexts to succeed.

As stated above, this attack can be extended into the cases where a non-
linear approximation is used instead of a linear approximation. We call such a
distinguisher a related-key differential-nonlinear distinguisher. In this paper we
exploit a related-key differential-nonlinear distinguisher to mount our attack on
SHACAL-2.

3.2 The Related-Key Rectangle Attack

In 2004, Kim et al. [10] presented the related-key rectangle attack which is a
combination of the related-key and the rectangle attacks. The main idea of the
related-key rectangle attack is to use consecutive two differentials composed of
which the first one is a related-key differential and the second one is a differ-
ential. Therefore, this attack is very useful when we have a good related-key
differential followed by a good differential.

Let Ek = E1
k ◦E0

k (or E = E1 ◦E0) be a block cipher as described above. We
assume that for E0 we have a related-key differential α → β with probability p∗

β

(i.e., PrX [E0
k(X)⊕E0

k∗(X∗) = β|X⊕X∗ = α] = p∗
β where k and k∗ be different,

but related keys), and for E1 we have a differential γ → δ with probability qγ

(i.e., PrX [E1(X) ⊕ E1(X ′) = δ|X ⊕ X ′ = γ] = qγ).
The related-key rectangle distinguisher is based on building quartets of plain-

texts (Pi, P
∗
i , Pj , P

∗
j ) which satisfy several differential conditions. Assume that

Pi, Pj are encrypted under Ek and P ∗
i , P ∗

j are encrypted under Ek∗ such that
Pi ⊕ P ∗

i = Pj ⊕ P ∗
j = α. We denote by Xi, X

∗
i , Xj , X

∗
j the encrypted values

of Pi, P
∗
i , Pj , P

∗
j under E0, respectively, and by Ci, C

∗
i , Cj , C

∗
j the encrypted

values of Xi, X
∗
i , Xj , X

∗
j under E1, respectively. We are interested in the cases

where Xi ⊕ X∗
i = Xj ⊕ X∗

j = β and Xi ⊕ Xj = γ as in these cases X∗
i ⊕ X∗

j =
(Xi ⊕β)⊕ (Xj ⊕β) = γ as well. If both the Ci, Cj pair and the C∗

i , C∗
j pair sat-

isfy a δ difference, a quartet satisfying all these differential conditions is called a
right quartet. A description of such a quartet is shown in Fig. 1. More generally,
a right quartet represents one which satisfies any β and γ difference conditions
for given α and δ differences.

If we have m pairs with difference α where one plaintext of each pair is
encrypted under Ek and the other plaintext is encrypted under Ek∗ , then we



Related-Key Attacks on Reduced Rounds of SHACAL-2 181

�

E0
k

�

E0
k∗

Pj

P ∗
j

....
....

..α

�

E0
k

�

E0
k∗

Pi

P ∗
i

....
....

..α

�

�

�

�

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

�

E1
k

�

E1
k∗

�

E1
k

�

E1
k∗

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

β β

....
....

..

C∗
j

....
....

..

C∗
i

Ci Cj

γ

γ

δ

δ

X∗
i X∗

j

XjXi

Fig. 1. A Related-Key Rectangle Distinguisher

have about mp∗
β pairs satisfying the related-key differential α → β for E0. The

mp∗
β pairs generate about (mp∗

β)2

2 quartets consisting of two such pairs. Assuming
that the intermediate encryption values distribute uniformly over all possible
values, we get Xi ⊕ Xj = γ with a probability of 2−n. As stated above, once
this occurs we get X∗

i ⊕ X∗
j = γ with a probability of 1. Since each of the pairs

(Xi, Xj) and (X∗
i , X∗

j ) satisfies the differential γ → δ for E1 with probability
qγ , the expected number of right quartets is∑

β,γ

(mp∗
β)2

2
· 2−n · (qγ)2 = m2 · 2−n−1 · (p̂∗)2 · (q̂)2

where p̂∗ = (
∑

β(p∗
β)2)

1
2 , q̂ = (

∑
γ(qγ)2)

1
2 .

On the other hand, for a random permutation the expected number of right
quartets is m2·2−2n−1, as p∗

β = 2−n and qγ = 2−n. Therefore, if p̂∗·q̂ > 2−n/2 and
m is sufficiently large, we can distinguish between E and a random permutation.

4 Related-Key Differential-Nonlinear Attack on
35-Round SHACAL-2

In this Section we describe a 28-round related-key differential-nonlinear distin-
guisher of SHACAL-2 and design our related-key differential-nonlinear attack
on 35-round SHACAL-2.

As stated in subsection 2.2, the key scheduling algorithm of SHACAL-2 is
performed based on a linear feedback shift register. However, this key schedul-



182 J. Kim et al.

ing algorithm has low difference propagations for the first several round keys.
That is, in case the related keys are same each other except for the sixth round
key W 6, the expanded round keys W 16, W 17, · · · , W 20 have all zero differences
and W 21, W 22 have the e13,∼ and the e31 differences, respectively. These dif-
ference propagations of related keys enable us to make a 25-round related-
key truncated differential with a high probability. Namely, we can construct
a 25-round related-key truncated differential ΩP → ΩT for rounds 0 ∼ 24
(E0) with probability 2−16, where ΩP = (0, e31, 0, 0, e6,20,25, 0, 0, e9,13,19) and
ΩT = (?, ?, ?, e13,∼, ?, ?, ?, e13,∼). See Tables 2, 3 for the details of this differ-
ential. Note that this related-key truncated differential requires plaintext pairs
(P, P ∗) with 8-bit fixed values as depicted in Table 3.

Table 2. A Related-Key Truncated Differential for E0

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔF i ΔGi ΔHi ΔW i Prob.
0 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−3

1 0 0 e31 0 0 e6,20,25 0 0 0 2−4

2 0 0 0 e31 0 0 e6,20,25 0 0 2−3

3 0 0 0 0 e31 0 0 e6,20,25 0 2−4

4 0 0 0 0 0 e31 0 0 0 2−1

5 0 0 0 0 0 0 e31 0 0 2−1

6 0 0 0 0 0 0 0 e31 e31 1
7 0 0 0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

20 0 0 0 0 0 0 0 0 0 1
21 0 0 0 0 0 0 0 0 e13,∼ 1
22 e13,∼ 0 0 0 e13,∼ 0 0 0 e31 1
23 ? e13,∼ 0 0 ? e13,∼ 0 0 ? 1
24 ? ? e13,∼ 0 ? ? e13,∼ 0 ? 1
25 ? ? ? e13,∼ ? ? ? e13,∼

Table 3. Some fixed bits of the P, P ∗ pair

A, A∗ C, C∗ F, F ∗ G, G∗

a31 = a∗
31 = 0 c31 = c∗

31 = 0 f6 = f∗
6 = 0 g6 = g∗

6 = 0
f20 = f∗

20 = 0 g20 = g∗
20 = 0

f25 = f∗
25 = 0 g25 = g∗

25 = 0

We use our 25-round related-key truncated differential to build a distinguisher
with a probability of 1

2 + 2−17(= 2−16 + 1
2 · (1 − 2−16)). The distinguisher ex-

ploits partial information of the differential, i.e., the distinguisher exploits the
fact that if the plaintext pairs P, P ∗ have the (0, e31, 0, 0, e6,20,25, 0, 0, e9,13,19)
difference and the foregoing 8-bit fixed values, then it holds that h25

0 = h∗25
0

with a probability of 1
2 + 2−17. This approximation assumes that the behavior



Related-Key Attacks on Reduced Rounds of SHACAL-2 183

of the remaining fraction of 1−2−16 of the pairs follows uniform distribution. In
order to verify the probability 1

2 + 2−17 we performed a series of 5 simulations
using 234 plaintext pairs each (for any two simulations we used different random
related keys and different plaintext pairs). Since the 25-round distinguisher has
a probability of 1

2 + 2−17, we expect about 233 + 131072(= 234 · ( 1
2 + 2−17))

plaintext pairs which satisfy h25
0 = h∗25

0 in 234 plaintext pairs. Our simula-
tion results support our expectation, i.e, we obtained such plaintext pairs of
233 + 128629, 233 + 130921, 233 + 138897, 233 + 143916, 233 + 145975 from our
simulations. Based on these simulations we are convinced that the probability
of the 25-round distinguisher is approximately 1

2 + 2−17.
In order to get a stronger distinguisher we concatenate the forgoing 3-round

nonlinear relation to the above distinguisher. Since given the P, P ∗ pairs it holds
that h25

0 = h∗25
0 with a probability of approximately 1

2 +2−17, we have the equa-
tion NF 28 = NF ∗28 with a probability of approximately 1

2 +2−17. Equivalently,
we have the following equation

MNF 28 = MNF ∗28 (6)

with a bias of approximately 2−17. Thus, we have a 28-round related-key
differential-nonlinear distinguisher with a bias of approximately 2−17.

We now present a method to use the 28-round related-key differential-nonlinear
distinguisher to find a master key pair of 35-round SHACAL-2 where the cipher
uses related keys whose difference is (0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0, 0, 0, 0). The
attack procedure is performed as follows.

1. Prepare 5 pools of 239 plaintext pairs (Pi,j , P
∗
i,j), i = 0, 1, · · · , 4, j = 0, 1, · · · ,

239 − 1, that have the ΩP difference and the 8-bit fixed values. We choose
all different plaintext pairs for any two pools i′s. (Note that each Pi,j is
encrypted using a key k, and each P ∗

i,j is encrypted using a key k∗ where k
and k∗ have a difference (0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0, 0, 0, 0).) Encrypt all
these plaintext pairs to get the 5 pools of 239 ciphertext pairs (Ci,j , C

∗
i,j).

2. Guess a 207-bit subkey pair (sk, sk∗). A subkey sk represents W 34, W 33, W 32,
W 31, w30

0 , w30
1 , · · · , w30

25, w
29
0 , w29

1 , · · · , w29
25 , w28

0 , w28
1 , · · · , w28

24,w
27
0 , w26

0 and
the other subkey sk∗ represents W ∗34, W ∗33,W ∗32, W ∗31,w∗30

0 ,w∗30
1 ,· · · ,w∗30

25 ,
w∗29

0 ,w∗29
1 , · · · , w∗29

25 , w∗28
0 ,w∗28

1 , · · · , w∗28
24 , w∗27

0 ,w∗26
0 . (Note that it is suffi-

cient to guess this 207-bit subkey pair for computing the value ΔMNF 28

from a given related-key ciphertext pair of 35-round SHACAL-2.)
3. For i = 0 to 4 do the following :

(a) Partially decrypt all 239 ciphertexts Ci,j (resp., C∗
i,j) using the sk sub-

key (resp., the sk∗ subkey), and check Equation (6). If the number of
ciphertext pairs satisfying Equation (6) is greater than 238 − 221.6 and
less than 238 + 221.6, then go to Step 2.

4. For the suggested subkey sk, do an exhaustive search for the 305-bit re-
maining keys using trial encryption (For the suggested subkey sk, we use two
known plaintext and ciphertext pairs for the trial encryption). If a 512-bit key
k′ is suggested, output the k′ key as a master key of 35-round SHACAL-2. In



184 J. Kim et al.

this case, we also output the key k′ ⊕ (0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0, 0, 0, 0)
as the related master key of 35-round SHACAL-2. Otherwise, go to Step 2.
In case 207-bit subkey pairs (sk, sk∗) are all tested and there does not exist
a suggested key k′, we stop this algorithm without output.

The data complexity of this attack is about 242.32(≈ 5 · 2 · 239) related-key
chosen plaintexts. The memory requirements of this attack are dominated by
the memory for ciphertext pairs (Ci,j , C

∗
i,j) and thus this attack requires about

247.32(5 · 2 · 239 · 256
8 ) memory bytes.

We now analyze the time complexity of this attack. The time complex-
ity of Step 1 (the data collecting step) is about 242.32(≈ 5 · 2 · 239) 35-round
SHACAL-2 encryptions. To compute the time complexity of Step 3 we should
estimate the survived fraction of subkey pairs (sk, sk∗) with respect to each
loop i. For a random permutation each pair behaves randomly, and thus on
the average half of the ciphertext pairs satisfy Equation (6) for a wrong sub-
key pairs. Hence, the number of plaintext pairs satisfying Equation (6) behaves
like a binomial random variable X ∼ Bin(239, 1

2 ). It is easy to see that a bi-
nomial random variable can be approximated according to the normal distri-
bution, and thus X ∼ N(μ, σ2) where μ = 238 and σ2 = 237, equivalently
Z(= X−μ

σ ) ∼ N(0, 1). Since Pr[X ≥ 238 + 221.6 or X ≤ 238 − 221.6] = Pr[Z ≥
8.5742 or Z ≤ −8.5742] ≈ 2−53.27, the survived fraction of subkey pairs with
respect to each loop i is about 2−53.27. It follows that after the ith loop the
number of survived subkey pairs is about (2207)2 ·2−53.27∗(i+1). So the time com-
plexity of Step 3 is about 2451.64(≈

∑4
i=0 239 · 2 · (2207)2 · 2−53.27∗i · 7

35 ) 35-round
SHACAL-2 encryptions. Since the number of survived subkey pairs in Step 3
is about 2147.65(≈ (2207)2 · 2−53.27∗5), the time complexity of Step 4 is about
2450.21(≈ 2147.65 · 2305 · 7

35 ) 35-round SHACAL-2 encryptions. Thus the total
time complexity of this attack is about 2452.1(≈ 242.32 + 2451.64 + 2450.21) 35-
round SHACAL-2 encryptions.

In order to compute the success rate of this attack we check the probability
that the right subkey pair survives in Step 3. For the right subkey pair Equation
(6) holds with a probability of approximately 1

2 + 2−17 or 1
2 − 2−17. In case the

probability is approximately 1
2 +2−17, we have X ∼ Bin(239, 1

2 +2−17) (i.e., X ∼
N(μ, σ2) where μ = 238 +222 and σ2 = μ · ( 1

2 − 2−17)) where X is the number of
plaintext pairs satisfying Equation (6) for the right subkey pair. Using the above
analysis we can check the probability that the right subkey pair survives in each
loop of Step 3 is about 1 − 2−8.34(≈ Pr[X ≥ 238 + 221.6] = Pr[Z ≥ −2.7395]).
It follows that the probability that the right subkey pair survives in Step 3 is
about 0.98(≈ (1 − 2−8.34)5). In case Equation (6) holds with a probability of
approximately 1

2 − 2−17, we have the same result. Therefore, the success rate
of this attack is about 98%. Note that our attack algorithm can be converted
into the key ranking algorithm presented in [14] with the same complexity and
success rate. However, the key ranking algorithm requires a number of memory
bytes for all possible 2414 subkey pairs (sk, sk∗).



Related-Key Attacks on Reduced Rounds of SHACAL-2 185

5 Related-Key Rectangle Attack on 37-Round
SHACAL-2

This Section describes a 33-round related-key rectangle distinguisher of SHACAL-
2 and designs our related-key rectangle attack on 37-round SHACAL-2.

As stated earlier, the key scheduling algorithm of SHACAL-2 has low differ-
ence propagations for the first several round keys. In case the related keys are
same each other except for the eighth round key W 8, the expanded round keys
W 16, W 17, · · · , W 22 have all zero differences. This fact allows us to make a 23-
round related-key differential characteristic with a high probability. Namely, we
can construct a 23-round related-key differential characteristic α → β for rounds
0 ∼ 22 (E0) with probability 2−31, where α = (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19,
e18,29, e31) and β = (0, 0, 0, 0, 0, 0, 0, 0). See Tables 4, 5 for the details of this
characteristic. This related-key differential characteristic requires plaintext pairs
(P, P ∗) with 22-bit fixed values as depicted in Table 5.

Table 4. A Related-Key Differential Characteristic for E0 (M = {6, 9, 18, 20, 25, 29})

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔF i ΔGi ΔHi ΔW i Prob.
0 0 0 eM e31 0 e9,13,19 e18,29 e31 0 1
1 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−11

2 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−7

3 0 0 e31 0 0 e6,20,25 0 0 0 2−4

4 0 0 0 e31 0 0 e6,20,25 0 0 2−3

5 0 0 0 0 e31 0 0 e6,20,25 0 2−4

6 0 0 0 0 0 e31 0 0 0 2−1

7 0 0 0 0 0 0 e31 0 0 2−1

8 0 0 0 0 0 0 0 e31 e31 1
9 0 0 0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

22 0 0 0 0 0 0 0 0 0 1
23 0 0 0 0 0 0 0 0 · ·

Table 5. Some fixed bits of the P, P ∗ pair

A, A∗ B, B∗ E, E∗ F, F ∗ G, G∗

a6 = a∗
6 = 0 b6 = b∗

6 = 0 e9 = e∗
9 = 1 f18 = f∗

18 = 0 g9 = g∗
9 = 0

a9 = a∗
9 = 0 b9 = b∗

9 = 0 e13 = e∗
13 = 1 f29 = f∗

29 = 0 g13 = g∗
13 = 0

a18 = a∗
18 = 0 b18 = b∗

18 = 0 e18 = e∗
18 = 1 g19 = g∗

19 = 0
a20 = a∗

20 = 0 b20 = b∗
20 = 0 e19 = e∗

19 = 1
a25 = a∗

25 = 0 b25 = b∗
25 = 0 e29 = e∗

29 = 1
a29 = a∗

29 = 0 b29 = b∗
29 = 0



186 J. Kim et al.

Table 6. A Differential Characteristic for E1 (M ′ = {3, 14, 15, 24, 25})

Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔF i ΔGi ΔHi Prob.
23 0 e9,18,29 0 0 e31 eM 0 0 2−13

24 0 0 e9,18,29 0 0 e31 eM 0 2−10

25 e31 0 0 e9,18,29 e31 0 e31 eM 2−10

26 0 e31 0 0 0 e31 0 e31 2−2

27 0 0 e31 0 0 0 e31 0 2−2

28 0 0 0 e31 0 0 0 e31 1
29 e31 0 0 0 0 0 0 0 2−4

30 e9,18,29 e31 0 0 0 0 0 0 2−6

31 e5,27 e9,18,29 e31 0 0 0 0 0 2−12

32 eM′ e5,27 e9,18,29 e31 0 0 0 0 2−15

33 e11,23 eM′ e5,27 e9,18,29 e31 0 0 0 ·

Table 7. Number of Differential Characteristics for Rounds 23-32 (E1) With Respect
to Probabilities

Prob. (qγ) 2−74 2−75 2−76 2−77 · · ·
Number of Characteristics 15 60 236 440 · · ·

As mentioned before, a related-key rectangle distinguisher does not use a
related-key differential but a differential for E1. Thus we need not concern
difference propagations of round keys for E1. Our differential characteristic
γ → δ for E1 has 10 rounds (23 ∼ 32) and a probability of 2−74, where
γ = (0, e9,18,29, 0, 0, e31, e6,9,18,20,25,29, 0, 0) and δ = (e11,23, e3,14,15,24,25, e5,27,
e9,18,29, e31, 0, 0, 0). See Table 6 for the details of this characteristic.

In order to obtain p̂∗ (resp., q̂) we should compute the probabilities of all the
related-key differentials with input difference α through E0 (resp., all the differen-
tials with output difference δ through E1). However, it is computationally infeasi-
ble to compute the probabilities of all these differentials. So we take into account
as many related-key differential characteristics for E0 (resp., many differential
characteristics for E1) as possible for computing a lower bound of p̂∗ (resp., q̂).
In our observation, however, any 23-round related-key differential characteristic
with input difference α for E0 has a probability which is much less than 2−31, so
we ignore in our distinguisher the probabilities derived from all related-key differ-
ential characteristics for E0 except for the characteristic as described in Table 4.

In order to compute a lower bound of q̂ we settle for counting over a wide
variety of differential characteristics which have the same last 9 rounds in the
forgoing 10-round differential characteristic for E1. Table 7 shows the number of
counted differential characteristics according to their probabilities. As a result,
we can increase a lower bound for p̂∗ (resp., q̂) up to 2−31 (resp., 2−71.16).
Since the value p̂∗ · q̂(≈ 2−102.16) is greater than 2−128, this 33-round related-
key rectangle distinguisher can distinguish between 33-round SHACAL-2 and a
random permutation.



Related-Key Attacks on Reduced Rounds of SHACAL-2 187

We now present a method to use the 33-round related-key rectangle dis-
tinguisher to find a master key pair of 37-round SHACAL-2 where the cipher
uses related keys whose difference is (0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0, 0). The
attack procedure is performed as follows.

1. Prepare 2232.16 plaintext pairs (Pi, P
∗
i ), i = 0, 1, · · · , 2232.16 − 1 that have

the α difference and the 22-bit fixed values. (Note that each Pi is encrypted
using a key k, and each P ∗

i is encrypted using a key k∗ where k and k∗

have a difference (0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0, 0).) Encrypt all these
plaintext pairs to get the 2232.16 ciphertext pairs (Ci, C

∗
i ).

2. Guess two 128-bit subkeys sk(= W 33, W 34, W 35, W 36) and sk∗(= W ∗33,
W ∗34, W ∗35, W ∗36).

3. Partially decrypt all Ci (resp., C∗
i ) through rounds 36 ∼ 33 using the sk

subkey (resp., the sk∗ subkey), and denote the values we get by Ti (resp.,
T ∗

i ). We keep all Ti, T
∗
i values in a hash table.

4. Check that Ti1 ⊕ Ti2 = T ∗
i1
⊕ T ∗

i2
= δ for all indexes i1, i2 such that 0 ≤ i1 <

i2 ≤ 2232.16 − 1. If the number of quartets passing this δ test is greater than
or equal to 6, then keep the guessed 128-bit subkey sk together with all the
quartets (Ti1 , Ti2 , T

∗
i1

, T ∗
i2

) which satisfy the δ test. Otherwise, go to Step 2.
5. Guess two 32-bit subkeys W 32, W ∗32, and then partially decrypt all sug-

gested values Ti1 , Ti2 (resp., T ∗
i1

, T ∗
i2

) through round 32 using the W 32 (resp.,
W ∗32) subkey and denote the values we get by T ′

i1
, T ′

i2
(resp., T ′∗

i1
, T ′∗

i2
). If all

the T ′
i1

, T ′
i2

pairs and the T ′∗
i1

, T ′∗
i2

pairs have the (e3,14,15,24,25, e5,27, e9,18,29,
e31, 0, 0, 0, 0) difference (which is the input difference of round 32 in our dif-
ferential characteritic for E1), keep the guessed 32-bit subkey W 32 together
with all the quartets (T ′

i1
, T ′

i2
, T ′∗

i1
, T ′∗

i2
) which satisfy the above difference.

Otherwise, go to Step 5, i.e., restart this step, but in case 32-bit subkeys
W 32, W ∗32 are all tested in this step, go to Step 2.

6. Guess two 32-bit subkeys W 31, W ∗31, and then partially decrypt all sug-
gested values T ′

i1
, T ′

i2
(resp., T ′∗

i1
, T ′∗

i2
) through round 31 using the W 31 (resp.,

W ∗31) subkey and denote the values we get by T ′′
i1

, T ′′
i2

(resp., T ′′∗
i1

, T ′′∗
i2

). If all
the T ′′

i1
, T ′′

i2
pairs and T ′′∗

i1
, T ′′∗

i2
pairs have the (e5,27, e9,18,29, e31, 0, 0, 0, 0, 0)

difference (which is the input difference of round 31 in our differential char-
acteritic for E1), keep the guessed 32-bit subkey W 31. Otherwise, go to Step
6, i.e., restart this step, but in case 32-bit subkeys W 31, W ∗31 are all tested
in this step, go to Step 2 or 5, i.e., if there is any key pair (W 32, W ∗32) which
is not yet tested for the suggested key pair (sk, sk∗), go to Step 5, otherwise,
go to Step 2.

7. For the suggested subkey sk, W 32, W 31, do an exhaustive search for the 320-
bit remaining key using trial encryption (For the suggested subkey, we use
two known plaintext and ciphertext pairs for the trial encryption). If a 512-
bit key k′ is suggested, output the key as a master key of 37-round SHACAL-
2. In this case, we also output the key k′⊕(0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0,
0) as the related master key of 37-round SHACAL-2.



188 J. Kim et al.

The data complexity of this attack is 2233.16 related-key chosen plaintexts.
The memory requirements of this attack are dominated by the memory for
ciphertext pairs, so this attack requires about 2238.16(= 2233.16 · 32) memory
bytes.

The time complexity of Step 1 (the data collection step) is 2233.16 37-round
SHACAL-2 encryptions and the time complexity of Step 3 is 2484.95(≈ 2233.16 ·
2256 · 12 ·

4
37 ) 37-round SHACAL-2 encryptions on average (The factor 1

2 means the
average fraction of 128-bit subkey pairs which are tested in Step 3). In Step 4,
each of all possible quartets must be compared to the δ difference twice. This can
be done efficiently by using a hash table for checking the δ difference (Similarly,
the hash table can be used for checking the differences suggested in Step 5,6). In
Step 4, the probability that each wrong subkey pair produces at least 6 quartets
passing the δ test is about 2−59.22(≈

∑t
i=6(tCi · (2−256·2)i · (1 − 2−256·2)t−i))

where t is the value 2463.32 which represents the number of all possible quartets
derived from the 2232.16 plaintext pairs. It follows that the expected number of
the suggested 128-bit subkey pairs in Step 4 is 2195.78(≈ 2256 · 1

2 · 2−59.22) on
average.

As one of the methods for reducing the suggested 2195.78 subkey pairs, Steps
5 and 6 are performed in this attack. Additionally, we can obtain other 64-bit
subkey pairs through Steps 5 and 6. The probability that each wrong subkey pair
(W 32, W ∗32) satisfies the requirement of Step 5 is at most 2−180(= (2−15)12). Be-
cause a probability 2−15 is required to satisfy a 1-round differential characteristic
for rounds 32 ∼ 33 described in Table 6 and the number of the quartets tested in
Step 5 is at least 6. So the expected number of the suggested 160-bit subkey pairs
((sk, W 32), (sk∗, W ∗32)) in Step 5 is 279.78(≈ 2195.78 · 264 · 2−180) and the time
complexity of Step 5 is about 2256.16(≈ 2195.78 ·264 ·12 · 1

37 ) 37-round SHACAL-2
encryptions. Similarly, Step 6 exploits a 1-round differential characteristic for
rounds 31 ∼ 32 described in Table 6 for reducing the suggested 279.78 subkey
pairs. Since this 1-round differential characteristic has a probability of 2−12 and
the number of the quartets tested in Step 6 is at least 6, the expected number of
the suggested 192-bit subkey pairs ((sk, W 32, W 31), (sk∗, W ∗32, W ∗31)) in Step
6 is 2−0.22(≈ 279.78 · 264 · (2−12)12) and the time complexity of Step 6 is about
2142.16(≈ 279.78 · 264 · 12 · 1

37 ) 37-round SHACAL-2 encryptions. Since the time
complexity of Step 7 is about 2320 37-round SHACAL-2 encryptions, the total
time complexity of this attack is about 2484.95(≈ 2233.16 + 2484.95 + 2256.16 +
2142.16 + 2320) 37-round SHACAL-2 encryptions.

Since this attack uses the forgoing 33-round related-key rectangle distin-
guisher with a probability of (p̂∗ · q̂)2(≈ (2−102.16)2), the expected number
of right quartets is about 23(= 2232.16C2 · 2−256 · (2−102.16)2). It follows that
the probability that a right subkey pair satisfies the requirement of Steps 5
and 6 is one. Thus, the success rate of this attack, i.e., the probability which
the right subkey pair produces at least 6 quartets passing the δ test is about
0.80(≈

∑t
i=6(tCi · (2−256 · (2−102.16)2)i · (1 − 2−256 · (2−102.16)2)t−i)) where t is

the value 2463.32.



Related-Key Attacks on Reduced Rounds of SHACAL-2 189

6 Conclusion

In this paper we have presented the enhanced related-key differential-linear
attack and we have extended it into the related-key differential-nonlinear at-
tack. Using the related-key differential-nonlinear attack we have broken 35-round
SHACAL-2 with a data complexity of 242.32 related-key chosen plaintexts and
a time complexity of 2452.1 encryptions. We have also presented a related-key
rectangle attack on 37-round SHACAL-2. Our attack requires 2233.16 related-key
chosen plaintexts and 2484.95 encryptions.

We believe that the methods developed to attack SHACAL-2 can be effi-
ciently applied to block ciphers with weak key scheduling algorithms.

References

1. E. Biham and A. Shamir, Differential cryptanalysis of the full 16-round DES, Ad-
vances in Cryptology - CRYPTO 1992, LNCS 740, pp. 487-496, Springer-Verlag,
1992.

2. E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Crytology, v. 7, n. 4, pp.229-246, 1994.

3. E. Biham, O. Dunkelman and N. Keller, Enhanced Differential-Linear Crypt-
analysis, Advances in Cryptology - ASIACRYPT 2002, LNCS 2501, pp. 254-266,
Springer-Verlag, 2002.

4. E. Biham, O. Dunkelman and N. Keller, Rectangle Attacks on 49-Round SHACAL-
1, FSE 2003, LNCS 2887, pp. 22-35, Springer-Verlag, 2003.

5. H. Handschuh and D. Naccache, SHACAL : A Family of Block Ciphers, Submission
to the NESSIE project, 2002.

6. H. Handschuh, L.R. Knudsen and M.J. Robshaw, Analysis of SHA-1 in Encryption
Mode, CT-RSA 2001, LNCS 2020, pp. 70-83, Springer-Verlag, 2001.

7. P. Hawkes, Differential-Linear Weak-Key Classes of IDEA, Advances in Cryptol-
ogy - EUROCRYPT 1998, LNCS 1403, pp. 112-126, Springer-Verlag, 1998.

8. S. Hong, J. Kim, G. Kim, J. Sung, C. Lee and S. Lee, Impossible Differential Attack
on 30-Round SHACAL-2, INDOCRYT 2003, LNCS 2904, pp. 97-106, Springer-
Verlag, 2003.

9. J. Kim, D. Moon, W. Lee, S. Hong, S. Lee and S. Jung, Amplified Boomerang
Attack against Reduced-Round SHACAL, Advances in Cryptology - ASIACRYPT
2002, LNCS 2501, pp. 243-253, Springer-Verlag, 2002.

10. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, The Related-Key Rectangle Attack
- Application to SHACAL-1, ACISP 2004, To appear.

11. L.R. Knudsen, Trucated and Higher Order Differentials, FSE 1996, LNCS 1039,
pp 196-211, Springer-Verlag, 1995.

12. S.K. Langford and M.E. Hellman, Differential-Linear Cryptanalysis, Advances in
Cryptology - CRYPTO 1994, LNCS 839, pp. 17-25, Springer-Verlag, 1994.

13. M. Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology
- EUROCRYPT 1993, LNCS 765, pp. 386-397, Springer-Verlag, 1994.

14. A.A. Selcuk, A. Bicak, On Probability of Success in Linear and Differential Crypt-
analysis, SCN 2002, LNCS 2576, pp. 174-185, Springer-Verlag, 2002.

15. Y. Shin, J. Kim, G. Kim, S. Hong and S. Lee, Differential-Linear Type Attacks on
Reduced Rounds of SHACAL-2, ACISP 2004, To appear.



190 J. Kim et al.

16. U.S. Department of Commerce.FIPS 180-1: Secure Hash Standard ,Federal Infor-
mation Processing Standards Publication, N.I.S.T., April 1995.

17. U.S. Department of Commerce.FIPS 180-2: Secure Hash Standard ,Federal Infor-
mation Processing Standards Publication, N.I.S.T., August 2002.



Related-Key Attacks on DDP Based Ciphers:
CIKS-128 and CIKS-128H�

Youngdai Ko1, Changhoon Lee2, Seokhie Hong2,
Jaechul Sung3, and Sangjin Lee2

1 Information Security Team, LG CNS, Hoehyeon Dong , Jung Gu, Seoul, Korea
koyd@lgcns.com

2 Center for Information Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

{crypto77, hsh, sangjin}@cist.korea.ac.kr
3 Department of Mathematics, University of Seoul, 90

Cheonnong Dong, Dongdaemun Gu, Seoul, 130-743, Korea
jcsung@uos.ac.kr

Abstract. CIKS-128 and CIKS-128H are 128-bit block ciphers with a
256-bit key sizes based on data-dependent operations, respectively. They
are also fast hardware-oriented ciphers and improvements of block cipher
CIKS-1 introduced in [14]. This paper presents related-key differential at-
tacks on full-round CIKS-128 and CIKS-128H. In result, using full-round
related-key differential characteristics with probability 2−36 and 2−35.4,
these attacks can recover the partial subkey bits for CIKS-128 and CIKS-
128H with about 240 plaintexts, respectively. These works suggests that
the greatest possible care has to be taken when proposing improvements
of the existing block ciphers.

Keywords: CIKS-128, CIKS-128H, Block Cipher, Related-Key Differ-
ential Attack, Data-Dependent Operation

1 Introduction

Data dependent operations (DDO) are very attractive cryptographic primitive
designing fast block ciphers suitable for the applications of many network requir-
ing high speed encryption [15, 16, 17]. Up to now, DDO based ciphers [4, 14] seem
to be secure against well known attack methods like differential cryptanalysis
and linear cryptanalysis [1, 13, 12, 9, 3]. CIKS-128 [2] and CIKS-128H [16] are
such ciphers based on DDO designed by N.D.Goots et al. and N.Sklavos et al.
respectively. As CIKS-128H is just a modified version of CIKS-128, it use a differ-
ent elementary control box performing DDO from CIKS-128. These algorithms
have very simple key schedules for the case of frequent change of keys. However,

� This work was supported by the Ministry of Information & Communications, Korea,
under the Information Technology Research Center (ITRC) Support Program.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 191–205, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

.



192 Y. Ko et al.

such simple key schedules may be vulnerable from the view point of related-key
cryptanalysis. It is known that related-key cryptanalysis is a practical attack
on key-exchange protocols that do not guarantee key integrity, and key-update
protocols that updates session keys using a known function, for example, K,
K+1, K+2, etc. where K is a session key [5, 6].

In this paper, we present the related-key differential attacks on full-round
CIKS-128 and CIKS-128H. To begin with, we derive the properties of non-linear
function G and DDO-boxes used in round function of CIKS-128 and CIKS-128H,
which allow us to exploit full-round related-key differential characteristics. Then,
we construct a full-round related-key differential characteristic with probability
2−36 and 2−35.4 for CIKS-128 and CIKS-128H, respectively, and recover the
partial subkey bits of CIKS-128 and CIKS-128H with about 240 plaintexts, re-
spectively. Our attacks do not need the extra encryption procedures in order to
recover the partial subkey bits. We only need to observe the difference propaga-
tion of ciphertext pair maintaining our related-key differential characteristics of
full-round CIKS-128 and CIKS-128H, and trace the corresponding subkey bits,
respectively.

This paper is organized as follows; In Section 2, we mention notations used
in this paper and introduce several properties of DDO-boxes. Section 3 shortly
describes algorithms and properties of CIKS-128 and CIKS-128H. We present
the related-key differential attacks of CIKS-128 and CIKS-128H in Section 4 and
conclude in Section 5.

2 Preliminaries

In this section, we shortly describe various Pn/m and Rn/m-boxes executing the
data dependent operations and present their several properties. For convenience,
we use the same notations represented in [2, 16].

2.1 Notations

We will use the following notations throughout this paper. Note that bits will be
numbered from left to right, starting at bit 1. For example, the right most bit of
a n-bit binary string P is pn, while the leftmost bit is p1, i.e., P = (p1, p2, · · · , pn).

- Plow = (p1, p2, · · · , pn
2
), Phi = (pn

2 +1, pn
2 +2, · · · , pn)

- αi : a 4-bit binary string in which the i-th bit is one and the others are zero
- βi : a 8-bit binary string in which the i-th bit is one and the others are zero
- ei : a 64-bit binary string in which the i-th bit is one and the others are zero
- di : a 192-bit binary string in which the i-th bit is one and the others are zero
- ⊕ : a bitwise-XOR operation
- ⊗ : a bitwise-AND operation
- | : a concatenation operation
- ≪ : a left cyclic rotation



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 193

Table 1. The results of (a) P2/1(v)(x1x2) and (b) R2/1(v)(x1x2), (where x1, x2∈ {0, 1}

x1 x2

v=0

v=1

0 0

(a) P2/1(v)(x1 x2)

0 0

0 0

0 1

0 1

1 0

1 0

1 0

0 1

1 1

1 1

1 1
P2/1(v)

x1 x2

v=0

v=1

0 0

0 0

0 0

0 1

1 0

0 1

1 0

0 1

1 1

1 1

1 1

1 0
R2/1(v)

(b) R2/1(v)(x1 x2)

2.2 DDO-Boxes

DDO-boxes Pm/n and Rm/n used in CIKS-128 and CIKS-128H are constructed
as a superposition of standard elementary controlled boxes P2/1- and R2/1-box,
respectively(see Fig. 1,2). In other words, Pm/n(resp. Rm/n) are constructed by
using P2/1(resp. R2/1) repeatedly. Thus, the only difference between Pn/m and
Rn/m is the used standard elementary controlled boxes. Here, n denotes the bit-

x1 x2

y1 y2

P2/1

v

(a) x1 x2

y1 y2

f1

v

(b)

f2

y1 = x 1+  v
y2 = x 2 -  v

y1 = f 1(x1,x2,v) = x1v     x2v    x2

R 2/1

y2 = f 2(x1,x2,v) = x2v     x1

Fig. 1. Elementary controlled boxes : (a) P2/1-box, (b) R2/1-box

size of input and output string and m means that of control vectors. Note that
R2/1-box was designed for thwarting the linearity of P2/1-box that the sum of
input bits is equal to that of output bits [16].

Now, we present some properties of DDO-boxes. Table 1 describes two output
bits of P2/1 and R2/1-box corresponding their two input bits under each one-bit
control vector. We let x1x2 be two-bit input string of P2/1 or R2/1-box and v be
one-bit control vector, where x1, x2 and v ∈ {0, 1}.

Property 1. P2/1(0)(x1x2) = P2/1(1)(x1x2) with a probability of 2−1.

Property 2. R2/1(0)(x1x2) = R2/1(1)(x1x2) with a probability of 2−2.

Property 1 holds when x1 = x2 and Property 2 holds when x1 = x2 = 0.

Property 3. Let V and V ′ be m-bit control vectors for Pn/m-box and assume
V ⊕V ′ = di (1 ≤ i ≤ m), then Pn/m(V )(X) = Pn/m(V ′)(X) with a probability of
2−1 where X ∈ {0, 1}n. It is also held in the inverse of Pn/m-box, i.e., P−1

n/m-box.



194 Y. Ko et al.

(b)

(a)

y3 y4y1 y2

x3 x4
x1 x2

v4v3

v2v1

y3 y4y1 y2

x3 x4x1
x2

v2

(c)

v1

v4v3

(d)

P2/1 P2/1

P2/1 P2/1

P2/1 P2/1

P2/1 P2/1

X=(x1 , x2 , ... , x8)

P2/1P2/1 P2/1P2/1

P4/4 P4/4

Y=(y1 , y2 , ... , y8)

X=(x1 , x2 , ... , x8)

P4/4 P4/4

P2/1P2/1 P2/1P2/1

Y=(y1 , y2 , ... , y8)

V1

V2
V3

V3

V2

V1

Fig. 2. Examples of DDO-boxes : (a) P4/4, (b) P −1
4/4, (c) P8/12, (b) P −1

8/12

Property 4. Let V and V ′ be m-bit control vectors for Rn/m-box and assume
V ⊕V ′ = di (1 ≤ i ≤ m), then Rn/m(V )(X) = Rn/m(V ′)(X) with a probability of
2−2 where X ∈ {0, 1}n. It is also held in the inverse of Rn/m-box, i.e., R−1

n/m-box.

Property 5. If X ⊕ X ′ = αi and W⊕W ′ = βk, then P4/4(V )(X) ⊕ P4/4(V )(X ′)
= αj and P8/12(V ′)(W ) ⊕ P8/12(V ′)(W ′) = βh, where X, X ′, V ∈ {0, 1}4, W, W ′∈
{0, 1}8, V ′∈ {0, 1}12, 1≤i, j≤4, 1≤k, h≤8. In addition, if (i, j) and (k, h) are
fixed, then the exact route from i to j and from k to h, via respective 2 and 3
elements (P2/1-boxes) are also fixed.

Property 6. If we assume that x′
1 = x1⊕1 and x′

2 = x2⊕1, we know the following
facts.

R2/1(0)(x1x2) ⊕ R2/1(0)(x1x
′
2) = 10

R2/1(1)(x1x2) ⊕ R2/1(1)(x1x
′
2) = 01.

R2/1(0)(x1x2) ⊕ R2/1(0)(x′
1x2) = 01

R2/1(1)(x1x2) ⊕ R2/1(1)(x′
1x2) = 11.

Property 7. If X⊕X ′=α4 and W⊕W ′=β8, then by Property 6, R4/4(V )(X)
⊕ R4/4(V ) (X ′) = αj and R8/12(V ′)(W )⊕R8/12(V ′)(W ′)=βh, where X, X ′, V ∈
{0, 1}4, W, W ′∈ {0, 1}8, V ′∈ {0, 1}12, 1≤j≤4, 1≤h≤8. In addition, if j and h
are fixed, then then the exact route from 4 to j and from 8 to h, via respective
2 and 3 elements (R2/1-boxes) are also fixed.

Property 8. If W⊕W ′=βk, then P−1
8/12(V ′)(W ) ⊕ P−1

8/12(V ′)(W
′)=βh, where W ,W ′

∈ {0, 1}8, V ′ ∈ {0, 1}12, 1≤k, h≤8. Particularly, if k ∈ {1, 2, 3, 4} then h is one of
1, 2, 5, 6 and if k ∈ {5, 6, 7, 8} then h is one of 3, 4, 7, 8. In addition, if k and h are
fixed, there are only two possible routes from k to h, via 3 elements (P2/1-boxes).

Property 9. If W⊕W ′=β8, then R−1
8/12(V ′)(W ) ⊕ R−1

8/12(V ′)(W
′)=β, where β ∈

{β3,4, β4, β7,8, β8}, W, W ′∈ {0, 1}8, V ′∈ {0, 1}12, 1≤k, h≤8. By the properties
of the structure of R−1

8/12-box and Property 6, if β ∈ {β3,4, β7,8} then the route
from 8 to 3,4 or 7,8 is fixed and if β ∈ {β4, β8} then, there are only two possible
routes from 8 to 4 or 8, via 3 elements (R2/1-boxes) in each case.



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 195

Property 10. Let Y = Pn/m(V )(X) and Y ′ = Pn/m(V )(X ′). Then Hw(X ⊕
X ′)=Hw(Y ⊕ Y ′). Similary, the inverse is also held.

Property 7, 8 and 9 mean that if we know the bit-position of input vector which
has a difference and corresponding that of output vector, then we can determine
the route of difference, i.e., we can derive the control vector of corresponding to
the elements of Pn/m or Rn/m-box 1. For example, in Property 5 let k = 8 and
h = 2. Then, we can exactly know the 3 bits control vector of corresponding
to the elements (P2/1-boxes) of P8/12-box with probability 1. See Fig. 3. The
bold line denotes the propagation of the right most bit which has a difference.
Property 10 describes the linearity of DDO-boxes based on P2/1.

1

P4/4

0 0 0 0 0 0 0 1

0

P2/1

P2/1P2/1 P2/1P2/1

P4/4

1

P2/1

P2/1
P2/1

0 1 0 0 0 0 0 0

Fig. 3. An example of the difference propagation and the corresponding 3 bits con-
trolled vector in P8/12-box

3 CIKS-128 and CIKS-128H

In this section, we briefly describe CIKS-128 and CIKS-128H respectively. For
details, refer to [2, 16].

3.1 Description of CIKS-128

CIKS-128 is a 12-round iterated block with 128-bit block size and 256-bit key
size. The general encryption scheme is composed of the initial key XOR opera-
tion, round function Crypt and the final key XOR operation. The round function
Crypt uses various operations such as DDO-boxes(P128/1, P64/192 and P−1

64/192),
non-linear function G, fixed permutations (Π, π and I), and XOR operations.
For details, refer to [2] and Fig. 4.

The key schedule of CIKS-128 is very simple. The 256-bit master key K is
split into four 64-bit blocks ,i.e., K = (K1, K2, K3, K4). Then, in order to gen-
erate the subkey sequence A(r) = (A(r)

1 , A
(r)
2 , A

(r)
3 , A

(r)
4 ), K1,K2,K3 and K4 are

1 As we mentioned in 2.2, DDO-box can be considered as a superposition of the
standard elementary P2/1-boxes.



196 Y. Ko et al.

Fig. 4. (a) General structure of CIKS-128 and (b) round function Crypt

rearranged as specified in Table Here A(r) denotes the r-th round key sequence,
and A

(r)
i , Kj ∈ {0, 1}64, 1≤i, j≤4 and 1≤r≤12. 2.

Table 2. Key schedule of CIKS-128

r

A1

A2

A3

A4

1

K1

K2

K3

K4

2

K4

K3

K2

K1

3

K3

K4

K1

K2

4

K2

K1

K4

K3

5

K1

K2

K3

K4

6

K3

K4

K1

K2

7

K3

K4

K1

K2

8

K1

K2

K3

K4

9

K2

K1

K4

K3

10

K3

K4

K1

K2

11

K4

K3

K2

K1

12

K1

K2

K3

K4

3.2 Description of CIKS-128H

As CIKS-128H is a modified version of CIKS-128, it is almost similar to CIKS-
128. The differences between CIKS-128 and CIKS-128H are DDO-box and key
schedule. CIKS-128H replaced P64/192 and P−1

64/192-boxes in CIKS-128 by R64/192

and R−1
64/192-boxes which are composed of the elementary controlled boxes R2/1.

The structure of round function of CIKS-128H is equal to that of CIKS-128
except operations R64/192 and R−1

64/192-boxes. In addition, CIKS-128H uses a
little different key schedule from CIKS-128 for 6-round or 8-round represented
in Table 3. Here, we deal with 8-round CIKS-128H. For details, refer to [16].



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 197

Table 3. Key schedule of 8-round CIKS-128H

r

A1

A2

A3

A4

1

K1

K2

K3

K4

2

K4

K3

K2

K1

3

K3

K4

K1

K2

4

K2

K1

K4

K3

5

K2

K1

K4

K3

6

K3

K4

K1

K2

7

K4

K3

K2

K1

8

K1

K2

K3

K4

3.3 Properties of CIKS-128 and CIKS-128H

In this subsection, we derive some properties of operations used in round func-
tion of CIKS-128 and CIKS-128H, which are useful to construct related key
differential characteristics of of CIKS-128 and CIKS-128H.

Property 11. i) For the control vector V of P64/192-box, π(L, A′, A′′) ⊕ π(L, A′

⊕e64, A
′′)= d138 and π(L, A′, A′′) ⊕ π(L, A′, A′′ ⊕ e64)=d180. ii) for the control

vector V ′ of P−1
64/192-box, π(L, A′, A′′) ⊕ π(L, A′⊕e64, A

′′)=d42 and π(L, A′, A′′)
⊕ π(L, A′, A′′ ⊕ e64)=d20. where L, A′, A′′∈{0, 1}64 and V, V ′∈{0, 1}192

Property 12.
G(X, A′, A′′) ⊕ G(X, A′⊕e64,A′′⊕e64) = 0, or
G(X, A′, A′′) ⊕ G(X, A′⊕e64,A′′⊕e64) = e64.

Property 13. Let Y = P−1
64/192(V )(X) and Y ′ = P−1

64/192(V )(X⊕ei). Then, Y ⊕Y ′=ej

by Property 10 and there are exactly two possible routes from i to j by Property
5 and 8.

Property 14. Let X⊕X ′=e64, Y = R−1
64/192(V )(X) and Y ′ = R−1

64/192(V )(X
′). If

Y ⊕Y ′=ei or ei,i+1, then there are exactly two routes from the 64-th bit position
(of input difference) to the i-th or i-th and (i + 1)-th bit position (of output
difference) by Property 6, 7 and 9, where i = 4j−1, 1≤j≤16.

4 Related-Key Differential Attacks on Full-Round
CIKS-128 and CIKS-128H

In this section, we construct a related-key differential characteristic for CIKS-128
and CIKS-128H using the properties mentioned in Subsection 2.2 and 3.3 and
present the related-key differential attacks on full-round CIKS-128 and CIKS-
128H.

4.1 Related-Key Differential Characteristic of CIKS-128

We survey related-key differential properties for round function Crypt. We con-
sider the situation that two identical input values of Crypt change into two



198 Y. Ko et al.

identical output values under the condition that the corresponding round keys
which have a relation. To begin with, we suppose there exist two round keys
A′ = (A′

1, A
′
2, A

′
3, A

′
4) and A′′ = (A′′

1 , A′′
2 , A′′

3 , A′′
4) as follows:

A′ ⊕ A′′ = (0, 0, e64, e64) or (e64, e64, 0, 0),

where A′, A′′∈{0, 1}256, A′
i, A

′′
i ∈{0, 1}64 and 1≤i≤4.

We call the subkey sequences A′
i and A′′

i related on e64 ‘the related subkey
sequence Ai=(A′

i,A
′′
i )’ and shortly denote it by Ai, e.g., in A′⊕A′′=(0,0,e64,e64)

the related subkey sequences are A3 and A4. Thus, according to the condition
of A′⊕A′′, we classify them into two cases C1. and C2. as follows. In addition,
for convenience, we divide the round function Crypt into four layers. Refer to
Fig. 4 (b).

C1. A′ ⊕ A′′ = (0, 0, e64, e64)
This case means that the related subkey sequences are A3 and A4. In the 1st
layer, A4 is used to form the 192-bit control vector V for the P64/192-box. In
the 4-th layer, A3 is used to form the control vector V ′ for the P−1

64/192-box.
A3 and A4 are also used of subkey sequences of G produced a 64-bit output
value XORed with a result of permutation I in the 3rd layer (see Fig. 4 (b)).
Thus, by Property 11 and 3, if the input difference of the 1st layer is zero then
the corresponding output difference is zero with a probability of 2−1. Similarly,
if the input difference of the 4-th layer is zero then the corresponding output
difference is zero with a probability of 2−1. Furthermore, by Property 12, if the
input difference of the 3rd layer is zero then the corresponding output difference
is zero with a probability of 2−1. Hence, if Crypt have two identical inputs and
the corresponding round keys satisfying the case C1. then Crypt outputs the
same values each other with a probability of 2−3.

C2. A′ ⊕ A′′ = (e64, e64, 0, 0)
This case is similar to C1.. It means that the related subkey sequences are A1
and A2. In the 1st layer, A1 is used to form the 192-bit controlled vector V
for the P64/192-box. In the 4-th layer, A2 is used to form the control vector V ′

for the P−1
64/192-box. A1 and A2 are used of subkey sequences of G produced a

64-bit output value XORed with an output of the 1st layer in the 2nd layer.
Thus, by Property 11 and 3, if the input difference of the 1st layer is zero then
the corresponding output difference is zero with a probability of 2−1. Similarly,
if the input difference of the 4-th layer is zero then the corresponding output
difference is zero with a probability of 2−1. Furthermore, by Property 12, if the
input difference of the 2nd layer is zero then the corresponding output difference
is zero with a probability of 2−1. Hence, if Crypt have two identical inputs and
the corresponding round keys satisfying the case C2. then Crypt outputs the
same values each other with a probability of 2−3.

That is, these cases mean a 1-round related-key differential characteristic of
CIKS-128 with a probability of 2−3.



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 199

Table 4. A full-round related-key differential characteristic of CIKS-128

Round 1 2 3 4 5 6 7 8 9 10 11 12
Case C2 C1 C1 C2 C2 C1 C1 C2 C2 C1 C1 C2′

4.2 Related-Key Differential Attack on Full-Round CIKS-128

Now, we present a related-key differential attack on full-round CIKS-128. First,
we construct a full-round related key differential characteristic using the 1-round
related-key differential characteristic of CIKS-128 mentioned above. In order to
achieve this end, we encrypt the plaintext P = (PL, PR) under the master keys
K = (K1, K2, K3, K4) and K ′ = (K1, K2, K3 ⊕ e64, K4 ⊕ e64), respectively, and
then get the corresponding ciphertexts C = (CL, CR) and C ′ = (C ′

L, C ′
R), i.e.,

EK(P ) = C and EK′(P ) = C ′, where E is a block cipher CIKS-128. Then, from
the key schedule of CIKS-128, we know that the relation of each round key is
satisfied with C1 or C2, i.e., the related subkey sequences of every round are A1
and A2, (or A3 and A4).

Table 4 shows a full-round related key differential characteristic of CIKS-128
with a probability of (2−3)12(=2−36). We remark that if the input difference of
non-linear function G is zero and the used subkey sequences A1, A2 (or A3, A4)
are related with e64 respectively, then the output difference is zero with a prob-
ability 2−1 and it is also e64 with a probability of 2−1 (see Property 12). Thus,
we consider the output difference e64(�= 0) of the 3rd layer in the final round in
order to recover the partial subkey bits of CIKS-128 in our full-round related
key differential characteristic. We denote the case of final round by C2′.

As a result, if we consider the respective encryptions of P under keys K and
K’, then the output difference of 3rd layer in final round is e64, i.e, the input
difference of the P−1

64/192-box is e64 with a probability of 2−35. In addition, we do
not need to consider the difference of control vector,i.e., d42 for P−1

64/192-box in
the 4-th layer of final round, because it doesn’t affect the possible routes of the
input difference due to the structure of P−1

64/192-box. See Fig. 5.
However, in order to explain easily our attack scenario, we consider the output

difference of P2/1-box corresponding to the 42-th bit position of control vector as
zero with an additional probability of 2−1 (See Fig. 6) 2. That is, the difference of
ciphertext pair is (0,ej) with a probability of 2−36 in our related-key differential
characteristic. In Fig. 6, every dotted lines represent a stream of zero difference(0)
and every bold line denotes that of non-zero difference(1).

Now, we explain how to recover the partial subkey bits of CIKS-128 using the
above full-round related-key differential characteristic. Note that by Property

2 In Fig. 6, every white box denotes an elementary P2/1-box of P −1
64/192-box which has

a same control vector, i.e., the difference of control vector is zero, whereas the gray
box denotes an P2/1-box which has a different control vector, i.e., the control vector
of the gray box is corresponding to the 42-th bit position of V ′. In dotted boxes, we
can obtain the partial subkey information.



200 Y. Ko et al.

e64

K3 K4 , K3     e64 K4      e64

G

d42

K2 , K2

K3 , K3     e64

d180
K1 , K1

K4 , K4     e64

0
P128/1

G

P64/192

p : 2-1

K3 K4 , K3  K4
0

e64

p : 2-1

0

ej

p : 2-1

0

P-1
64/192

0

Fig. 5. Propagation of the difference in the final round

Fig. 6. The possible routes of the input difference e64 for the P −1
64/192-box

13, if we get a ciphertext pair C = (CL, CR) and C ′ = (CL, CR ⊕ ej) such that
C ⊕ C ′= (0,ej), then we can expect that there are only two routes3 from the
64-th bit-position (input difference) to the j-th bit position (output difference)
and also check the exact control vectors of P2/1-boxes located in possible routes
in Fig. 6. More specifically, since j is fixed, the control vector of upper layer of
P−1

64/192-box is uniquely determined by Property 5. However, in the lower layer
of P−1

64/192-box, there are two routes until the j-th bit position by Property 8,
such that there exist two control vectors corresponding to each route.

3 It is caused by the inner P −1
8/12-box of P −1

64/192-box, not P8/12-box. So, for convenience,
we divide the P −1

64/192-box into upper layer (P8/12-boxes) and lower layer (P −1
8/12-

boxes).



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 201

Table 5. Classes of difference ej and the fixed value of control vector (v′′, v′, v) corre-
sponding to the bit-position (B·P) of of upper layer in P −1

64/192-box

Class difference ej B·P of upper layer (v′′, v′, v)
CL1 e3, e4, e7, e8 (44′′,52′,61) (1,1,1)
CL2 e11, e12, e15, e16 (44′′,52′,61) (1,1,0)
CL3 e19, e20, e23, e24 (44′′,52′,62) (1,0,1)
CL4 e27, e28, e31, e32 (44′′,52′,62) (1,0,0)
CL5 e35, e36, e39, e40 (44′′,54′,63) (0,1,1)
CL6 e43, e44, e47, e48 (44′′,54′,63) (0,1,0)
CL7 e51, e52, e55, e56 (44′′,54′,64) (0,0,1)
CL7 e59, e60, e63, e64 (44′′,54′,64) (0,0,0)

We also remark that due to the structure of P−1
64/192-box, ej is one of e3,

e4, e7, e8, e11, e12, · · · , e59, e60, e63, e64. We classify them into eight classes
according to the unique control vector of upper layer like Table 5. Here, we let
l′′=cLl

⊕k1
l ⊕k2

l , m′=cLm
⊕k1

m⊕k3
m, n=cLn

⊕k1
n where cLk

∈CL, k1
k∈K1, k2

k∈K2,
k3

k∈K3 and 1≤l, m, n, k≤64(Refer to Fig. 6). That is, with above observations we
can obtain the partial subkey information related corresponding to the control
vectors using the ciphertext pair. In this attack, we need two ciphertext pairs
included to CLi (1≤i≤4), in order to obtain 8 bits subkey information.

For example, let j be 4, i.e., the difference of ciphertext pair is (0,e4). Then,
there exist two routes of the difference propagation and their relation between
the bit-positions and control vectors are as follows;

(44′′, 52′, 61, 16′′, 25′, 32) = (1, 1, 1, 1, 1, 1), (44′′, 52′, 61, 16′′, 26′, 32) = (1, 1, 1, 0, 1, 0).

In upper layer, the control vector of bit-position (44′′, 52′, 61) is fixed as
(1,1,1). Therefore, we can determine the exact values of k1

44 ⊕ k2
44, k

1
52 ⊕ k3

52 and
k1
61 because we already get cL44 , cL52 and cL61 . In lower layer, if we consider

a set S = {(a, b, c, d)|a, b, c, d ∈ {0, 1}} as the possible vectors of bit-position
(16′′, 25′, 26′, 61), there remain only four elements of S as a candidate of (16′′, 25′

,26′, 61) as follows; (a):(1,1,0,1) or (1,1,1,1), (b):(0,0,1,0) or (0,1,1,0). See Fig. 7.
Therefore, we can expect that there exist a right value of k1

16 ⊕ k2
16, k

1
25 ⊕

k3
25, k

1
26 ⊕ k3

26 and k1
32 with a probability 1/4 because we already get cL16 , cL25 ,

cL26 and cL32 . Thus, if we get another ciphertexs pair C∗ = (C∗
L, C∗

R) and C∗′ =
(C∗

L, C∗
R ⊕ e4), i.e., C∗ ⊕C∗′ = (0, e4)4 and assume that C∗ and C∗′ are random

bits strings, then we can uniquely determine the above subkey bits information.
Also, in Fig. 7, we can get the value of k1 for free, because the control vectors of
bit-position 16′′, 25′ (or 16′′, 26′) are determined. As a result, in this example, we
can find the 3 bits subkey (k1

4,k
1
32,k

1
61) and obtain the 5 bits subkey information

(k1
16 ⊕ k2

16, k
1
25 ⊕ k3

25, k
1
26 ⊕ k3

26, k
1
44 ⊕ k2

44, k
1
52 ⊕ k3

52).

4 It will be also enough that C∗ = (C∗
L, C∗

R) and C∗′ = (C∗
L, C∗

R ⊕e3), i.e., C∗ ⊕C∗′ =
(0, e3).



202 Y. Ko et al.

16'' = 1

25' = 1

32 = 1

26' =
0 or 1

16'' = 0

25' =
0 or 1

32 = 0

26' = 1

(a) (16'',25',26',32) = (1,1,0,1) or (1,1,1,1) (b) (16'',25',26',32) = (0,0,1,0) or (0,1,1,0)

4 4

Fig. 7. Control vectors of lower layer (P −1
8/12-boxes) when the output difference is e4

Algorithm 1 describes how to get the total 47 bits subkey information. We
consider 241 plaintexts Pj , where 1 ≤ j ≤ 241. Let Cj = (CLj

, CRj
) and C ′

j =
(C ′

Lj
, C ′

Rj
) be the ciphertexts of Pj under the keys K = (K1, K2, K3, K4) and

K ′ = (K1, K2, K3 ⊕ e64, K4 ⊕ e64), respectively. For each pair Cj , C ′
j satisfying

Cj ⊕ C ′
j ∈ CLi (1 ≤ i ≤ 4), let (v′′

j1up
, v′

j2up
, vj3up) be the 3 bits control vector

and kj1, kj2, kj3 be a possible subkey information of the (v′′
j1up

, v′
j2up

, vj3up). We
also let (v′′

j4dw
, v′

j5dw
, v′

j6dw
, vj7dw

) be a 4 bits control vector related on lower
layer of P−1

64/192-box in the final round and kj4, kj5, kj6, kj7 be a possible subkey
information of the (v′′

j4dw
, v′

j5dw
, v′

j6dw
, vj7dw

).
If we get a ciphertext pair Cj ⊕ C ′

j ∈ CLi, then we can uniquely deter-
mine the 3-bit subkey information related on (v′′

j1up
, v′

j2up
, vj3up

) by checking
kj1 ⊕ cLj1 = v′′

j1up
, kj2 ⊕ cLj2 = v′

j2up
and kj3 ⊕ cLj3 = vj3up

, where cLji
∈ CL.

We call this procedure uniquely determining the right value for kj1, kj2, kj3
‘Determine procedure’ and shortly denote it as Determine(Cj , C

′
j). In ad-

dition, if we guess kj4, kj5, kj6, kj7 and check whether kj4 ⊕ cLj4 = v′′
j4dw

, kj5 ⊕
cLj5 = v′

j5dw
, kj6 ⊕ cLj6 = v′

j6dw
, and kj7 ⊕ cLj7 = vj7dw

, then there remain
4 candidates of kj4, kj5, kj6, kj7 as a right value with a probability of 1/4. We
call this procedure finding all values for kj1, kj2, kj3, kj4 ‘Find procedure’ and
shortly denote it as Find(Cj , C

′
j). The following notation ‘(kj4, kj5, kj6, kj7)

∈ Find(Cj , C
′
j)’ means that kj4, kj5, kj6, kj7 is a possible value for Cj , C

′
j . Let

x1, · · · , xn be a binary string then Bi(x1, · · · , xn) denotes the number x1 ∗ 20 +
· · ·+ xn ∗ 2n−1.

Assumption : The attacker knows that K ⊕ K ′ = (0, 0, e64, e64)
Input : (P1, C1), (P1, C

′
1), (P2, C2), (P2, C

′
2), · · · , (P241 , C241), (P241 , C ′

241)
Output: 20-bit partial key of K1 and 27-bit partial key information of

K1 ⊕ K2 or K1 ⊕ K3



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 203

· CL1, CL2, · · · , CL8 : empty set, k1[j] = k2[j] = k3[j] = 0
and K[Bi(k4[j], k5[j], k6[j], k7)[j]] = 0

1. For each j (1 ≤ j ≤ 241)
If Cj ⊕ C ′

j = (0, ek), for some k

If k = 3 or 4 or 7 or 8, then CL1 = CL1 ∪ {(Cj , C
′
j)}

If k = 11 or 12 or 15 or 16, then CL2 = CL2 ∪ {(Cj , C
′
j)}

If k = 19 or 20 or 23 or 24, then CL3 = CL3 ∪ {(Cj , C
′
j)}

If k = 27 or 28 or 31 or 32, then CL4 = CL4 ∪ {(Cj , C
′
j)}

If k = 35 or 36 or 39 or 40, then CL5 = CL5 ∪ {(Cj , C
′
j)}

If k = 43 or 44 or 47 or 48, then CL6 = CL6 ∪ {(Cj , C
′
j)}

If k = 51 or 52 or 55 or 56, then CL7 = CL7 ∪ {(Cj , C
′
j)}

If k = 59 or 60 or 63 or 64, then CL8 = CL8 ∪ {(Cj , C
′
j)}

2. For each (Cj , C
′
j) ∈ CLi

2.1 Do Determine(Cj , C
′
j)

Output k1[j], k2[j], k3[j]
2.2 Do Find(Cj , C

′
j)

2.2.1 For all (k4[j], k5[j], k6[j], k7)[j]]) ∈ Find(Cj , C
′
j)

K[Bi(k4[j], k5[j], k6[j], k7)[j]]]+ = 1
2.2.2 If a K[Bi(k4[j], k5[j], k6[j], k7)[j]])]≥3, output k4[j], k5[j], k6[j], k7)[j]]

Algorithm 1 : Related-key differential attack on full-round CIKS-128

4.3 Related-Key Differential Attack on Full-Round CIKS-128H

In this section, we present a related key differential attack on full-round CIKS-
128H. First, we can construct a 1-round related key differential characteristic
under the same condition represented in Section 4.1. Both probabilities of C1 and
C2 are replaced 2−3 as 2−5 by Property 11 and 4. Therefore, if we consider the
respective encryptions of the plaintext P = (PL, PR) under the master keys K =
(K1, K2, K3, K4) and K’ = (K1, K2, K3⊕e64, K4⊕e64) and get the corresponding
ciphertexts C = (CL, CR) and C ′ = (C ′

L, C ′
R), then we can construct a full-round

related key differential characteristic with a probability 2−40 as the following
Table 6.

Table 6. A full-round related-key differential characteristic of CIKS-128H

Round 1 2 3 4 5 6 7 8
Case C2 C1 C1 C2 C2 C1 C1 C2’



204 Y. Ko et al.

The attack condition of the final round in above table, C2’, is equal to that on
CIKS-128 mentioned in Section 4.2. That is, the input difference of the R−1

64/192-
box is e64 in the final round. Thus, if we get the ciphertext pairs C and C ′

satisfying C⊕C ′=ei or ei,i+1, then we can obtain the subkey information (Refer
to Property 7, 9 and 14). The attack scenario of CIKS-128H is almost equal to
the method represented in Section 4.2. So, we omit a detail description of the
attack procedure.

5 Conclusion

In this paper, we have presented the related-key differential attacks on DDO-
based ciphers, CIKS-128 and CIKS-128H which are improvements of CIKS-1.
In particular, we have derived many properties of DDO-boxes which are used in
our attacks. These works suggests that the greatest possible care has to be taken
when proposing improvements of the existing block ciphers. Furthermore, Our
works means that when data-dependent operations are very interesting crypto-
graphic primitive, there needs a considerable caution to design a DDO-based
block cipher.

References

1. E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard”, Springer-Verlag, 1993.

2. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Modern cryp-
tography: Protect Your Data with Fast Block Ciphers”, Wayne, A-LIST Publish.,
2003.

3. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Fast Ciphers
for Cheap Hardware : Differential Analysis of SPECTR-H64”, MMM-ACNS’03,
volume 2776 of Lecture Notes of Computer Science, Springer-Verlag, 2003, pp.
449-452.

4. N. D. Goots, A. A. Moldovyan, N. A. Moldovyan, “Fast Encryption ALgorithm
Spectr-H64”, MMM-ACNS’01, volume 2052 of Lecture Notes of Computer Science,
Springer-Verlag, 2001, pp. 275-286.

5. J. Kelsey, B. Schneier, and D. Wagner, “Key Schedule Cryptanalysis of IDEA,
G-DES, GOST, SAFER, and Triple-DES”, Advances in Cryptology - CRYPTO
’96, volume 1109 of Lecture Notes of Computer Science, Springer-Verlag, 1996, pp.
237-251.

6. J. Kelsey, B. Schneier, and D. Wagner, “Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA”, Proceedings of Inter-
national Conference on Information and Communications Security (ICICS ’97),
volume 1334 of Lecture Notes of Computer Science, Springer-Verlag, 1997, pp.
233-246.

7. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, The Related-Key Rectangle Attack -
Application to SHACAL-1, ACISP 2004, LNCS 3108, pp. 123-136, Springer-Verlag,
2004

8. J. Kim, G. Kim, S. Lee, J. Lim and J. Song, Related-Key Attacks on Reduced
Rounds of SHACAL-2, INDOCRYPT 2004, To appear.



Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H 205

9. Y. Ko, D. Hong, S. Hong, S. Lee, and J. Lim, “Linear Cryptanalysis on SPECTR-
H64 with Higher Order Differential Property”, MMM-ACNS03, volume 2776 of
Lecture Notes of Computer Science, Springer-Verlag, 2003, pp. 298-307.

10. Y. Ko, S. Hong, W. Lee, S. Lee, and S. Kang, “Related Key Differential Attacks on
27 Rounds of XTEA and Full-Round GOST”, FSE 2004, volume 3017 of Lecture
Notes of Computer Science, Springer-Verlag, 2004, pp. 299-316.

11. Y. Ko, C. Lee, S. Hong and S. Lee, “Related Key Differential Cryptanalysis of
Full-Round SPECTR-H64 and CIKS-1 ”, ACISP 2004, volume 3108 of Lecture
Notes of Computer Science, Springer-Verlag, 2004, pp. 137-148.

12. C. Lee, D. Hong, S. Lee, S. Lee, H. Yang, and J. Lim, “A Chosen Plaintext Linear
Attack on Block Cipher CIKS-1”, The 4th International Conference, ICICS 2002,
volume 2513 of Lecture Notes of Computer Science, Springer-Verlag, 2002, pp.
456-468.

13. M. Matsui, “Linear cryptanalysis method for DES cipher”, Advances in Cryptology
- EUROCRYPTO’93, volume 765 of Lecture Notes of Computer Science, Springer-
Verlag, 1993, pp. 386-397.

14. A. A. Moldovyan and N. A. Moldovyan, “A cipher Based on Data-Dependent
Permutations”, Journal of Cryptology, volume 15, no. 1 (2002), pp. 61-72

15. N. Sklavos, A. A. Moldovyan, and O. Koufopavlou, “Encryption and Data Depen-
dent Permutations : Implementation Cost and Performance Evaluation”, MMM-
ACNS’03, volume 2776 of Lecture Notes of Computer Science, Springer-Verlag,
2003, pp. 337-348.

16. N. Sklavos, N. A. Moldovyan, and O. Koufopavlou, “A New DDP-based Cipher
CIKS-128H: Architecture, Design & VLSI Implementation Optimization of CBC-
Encryption & Hashing over 1 GBPS”, proceedings of The 46th IEEE Midwest
Symposium on Circuits & Systems, December 27-30, Cairo, Egypt, 2003.

17. N. Sklavos and O. Koufopavlou, “Data Dependent Rotations, a Trustworthy Ap-
proach for Future Encryption Systems/Ciphers: Low Cost and High Performance”,
Computers and Security, Elsevier Science Journal, Vol.22, No 7, 2003.



Cryptanalysis of Ake98

Jorge Nakahara Júnior1 and Daniel Santana de Freitas2

1 jorge nakahara@yahoo.com.br
2 LabSEC, Laboratório de Segurança em Computação, UFSC, Brazil

santana@inf.ufsc.br

Abstract. This paper describes a linear attack on the Ake98 block ci-
pher, an updated version of the Akelarre cipher presented by Alvarez
et al. at the SAC’96 Workshop. The new attacks require the assump-
tion of weak keys. It is demonstrated that Ake98 does not introduce
enough security measures to counter cryptanalytic attacks, both in a
known-plaintext and in a ciphertext-only setting. A key-recovery attack
on 4.5-round Ake98, for instance, is applicable to a weak-key class of size
2108, and requires only 71 known plaintexts, with an effort of 71 · 271

half-round decryptions. Moreover, the existence of weak keys precludes
the use of Ake98 as a building block for other cryptographic primitives,
such as in Davies-Meyer Hash mode. Attacks using weak keys can be ap-
plied up to 11.5 rounds of Ake98 with less effort than an exhaustive key
search. But, Ake98 with 8.5 rounds is already slower than IDEA, RC6
or AES, which implies that this updated version of the Akelarre cipher
does not seem to provide significant advantages (security or efficiency)
compared to the former, more established ciphers.

Keywords: cryptanalysis, Akelarre, Ake98, IDEA, RC5, RC6, AES.

1 Introduction

Akelarre is a block cipher designed by Alvarez et al. [4] and presented at SAC’96
Workshop. Akelarre combines design features from the IDEA [9] and RC5 [11]
ciphers, and processes 128-bit text blocks, uses a 128-bit key, and iterates 4
rounds plus an output transformation (OT). The operations of modular addition,
�, and exclusive-or, ⊕, were inherited from IDEA, while bitwise rotation, ≪,
came from RC5. In [8], Knudsen and Rijmen presented known-plaintext and
ciphertext-only attacks on Akelarre for any number of rounds, and that are
independent of the key schedule algorithm. Further attacks were also presented
by Ferguson and Schneier in [6], but using chosen plaintext.

Subsequently, the designers of Akelarre presented Ake98 [3] that is claimed
to avoid the previous attacks on Akelarre.

This paper is organized as follows: Sect. 2 describes briefly the Akelarre block
cipher; Sect. 3 describes Ake98 and the main differences with Akelarre. Sect. 4
explains the attack on Ake98, its similarity to the attack of Knudsen-Rijmen, the
attack requirements and its complexity. Subsect. 4.2 describes a ciphertext-only
attack on Ake98. Sect. 5 compares the software performance of Ake98 with that
of AES, IDEA and RC6. Sect. 6 concludes the paper.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 206–217, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Cryptanalysis of Ake98 207

2 The Akelarre Cipher

The Akelarre block cipher was presented at the SAC’96 workshop, and its de-
sign combines features from the IDEA and RC5 ciphers. Akelarre uses three
operations on w-bit words: bitwise exclusive-or, denoted ⊕, addition modulo 2w,
denoted �, and bitwise rotation, denoted ≪. The multiplication operation of
IDEA is absent. A note on terminology: the notation lsbi(X) (lower case) will
denote the i-th least significant bit(s) of X, while LSBj(X) (upper case) will
denote the ensemble of i consecutive least significant bits1.

All of the internal operations in Akelarre are on w-bit words. Akelarre oper-
ates on variable-length words, text blocks and keys, and uses a variable number
of rounds. The suggested parameter values in [4] are: 128-bit blocks, 32-bit words,
128-bit key and 4 rounds. Fig. 1 depicts the computational graph of Akelarre.
The MA-box of IDEA becomes an AR-box (Addition-Rotation box). Details of
the AR-box are given in the Appendix.

The key schedule algorithm of Akelarre will not be described in this paper
but the interested reader can find further information in [4].

boxZ

Z

13

Z Z ZZ

Round

Transf.
Output

i−th
2

(i)

(i)

(r+1)
1

(i)
1<<< LSB_7(Z   )

<<< LSB_7(Z     )

42 31C C C C

2
(r+1)

3
(r+1) (r+1)

4 5
(r+1)

(r−1) more rounds

3

4

Y Y Y1 2 3 4

Transf.
InputZ2 Z3 Z

4
Z 1

(0) (0) (0) (0)

P P P P1 2 3 4

1

2

X
21X X

3 4
X

Y

T
T

T
T

AR

Fig. 1. Computational graph of the Akelarre block cipher

1 For example, if X = 011011102 in binary, then lsb1(X) = 0, lsb2(X) = 1, but
LSB2(X) = 2, and LSB3(X) = 6.



208 J. Nakahara Jr. and D. Santana de Freitas

3 The Ake98 Cipher

In [3], an updated version of Akelarre, called Ake98, was presented. It is claimed
that Ake98 resists the attacks made formerly on Akelarre [6, 8]. Ake98 differs
from Akelarre in the new AR-box (Addition-Rotation box), in the swapping of
words at the end of a round, and the addition of subkeys in the beginning of each
round. Fig. 2 depicts the computational graph of Ake98. Details of the AR-box
of Ake98 are provided in the Appendix (Sect. 5).

The block and key sizes, the number of rounds, and the internal word sizes in
Ake98 are variable but no minimum value is set by the authors for any parameter.
For comparison purposes, the same parameter values for Akelarre will also be
assumed for Ake98.

The key schedule of Ake98 will not be described here. The only property as-
sumed for the key schedule of Ake98 is that it behaves as a pseudo-random number
generator. Further details of the subkey generation in Ake98 can be found in [3].

42 31P P P P

Z2 Z3 Z
4

Z 1
(i) (i) (i) (i)

boxZ

Z Round
i−th

(i)

(i)

(i)
<<< LSB_7(Z   )5

6

17

(r−1) more rounds
Y Y Y

1

1

2

2

3

3

4

4Y

T
T

T
T

1 2 3 4

X X X
1 2X 3 4

U U U U

AR´

Z Z ZZ
Transf.
Output(r+1)

1<<< LSB_7(Z     )

42 31C C C C

2
(r+1)

3
(r+1) (r+1)

4 5
(r+1)

Fig. 2. Computational graph of the Ake98 cipher

4 A Known-Plaintext Attack on Ake98

The Knudsen-Rijmen attack [8] on Akelarre exploited the fact that the leftmost
input to the AR-box can be computed from just two input and output words in



Cryptanalysis of Ake98 209

a round. From Fig. 1, T1 ⊕ T3 = Y1 ⊕ Y3 for the i-th round. Similarly, T2 ⊕ T4 =
Y2 ⊕ Y4. These relations can be extended across the key-dependent rotation as2

(Y1 ⊕ Y3)|(Y2 ⊕ Y4) = ((X1 ⊕ X3)|(X2 ⊕ X4)) ≪ Z
(i)
1 . (1)

Relation (1) always holds, independent of the round subkeys and of the AR-
box. Moreover, this is an iterative relation, namely it can be combined with
itself. The attack of [8] uses (1) as an invariant for the full Akelarre, except for
the input and output transformations (Fig. 1). Notice that this attack applies
to any number of rounds.

Notice that (1) does not hold for the IDEA and PES [9] ciphers because of
the addition and the multiplication operations (Akelarre and Ake98 do not use
multiplication).

For Ake98 similar relations to (1) can be obtained, under weak subkey as-
sumptions. Observe that in Fig. 2, T1 ⊕ T3 = Y1 ⊕ Y2, and T2 ⊕ T4 = Y3 ⊕ Y4.
To achieve a similar relation to (1), both of them are combined, resulting in

T1 ⊕ T2 ⊕ T3 ⊕ T4 = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 . (2)

Furthermore, across the key-dependent rotation:

Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 = (U1 ⊕ U2 ⊕ U3 ⊕ U4) ≪ Z
(i)
5 , (3)

where it is implicitly assumed that only the least significant seven bits of Z
(i)
5

are used as the rotation amount.
Relation (3) does not hold in general across the modular addition with sub-

keys at the beginning of a round, but it still holds with certainty for the least
significant bit, because of the absence of a carry bit3:

lsb1(Y1⊕Y2⊕Y3⊕Y4) = lsb−Z
(i)
5 mod 32+1

(X1⊕X2⊕X3⊕X4⊕Z
(i)
1 ⊕Z

(i)
2 ⊕Z

(i)
3 ⊕Z

(i)
4 ) .

(4)

Relation (4) is not iterative, but under the assumption that LSB7(Z
(i)
5 ) ∈ {0,

32, 64, 96}, that is, a rotation amount that is a multiple of the word size of
Ake98, this relation can be rewritten as:

lsb1(Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4) = lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ Z
(i)
1 ⊕ Z

(i)
2 ⊕ Z

(i)
3 ⊕ Z

(i)
3 ) , (5)

which is iterative, and independent of the new AR-box. Iterating relation (5) four
times, results in a probabilistic distinguisher, under the weak subkey assumptions:
LSB7(Z

(1)
5 ), LSB7(Z

(2)
5 ), LSB7(Z

(3)
5 ), LSB7(Z

(4)
5 ) ∈ {0, 32, 64, 96}. Assuming

that the key schedule algorithm of Ake98 can be modeled as a pseudo-random
number generator, each of the weak subkey assumptions will be taken inde-
pendently. Therefore, the probability that these assumptions hold for four con-
secutive rounds is approximated as (4/27)4 = 2−20 since there are 27 possible

2 The vertical bar ‘|’ stands for concatenation.
3 Parameters of the ‘lsb’ function are counted from 1 up to 32.



210 J. Nakahara Jr. and D. Santana de Freitas

rotation amounts. Similarly, under the assumption of a random behavior of the
key schedule of Ake98, the weak subkey assumptions are expected to hold for a
class of 2128 · 2−20 = 2108 (weak) user keys.

For 4-round Ake98, a 1-bit invariant, using relation (5), can be constructed:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4) ⊕ lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4) = (6)

lsb1(Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ lsb1(Z

(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕

lsb1(Z
(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕ lsb1(Z

(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) .

Notice in (6) that for a fixed key, one bit of information on the key, namely,
lsb1(⊕4

i,j=1Z
(j)
i ), can be recovered given one bit lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4) of

ciphertext information and of the plaintext, lsb1(P1 ⊕P2 ⊕P3 ⊕P4); or alterna-
tively, given the plaintext, and an unknown key, one bit of information on the
ciphertext can be obtained with certainty.

Relation (6) alone can be used to distinguish 4-round Ake98 (under weak key
assumptions and without the OT) from a random permutation, using only known
plaintext/ciphertext pairs.

Moreover, (6) can be used in a key-recovery attack, to discover the subkeys of
the OT. If we call the output transformation a half-round, this is a 0.5R attack.
The corresponding 1-bit distinguisher is:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4) ⊕ lsb1(Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ (7)

lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ lsb1(Z

(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕

lsb1(Z
(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) =

lsb1((C1 ⊕ Z
(5)
2 ⊕ C2 � Z

(5)
3 ⊕ (C3 � Z

(5)
4 ) ⊕ (C4 ⊕ Z

(5)
5 )) ≫ LSB5(Z

(5)
1 )) .

In a known-plaintext setting, the unknowns in (7) are4 LSB5(Z
(5)
1 ), Z

(5)
2 ⊕

Z
(5)
5 , Z

(5)
4 , Z

(5)
3 and lsb1(⊕4

i,j=1Z
(j)
i ). Actually, only the LSB5(Z

(5)
1 )-th bit of

Z
(5)
2 ⊕Z

(5)
5 is required. In total, 5+1+32+32 = 70 subkey bits can be recovered,

and the effort for each of the 270 subkey candidates is equivalent to decrypting
the OT, or a half-round computation.

The amount of known plaintext (KP) needed for the attack is computed
as follows. Once the 70 subkey bits are guessed correctly in (7), the combined
value of plaintext, ciphertext and guessed subkey bits must match the 1-bit
key-dependent invariant:

lsb1(⊕4
i,j=1Z

(j)
i ) . (8)

The value of (8) is unknown, but is constant for a fixed key. Therefore, the
correct 70 subkey bits must always give a constant value, whatever the plaintext,
while the wrong 70 subkey bits will only match (8) with a probability of 1/2. This
reasoning is based on the fact that the correct subkey value actually decrypts

4 Even though the least significant 7 bits of Z
(5)
1 are used in a block, the invariant

involves (the xor of) 32-bit words, thus only the 5 least significant bits of Z
(5)
1 are

relevant.



Cryptanalysis of Ake98 211

the OT, reducing the 4.5 rounds to 4 rounds, where the distinguisher can be
checked; but, the wrong subkey will not decrypt the OT correctly, rather, it will
add a further 0.5 rounds on top of the 4.5-round Ake98, and its 1-bit result shall
be (more) random. Therefore, the expected number of false alarms (subkeys)
surviving this filtering after 71 known plaintext/ciphertext pairs are used, is
270 · ( 1

2 )71 < 1.
The attack using the 4-round distinguisher (7) was applied to a 4.5-round

Ake98 and not to 5.5 rounds, because the latter would require too many subkey
bits to recover simultaneously, namely the subkeys of one round plus the OT.
The distinguisher for 5.5-round Ake98 would be:

lsb1(P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ Z
(1)
1 ⊕ Z

(1)
2 ⊕ Z

(1)
3 ⊕ Z

(1)
4 ) ⊕ (9)

lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ lsb1(Z

(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕

lsb1(Z
(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) =

lsb1((((C1 ⊕ Z
(6)
2 ) ≫ LSB5(Z

(6)
1 ) ⊕ Z

(5)
1 ) ⊕

((C2 � Z
(6)
3 ) ≫ LSB5(Z

(6)
1 ) � Z

(5)
2 ) ⊕

((C3 � Z
(6)
4 ) ≫ LSB5(Z

(6)
1 ) � Z

(5)
3 ) ⊕

((C4 ⊕ Z
(6)
5 ) ≫ LSB5(Z

(6)
1 ) ⊕ Z

(5)
4 )) ≫ LSB5(Z

(5)
5 )) .

Note that a 1.5R-attack on 5.5-round Ake98 using (9) would require guessing
one bit of Z

(5)
1 ⊕ Z

(5)
4 , Z

(6)
2 , and Z

(6)
5 ; the full 32 bits of Z

(5)
2 , Z

(5)
3 , Z

(6)
3 , Z

(6)
4 ,

and LSB5(Z
(6)
1 ), LSB5(Z

(5)
5 ), or 141 subkey bits simultaneously.

In general, the more rounds are attacked the smaller the weak key class.
Table 1 lists the number of weak keys for attacks on a different number of
rounds of Ake98. All the attacks require about 71 known plaintext/ciphertext
pairs, and effort equivalent to 71 · 271 decryptions of the OT. Assuming the OT
is about half a round, it represents 1

9 of a 4.5-round encryption. Thus, the attack
complexity is equivalent to 1

9 · 71 · 271 ≈ 8 · 271 = 274 4.5-round encryptions.

Table 1. Estimated effort and weak key class size, |WKC|, in attacks on Ake98

# Rounds |WKC| Attack Effort
4.5 2108 274

6.5 298 1
13 · 71 · 271 ≈ 273

8.5 288 1
17 · 71 · 271 ≈ 273

10.5 278 1
21 · 71 · 271 ≈ 273

11.5 273 1
23 · 71 · 271 ≈ 272.5

12.5 268 1
25 · 71 · 271 ≈ 272.5

25.5 23 1
51 · 71 · 271 ≈ 271

From Table 1, in order to avoid attacks based on weak keys, Ake98 should
have more than 25.5 rounds. Nonetheless, our attack is more efficient than ex-
haustive key search (in a weak-key class) up to 11.5 rounds. For 12.5-round



212 J. Nakahara Jr. and D. Santana de Freitas

Ake98, the exhaustive key search effort for a weak-key class of size 268 is less
than the 272.5 encryptions of our attack.

As the last remark, the attack described in this section, although explained
for a 32-bit word version of Ake98, applies similarly to other word sizes.

4.1 New Weak Key Classes

The rationale for choosing subkeys that cause rotations by multiples of 32 bits
can be further extended to weak subkeys whose values are of the form 16 + 32t,
0 ≤ t ≤ 3. In this case, a one-round relation with input (X1, X2, X3, X4) and
output (Y (1)

1 , Y
(1)
2 , Y

(1)
3 , Y

(1)
4 ) becomes:

lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4) = lsb1((Y
(1)
1 ⊕ Y

(1)
2 ⊕ Y

(1)
3 ⊕ Y

(1)
4 ) ≫ 16) , (10)

which is not iterative. But, if two consecutive rounds have block rotations by
amounts of the form 16 + 32t, 0 ≤ t ≤ 3, then for the next round:

lsb1(Y
(1)
1 ⊕Y

(1)
2 ⊕Y

(1)
3 ⊕Y

(1)
4 ) = lsb1((Y

(2)
1 ⊕Y

(2)
2 ⊕Y

(2)
3 ⊕Y

(2)
4 ) ≫ 16) , (11)

where Y
(2)
i , 1 ≤ i ≤ 4 are the output words after two rounds. Combining (10)

and (11) results in:

lsb1(X1 ⊕ X2 ⊕ X3 ⊕ X4) = lsb1(Y
(2)
1 ⊕ Y

(2)
2 ⊕ Y

(2)
3 ⊕ Y

(2)
4 ) , (12)

which has the following properties:

– it is a 2-round iterative linear relation, in contrast to (5) which is 1-round
iterative;

– it holds with a probability that depends on the carry bit of addition with
the two subkeys in the middle of a block between rounds, Z

(i)
2 and Z

(i)
3 .

The probability that there is no carry from the 15-th to the 16-th bit is
p = 1/2+1/217. Assuming the subkey values are independent, the probability
of (12) holding is approximated as p2 ≈ 2−2.

Thus, this new weak-subkey assumption implies another, new weak-key class,
namely the one which generates rotations of the form 16 + 32t, 0 ≤ t ≤ 3,
distinct from the original weak-key class that generates rotations of the form
32t, 0 ≤ t ≤ 3. The former weak-key class, though, is less effective since it holds
with a lower probability, 2−2 every two rounds, than the latter.

It is straightforward to deduce other rotation amounts, for example, 8 + 32t,
0 ≤ t ≤ 3, which lead to further new weak-key classes, with exponentially lower
probability compared to (5) and (12) due to the carry bits of addition with
subkeys. These linear relations become iterative for 4, 8 or more rounds.

The rotation amounts mentioned previously do not need to be powers of 2
plus a multiple of 32. More generally, the rotation amounts can be of the form
i + 32t, 0 ≤ t ≤ 3, 0 ≤ i ≤ 31. The main point for deducing any of these linear
relations is to track the exact position of the least significant bit of each 32-bit word
in a block, because, once this bit is correctly located, the xor of 32-bit words in
(5) can be applied.



Cryptanalysis of Ake98 213

Consequently, the key space can be split into several sets of disjoint weak-
key classes, one for each possible set of rotation amounts, and several of them
correspond to keys which are susceptible to an attack similar to that in Sect. 4.

4.2 Ciphertext-Only Attack on Ake98

The attack on 4.5-round Ake98 presented in Sect. 4 can also be adapted to
recover subkeys at the top (plaintext) end of Ake98.

The fact that only a few bits of the plaintext blocks are needed for the attack
motivates a ciphertext-only (CO) approach to attack Ake98. We assume that
ciphertext is always known by any adversary. Further, assume that the plaintext
is known to be ASCII text, and some probable phrases (16 bytes long, that is,
the block size of Ake98) are suspected to occur regularly in the plaintext, for
instance, “replyimmediately” or “tocommandergeneral”.

The ciphertext-only attack on 4.5-round Ake98 assumes that the last four
block rotations, including the one in the OT are a multiple of the word size (32
bits), instead of the first four block rotations. The distinguisher is similar to (7):

lsb1(C1 ⊕ C2 ⊕ C3 ⊕ C4) ⊕ lsb1(Z
(2)
1 ⊕ Z

(2)
2 ⊕ Z

(2)
3 ⊕ Z

(2)
4 ) ⊕ (13)

lsb1(Z
(3)
1 ⊕ Z

(3)
2 ⊕ Z

(3)
3 ⊕ Z

(3)
4 ) ⊕ lsb1(Z

(4)
1 ⊕ Z

(4)
2 ⊕ Z

(4)
3 ⊕ Z

(4)
4 ) ⊕

lsb1(Z
(5)
1 ⊕ Z

(5)
2 ⊕ Z

(5)
3 ⊕ Z

(5)
4 ) =

lsb1((P1 ⊕ Z
(1)
1 ⊕ P2 ⊕ Z

(1)
2 ⊕ (P3 � Z

(1)
3 ) ⊕ (P4 � Z

(1)
4 )) ≫ LSB5(Z

(1)
5 )) .

Thus, (13) only requires the xor of some least significant bits of the plaintext
blocks, namely, only some small statistical information. The time complexity
and amount of probable texts for this attack are the same as for the attack in
Sect. 4, requiring about 71 (probable) 16-byte long plaintexts encrypted under a
fixed key. Similar attacks apply to more rounds of Ake98, under the appropriate
weak subkey assumptions.

5 Software Performance of Ake98

Table 2 lists the main parameters and the performance in software of Ake98,
AES, IDEA and RC6 block ciphers, for comparison. Performance estimates for
encryption and key schedule were measured in CPU cycles per byte encrypted
on an AMD Duron 1.2 GHz, 512 MB RAM and 128 MB cache memory, under
Linux, and using the gcc compiler ver. 3.2.2 with optimization option -O3. Mea-
surements were obtained from 216 up to 226 blocks encrypted under each cipher.

From Table 2, the performance figures indicate that 4.5-round Ake98 is faster
than 8.5-round IDEA, but slower than 10-round AES and 20-round RC6 (stan-
dard parameters), under the same test conditions.

Moreover, Table 3 shows that the software performance of Ake98 for increas-
ing number of rounds degrades sharply. For 8 rounds, Ake98 is not faster than any
of the three previously mentioned ciphers. For more than 25.5 rounds, Ake98 is
not expected to have any weak key, but then it becomes about four times slower than



214 J. Nakahara Jr. and D. Santana de Freitas

Table 2. Software performance and main parameters of some block ciphers

Cipher Ake98 AES IDEA RC6-w/r/b
Operations ⊕, �, ≪ ⊕,xtime,S-box ⊕, �,  ⊕, *, ≪

Block Size (bits) variable 128 64 4w
Key Size (bits) 64t 128, 192, 256 128 8b

#Rounds variable 10, 12, 14 8.5 r, r = 20 (AES)
Origin Alvarez et al. Daemen, Lai, Massey, Rivest et al.

Rijmen Murphy
Year 2000 1998 1991 1998

Word Size (bits) variable 8 16 w, w = 32 (AES)
Cipher Structure IDEA+RC5 SPN own Feistel

Key Schedule Oper. �, modular ⊕, bit byte
squaring S-box permutation permutation

Reference [3] [5] [9] [12]
Encryption Speed 73 55 93 30

: 4.5 rounds, 128-bit block, 128-bit key.

Table 3. Software performance of variable-round Ake98

# Rounds Ake98 4.5 8.5 12.5 16.5 20.5 24.5 28.5
# CPU cycles/byte 73 142 212 283 354 427 499

IDEA, eight times slower than AES, and more than 14 times slower than RC6. More-
over, with more than 427 cycles/byte, the performance of Ake98 becames worse
than that of all NESSIE block cipher candidates, except GrandCru [1–p. 53–55].

6 Conclusions

This report presented the first5 known-plaintext and ciphertext-only attacks on
Ake98. In a key-recovery attack, the subkeys of the OT can be recovered with
only 71 known plaintext/ciphertext pairs. The attacks are independent of the
redesigned AR-box, and can be applied up to 11.5 rounds with less effort than
an exhaustive key search. To avoid weak keys, Ake98 would need more than 25.5
rounds, but then its performance degrades sharply.

The attacks in Sect. 4 exploited two main weaknesses of Ake98: the key sched-
ule algorithm did not make any provision to avoid the key-dependent rotation
amounts to be multiples of 32 (the word size), even for consecutive rounds; more-
over, the subkey mixing operations at the beginning of a round allows invariants
involving only the least significant text bits, similar to the attack of [8]. These
attacks perhaps could be avoided, for example, if the key schedule algorithm had
guaranteed that the rotation amounts were both text and key dependent, such
as in RC6 [12].

5 The authors are not aware of any other attack on Ake98, under any assumption.



Cryptanalysis of Ake98 215

Another important observation is that even if the rotation amounts were
properly generated, the encryption and decryption structures of Ake98 would
still not be reciprocal, that is, the computational graphs for encryption and de-
cryption of Ake98 are different, because the modular addition and bit rotation
operations do not commute. Thus, the computational graph does not become an
involution by simply transforming the subkeys, as in IDEA.

The existence of weak subkeys for Ake98 are far reaching. Even though the
class of 2108 weak keys represent only a fraction of 2−20 of the key space, it
implies, for instance, that Ake98 might not be used as a building block of other
cryptographic primitives, such as in Davies-Meyer or Matyas-Meyer-Oseas hash
function constructions [10–p. 340, Cap. 9] because the key input depends on the
input message string or intermediate hash values, and they can be manipulated
to cause weak rotations as in the attacks of Sect. 4.

Further the weak-key class size (|WKC|) and type of attacks on IDEA and
Ake98 are compared in Table 4. Notice that Hawkes’ attacks on IDEA [7] re-
quire chosen plaintext (CP), Boomerang attacks on IDEA [2] require chosen
plaintext adaptively-chosen ciphertext (CPACC), while the attacks on Ake98,
in this paper, require known plaintext (KP) or ciphertext only (CO). It can
be noticed additionally in Table 4 that the weak-key class sizes for Ake98 are
bigger than for IDEA. Therefore, the attacks on Ake98 apply not only to larger
weak-key classes but also work under much more realistic assumptions than on
IDEA.

Table 4. Comparison of weak-key class sizes for IDEA and Ake98

# Rounds
Attack Cipher Type 4 4.5 5 5.5 6 8.5
Hawkes IDEA CP 299 297 284 282 282 263

Boomerang IDEA CPACC 2104 2103 297 297 283 264

this paper Ake98 KP/CO 2108 2103 2103 298 298 283

Additionally, if Ake98 were used in (full 128-bit) OFB and CFB modes of
operation [10], then the use of weak keys at the beginning of every round would
result in the exclusive-or of the LSBs of the four input words to match the xor
of the LSBs of the four output words. This invariant would propagate to the
ciphertext, actually revealing information on the plaintext. Since Ake98 with only
4.5 rounds is already slower than the AES and RC6, even its practical usefulness
for confidentiality purposes becomes jeopardized.

As the last comment, it is not straightforward to determine which 128-bit
user key(s) lead to subkeys that cause weak rotations at the beginning of each
round, but the key schedule algorithm does not have any provision to avoid such
weak subkeys. It is left as an open problem to discover which 128-bit Ake98 key(s)
can lead to weak subkeys.



216 J. Nakahara Jr. and D. Santana de Freitas

Acknowledgements

Many thanks to Prof. S.W. Song of the CS Dept. of the Institute of Mathemat-
ics and Statistics of the University of São Paulo, Brazil, for the kind logistical
support for this research, and to the anonymous referees for the many useful
comments.

Appendix

This appendix shows the AR-boxes (Addition-Rotation boxes) of Akelarre and
Ake98 (Fig. 3). For the left-rotation operation, ≪, the rotation amounts are
4- or 5-bit values from parts of P1 and Q2. In Fig.3(a), rotations affect 32-
bit operands. For example, the first rotation of P2 to the left is by an amount
represented by the five bits P1[1 . . . 5]. In Fig.3(b), the rotations affect operands
31 bits wide, namely excluding the most or the least significant bits (darkened in
the pictures). These pictures are described for illustrative purposes only, because
the attacks in this paper are independent of the AR-boxes.

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

Z9

Z10

Z8

Z11

Z12

Z13

P1 P2

Q1 Q2

P1[1..5]

P1[6..10]

P1[11..15]

P1[16..20]

P1[21..24]

P1[25..28]

P1[29..32]

Q2[29..32]

Q2[1..5]

Q2[6..10]

Q2[11..15]

Q2[16..20]

Q2[21..24]

Q2[25..28]

Z2

Z3

Z4

Z5

Z6

Z7

Z9

Z10

Z11

Z12

Z13

P1 P2

Q1 Q2

P1[6..10]

P1[11..15]

P1[16..20]

P1[21..24]

P1[25..28]

P1[29..32]

Q2[29..32]

Q2[6..10]

Q2[11..15]

Q2[16..20]

Q2[21..24]

Q2[25..28]

Z2

Z3

Z4

Z5

Z6

Z7

(a) (b)

P1[1..5]

31 bits 1 bit

<<< 

<<< 

<<< Q2[1..5]
<<< 

Z8

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

<<< 

Fig. 3. AR-box of Ake98 (a), and of Akelarre (b)



Cryptanalysis of Ake98 217

References

1. E. Biham, ”Performance of Optimized Implementations of the NESSIE Primi-
tives,” http://cryptonessie.org, Oct. 2002.

2. A. Biryukov, J. Nakahara,Jr., B. Preneel, J. Vandewalle, ”New Weak-Key Classes
of IDEA,” ICICS 2002, R. Deng, S. Qing, F. Bao, J. Zhou, Eds., Springer-Verlag,
LNCS 2513, Dec. 2002, 315–326.

3. G. Álvarez Marañón, ”Contribución al estudio de la estructura interna del
conjunto de Mandelbrot y aplicaciones en criptograf́ia,” Facultad de In-
formática, Universidad Politécnica de Madrid, Sep. 2000, PhD Dissertation,
http://www.iec.csic.es/∼gonzalo.

4. G. Alvarez, D. de la Guia, F. Montoya, A. Peinado, ”Akelarre: a new Block Cipher
Algorithm,” 3rd Selected Areas in Cryptography (SAC) Workshop, 1996, 1–14.

5. J. Daemen, V. Rijmen, ”AES Proposal: Rijndael,” First AES Conference, Califor-
nia, USA, 1998, http://www.nist.gov/aes.

6. N. Ferguson, B. Schneier, ”Cryptanalysis of Akelarre,” 4th Selected Areas in Cryp-
tography (SAC) Workshop, 1997, 201–212.

7. P.M. Hawkes, ”Asymptotic Bounds on Differential Probabilities and an Analysis
of the Block Cipher IDEA,” PhD Dissertation, The University of Queensland, St.
Lucia, Australia, Dec. 1998.

8. L.R. Knudsen and V. Rijmen, ”Ciphertext-Only Attack on Akelarre,” Cryptologia,
vol. XXIV, no. 2, Apr. 2000, 135–147.

9. X. Lai, ”On the Design and Security of Block Ciphers,” ETH Series in Information
Processing, J.L. Massey, Ed., Vol. 1, 1995, Hartung-Gorre Verlag, Konstanz.

10. A.J. Menezes, P.C. van Oorschot, S. Vanstone, ”Handbook of Applied Cryptogra-
phy,” CRC Press, 1997.

11. R.L. Rivest, ”The RC5 Encryption Algorithm,” B. Preneel, Ed., 2nd Fast Software
Encryption Workshop, 1995, Springer-Verlag, LNCS 1008, 86–96.

12. R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, ”The RC6 Block Cipher,” First
AES Conference, California, USA, 1998, http://csrc.nist.gov/encryption/aes/.



Designing an Efficient and Secure Public-Key
Cryptosystem Based on Reducible Rank Codes

Thierry Berger1 and Pierre Loidreau2

1 LACO, Université de Limoges, France
Thierry.Berger@unilim.fr

2 Ecole Nationale Supérieure de Techniques Avancées (ENSTA), France
Pierre.Loidreau@ensta.fr

Abstract. In this paper we modify the cryptosystem presented in [16]
based on the problem of decoding in rank metric. We design a cryptosys-
tem more secure than the original one with a better transmission rate.
We show that this system resists to the message resend and reaction
attacks, and can be used with a small public-key (around 10kbits).

1 Introduction

Cryptosystems based on coding theory were first introduced by McEliece in 1978
[13], just a few months after the RSA cryptosystem was published. This system
uses as private-key a Goppa code known to have fast polynomial-time decoding
algorithms up to its error-correcting capability, and two scrambling non-singular
matrices. The public-key is a generator matrix of the scrambled Goppa code.

Despite quite a number of attempts since 1978, the original system remains
unbroken. However it is not widely used. Namely, the main problem of cryptosys-
tems basing their security on the problem of decoding in Hamming metric is that
the efficiency of general decoding algorithms implies that the size of the public-
key has to be huge. Typically several hundred thousands of bits [2]. In 1991 a
new public-key cryptosystem was presented by Gabidulin, Paramonov and Tret-
jakov. Its security relies on the problem of decoding codes in the rank metric [9].
It was a very promising system, since decoding algorithms in rank metric are
exponential [14] . Therefore, this would allow a conceiver to choose public-keys
of much smaller size. Unfortunately, since Gabidulin codes are strongly struc-
tured, Gibson showed that the public-key size had to be increased a lot. Hence
it diminishes the practical interest of this system [10, 11].

The last developments in this field are not older than 2003 [16]. A new family
of codes decodable in polynomial-time for rank metric was built. These codes
are called reducible rank codes. This family of codes was used in a Niederreiter
type cryptosystem.

In this paper, we design an efficient – in size and speed – public-key cryp-
tosystem based on the family of reducible rank codes. Compared to the original
system, we show that we can significantly increase the transmission rate of the
system with a simple transformation using properties of the Rijndael S-boxes.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 218–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Designing an Efficient and Secure Public-Key Cryptosystem 219

Moreover, we show that this new system can efficiently resist message resend
attacks as well as reaction attacks, together with keeping a small public-key size.
To achieve this goal, the designer only needs properties of rank metric and a
good hash function.

2 Description of the Cryptosystem

In a first part, we present rank metric and some of its properties. In a second
part, we introduce the problem of of decoding in rank metric. By the state of
art this problem is difficult. The complexity of the best decoding algorithms
show that it is theoretically possible to use public-keys of much smaller size
than for PKCs (Public-Key Cryptosystems) based on problem of decoding in
Hamming metric, like McEliece cryptosystem. In a third part, we describe the
cryptosystem based on reducible rank codes as it was introduced in [16]. We
only present the simplified version of the paper, since it is resistant to any kind
of structural attacks as shown in the original paper.

2.1 Rank Metric

Rank metric was introduced in 1985 by E.M. Gabidulin [6]. Let GF(2m) be the
finite field with 2m elements. Any element α of GF(2m) can be written uniquely

α = a1γ1 + · · ·+ amγm,

where the ai ∈ GF(2) and where γ1, . . . , γm is a basis of GF(2m) over GF(2).
Any vector c = (c1, . . . , cn) over GF(2m) can be seen as an m×n matrix, whose
ith column is the vector of size m corresponding to the expansion of the element
ci over the chosen basis. The rank of the vector c is by definition the rank of the
obtained matrix. In the following it is denoted Rk(c | GF(2)).

Consider n elements g1, . . . , gn of GF(2m) which are linearly independent
over GF(2). Consider the k × n–matrix

G =

⎛⎜⎜⎜⎜⎜⎜⎝
g1 · · · gn

g21

1 · · · g21

n

g22

1 · · · g22

n
...

. . .
...

g2k−1

1 · · · g2k−1

n

⎞⎟⎟⎟⎟⎟⎟⎠ . (1)

Let G be the code generated by G, i.e.

G = {xG | x ∈ GF(2m)k}.

The code G is called Gabidulin code. Several polynomial-time algorithms cor-
recting up to t = �(n−k)/2� errors in the rank metric were designed, [6, 7, 21, 17].
Our measurements of complexity will consider that we take the decoding algo-
rithm described in [7], giving a decoding complexity of ≈ t3 + (2n + m)t + k2

multiplications in GF(2m).



220 T. Berger and P. Loidreau

2.2 Cryptosystems Based on Rank Codes

Since 1978, cryptosystems, identification schemes and even a signature scheme
have been designed, the security of which relies on the problem of decoding
linear codes in Hamming metric [13, 3]. This problem has been studied for a
long time and some results about NP-Completeness have been obtained. The
most recent can be found in [24]. In the same way, public-key cryptosystems
and identification schemes have been designed on the problem of decoding linear
codes in rank metric. Though the problem is believed to be hard, there is no
existing proof of NP-Completeness [5, 9]. The problem of decoding in rank metric
can be stated as such:

Input: A target vector y of length n over GF(2m), a k × n matrix G of rank k
over GF(2m), and an integer t.
Decoding(y, G, t)
Find, whenever it exists, a vector x ∈ GF(2m)k, and a vector e where
Rk(e|GF(2)) ≤ t such that y = xG + e,

The most efficient algorithms that solve this problem can be found in [14]. In
this paper, Ourivski and Johannson present two algorithms that, given a linear
code C of dimension k over GF(2m), gives a solution to Decoding(y, G, t) with
complexity
– Minimum rank weight decoding: O

(
(tm)32(t−1)(k+1)

)
binary operations.

– Basis enumeration: O
(
(k + t)3t32(t−1)(m−t)

)
binary operations.

Since these algorithms are strongly exponential in the dimension, minimum
distance and extension degree of the codes, the Decoding problem in rank
metric can be considered as a difficult problem. Therefore it could be suitable
for designing PKCs.

Compared to the general decoding algorithms for Hamming metric, the de-
coding algorithms for rank metric have larger complexity for the same parame-
ters. This implies that we should be able, at least theoretically, to design systems
with smaller public-keys for a given security. This would give a nice solution to
the major drawback of using cryptosystems based on linear codes that is to
know the huge size of the public-key (several hundreds of thousands of bits for
McEliece system to be secure against general decoding algorithms, [2]).

Unfortunately, in rank metric, the only families of known codes that are
decodable in polynomial-time are constructed from Gabidulin codes. This family
is very much structured and, although it is possible to hide the structure in
some sense, Gibson showed that the public-key size had to be widely increased
to prevent an attacker from breaking completely the system [10, 11].

Different alternatives were proposed to reduce further the public-key size
[8, 15] with keeping a sufficient security. The general principle is the following:
– The conceiver chooses a generator matrix G of a code for which he knows a

polynomial-time decoding algorithm up to some rank t.
– He scrambles the generator matrix G of the code in some way and then

gets the matrix Gpub, that he publishes. He uses this matrix to encrypt the
message in the same way as for the McEliece cryptosystem.



Designing an Efficient and Secure Public-Key Cryptosystem 221

2.3 System Based on Reducible Rank Codes

Among the proposed PKC’s based on rank metric, the newest, and maybe most
original one uses the so called family of reducible rank codes. In the introductory
paper a more general approach than ours is presented, [16]. However, since we
are mainly interested in the optimality and the efficiency of the system we will
only consider reducible rank codes of order 2, without the scrambling matrix.
This does not diminish the security of the system.

– Let G be the matrix presented in (1). It generates a Gabidulin code of length
n and dimension k. The code corrects t = �(n− k)/2� errors in rank metric
in polynomial-time. Let A be a randomly chosen k×n matrix over GF(2m).
The designer forms the 2k × 2n matrix Gpriv such that

Gpriv =
(

G A
0 G

)
.

– Then he picks up randomly a 2k × 2k non-singular matrix S over GF(2m)
and a 2n × 2n non-singular matrix P with coefficient over the base field
GF(2).

The conceiver publishes the 2k × 2n-matrix

Gpub = SGprivP.

The encryption–decryption procedure is the following.

– Encryption: Alice wants to send the information vector x of length 2k to
Bob. She first chooses an error-vector e over GF(2m) of length 2n and of
rank t. Then she computes

y = xGpub + e,

and sends y to Bob.
– Decryption: Since Bob knows the private key, he can compute

yP−1 = xS

(
G A
0 G

)
+ eP−1.

For more convenience, let us write x′ = xS, e′ = eP−1, and y′ = yP−1.
The vector x′ has length 2k, thus x′ = (x′

1,x
′
2) where the x′

i’s are of length
k. Similarly we have y′ = (y′

1,y
′
2) where y′

i is of length n, and e′ = (e′
1, e

′
2).

Then, Bob obtains the two following equations:{
y′

1 = x′
1G + e′

1,
y′

2 = x′
2G + x′

1A + e′
2.

The matrix P has coefficients in the base field GF(2). Therefore, multiplying
by P−1 preserves the rank of the vectors. Since e has rank less than t,
e′ = eP−1 has also rank less than t. As a consequence e′

1 and e′
2 have rank

less than t. Hence:



222 T. Berger and P. Loidreau

1. By decoding y′
1 in the code generated by G, Bob recovers (x′

1, e
′
1).

2. Knowing x′
1 and A, he computes y2 −x′

1A. Then he decodes this vector
in the code generated by G and recovers (x′

2, e
′
2).

3. Finally he gets the plaintext x by multiplying (x′
1,x

′
2) by S−1.

Because of the small parameters used and because of the efficiency of the
decoding algorithms for Gabidulin codes, this procedure is extremely fast.

3 The New System

In the original proposition, the authors use the Niederreiter form of the system,
that is using the parity-check matrix. With this method, they can publish only
the redundant part of the parity-check matrix, diminishing thus the key-size,
which could not be done in the McEliece system without some information from
the plaintext leaking out. They proposed a system taken over the field GF(220)
with a key-size of 16000 bits and a transmission rate of 0.55.

But there are two problems:

– The Niederreiter form of the system is not suitable against active attacks
as we will mention further in the paper. Namely, a plaintext will always be
encrypted into the same ciphertext, which is not the case when one uses the
McEliece form, i.e. with the generator matrix. Therefore, there is absolutely
no semantic security, since by making the difference of two received cipher-
texts, an attacker can distinguish whenever the same message has been sent
twice.

– The transmission rate is low. It is approximately equal to (m+2n−t)t/(2m(n−
k)), which is much less than 1.

In the following, we show how to design a system based on reducible rank
codes wich satisfies a kind of semantic security. We show how to increase sig-
nificantly the transmission rate by designing a procedure that puts information
in the error vector. By continuing our comparison with McEliece cryptosystem,
adding information in the error-vector was done by Sendrier in [22], and the idea
of rendering the scheme secure against message resend attacks can be found in
[23].

In the modification of the system, we consider two things in addition to the
standard parameters of the cryptosystem:

1. A hash function h taking as input m × 2n bits and returning m × 2k bits.
2. A procedure called P which takes as arguments a random vector r, an in-

formation vector x̃, and returns a vector of length 2n over GF(2m) and of
rank t. We want our procedure to satisfy three properties:
(a) Be invertible on its image.
(b) The procedures P and P−1 have to be computable in a time negligible

compared to the time of the encryption-decryption of the system.
(c) The procedure P must diffuse the randomness r sufficiently over its

output vector.



Designing an Efficient and Secure Public-Key Cryptosystem 223

With these tools, we design an encryption–decryption procedure slightly dif-
ferent from the original one:

– Encryption: Alice wants to encrypt the information vectors x, x̃. She com-
putes y = (x + h(P(r, x̃)))Gpub + P(r, x̃). Finally she sends y to Bob.

– Decryption: Since the vector P(r, x̃) has rank less than t, Bob recovers P(r, x̃)
and x + h(P(r, x̃)). Since P is invertible, he recovers x and x̃.

The security does not rely exactly on the decoding problem in rank metric. It
is more related with the following problem, which can be stated as Conditional
Decoding.

Input: A target vector y of length n over GF(2m), a k × n matrix G of rank k
over GF(2m), and an integer t.
Conditional Decoding(y, G, t)
Find, whenever it exists, a vector x, and a vector e where Rk(e|GF(2)) ≤ t such
that y = (x + h(e))G + e,

We show that both problem are completely equivalent. This implies that
the problem on which the security of our system is based is as difficult as the
Decoding problem. Namely, suppose that we are given an algorithm A solving
Conditional Decoding, i.e. A takes as input an instance (y, G, t) and returns
in polynomial-time:

– Failure, if there is no solution to Conditional Decoding(y, G, t).
– If there is no failure it returns a pair (x, e), such that y = (x + h(e))G + e,

and Rk(e | GF(2)) ≤ t.

Let A′ be the following algorithm, taking as input (y, G, t) and returning:

– Failure, if A(y, G, t) returns Failure.
– The pair (x− h(e), e) if A(y, G, t) returns (x, e).

The algorithm A′ solves the Decoding problem in polynomial time for the
instance (y, G, t). Namely,

– There is no solution to Decoding(y, G, t) if and only if there is no solution to
Conditional Decoding(y, G, t). Indeed, if there were a solution (c0, e0) to
Conditional Decoding(y, G, t), then (c0 + h(e0), e0), would be a solution
to Decoding(y, G, t). The converse is easy to show.

– It is immediate to check that if there is a solution (x, e) to Conditional
Decoding(y, G, t) then (x − h(e), e) is a solution to Decoding(y, G, t),
which is by construction of A′ the value that the algorithm returns.

This show that our problems are both equivalent in terms of complexity.



224 T. Berger and P. Loidreau

3.1 The Procedure P
Now we design the procedure P. The goal of this procedure is to put information
in an error-vector of rank t and of length 2n. The number of possible error-vectors
is equal to the number of vectors rank t, that is

t−1∏
i=0

(2m − 2i)(22n − 2i)
2t − 2i

.

Since t is significantly less than 2n and m, this quantity can be approximated
by 2(m+2n)t−t2+1. Thus the maximal amount of information in bits that can be
put on this vector is equal to (m+2n)t− t2 +1. An efficient encoding procedure
to do this was described in [16], but here we are willing to keep r random bits
in the error-vector.

– Let D be a binary t × t matrix of rank t.
– Let E1 be a (m − t)t matrix, and let E2 be a t(2n − t) matrix over GF(2).

The matrix

E =
(

D DE2
E1 E1E2

)
(2)

is a binary matrix of rank exactly t, and is thus the expansion of some vector
over GF(2m) of length 2n and of rank t. Information can be put in D, E1 and
E2, as well as randomness.

An important point is to ensure a good diffusion of randomness in the matrix
E. For example, suppose that the random positions are located in the matrix D,
then the randomness of the error is located in a known subspace of dimension t.
This fact could be used in the message resend attacks (cf. §3.3).

To avoid this problem, we propose to use the Rijndael S-box, [18, 19, 20]: it is
an invertible function which takes in input a byte and return a byte in output.
This S-box has good diffusion and non-linearity properties. The information bits
and random bits must be spread in bytes in such a way that each byte contains
at least one random bit. We apply the Rijndael S-box to each byte and then we
put these in D, E1 and E2.

It is easy to check that recovering the sent message x′ from this matrix is
O(t3) binary operation and is thus negligible in complexity compared to the
other procedures. Our procedure P satisfies thus all the requirements, that we
demanded in the previous section.

3.2 Parameters of the Cryptosystem

By using the procedure P previously described, we increase the transmission
rate of the system up to

τ =
2mk + (2n + m)t − r − t2

2mn
= k/n +

(2n + m − t)t − r

2mn︸ ︷︷ ︸
additional gain

The complexity of the encryption is:



Designing an Efficient and Secure Public-Key Cryptosystem 225

– Computing e = P(r, x̃): Negligible compared to the other procedures since
in O(t3) binary operations.

– Computing (x + h(e))Gpub: ≈ 4nk multiplications in GF(2m).

The complexity of the decryption is:

– Multiplying by P−1: ≈ 2n2 binary operations.
– Then one has to compute two decoding steps and a multiplication by A:
≈ 2t3 + 2(2n + m)t + 2k2 + nk multiplications in GF(2m).

– Then multiplying by S−1, supposed already precomputed: 4k2 multiplica-
tions in GF(2m).

Therefore the overall complexity of the decryption is: ≈ t(2t2 +2(2n+m))+
k(6k + n) operations in the field GF(2m).

3.3 Security of the Cryptosystem Based on Rank Codes

At the beginning of the section we showed that the problem on which we base the
security of our system is equivalent to the problem of decoding in rank metric.
However there might be various ways to attack the system.

Structural Attacks. They consist in attacking directly the public-key to break
the system. In [16], it is discussed the resistance of the private key to any struc-
tural attacks. It is shown that it is not possible to break the system by recovering
a decoder provided the parameters are well chosen. A security analysis implies
moreover that the matrix G of the Gabidulin code can be published without loss
of security. Indeed, one can pass from a Gabidulin code to another by changing
the bases. Let Gpub be written under the form

Gpub = S

(
G A
0 G

)
P,

and let G′ = GU , where U is non-singular with coefficients over GF(2) be a
generator matrix of a Gabidulin code. We we have

Gpub = S

(
G′ A
0 G′

)
P ′,

where

P ′ =
(

U−1 0
0 U−1

)
P.

Therefore, publishing the matrix G of the private key does not give any
additional information when one tries to cryptanalyse the system by attacking
the public-key.

Decoding Attacks. For these attacks, an attacker intercepts a ciphertext and
tries to recover the corresponding plaintext. The best known algorithms to
achieve this goal were designed by Ourivski and Johansson and have complexity:



226 T. Berger and P. Loidreau

– Minimum rank weight decoding: O
(
(tm)32(t−1)(2k+1)

)
binary operations.

– Basis enumeration: O
(
(2k + t)3t32(t−1)(m−t)

)
binary operations.

Now we only discuss the resistance of the system against active eavesdrop-
ping. All basic attacks on our system can be naturally avoided, since there com-
plexity is naturally exponential.

Message resend attack
In Hamming metric, it was presented by Berson in the case of McEliece cryp-
tosystem [1]. It provides two different informations:

– An eavesdropper is able to know whenever the same message is sent twice
because the Hamming weight of the difference of the encrypted message is
very small.

– This knowledge gives information on the positions of errors, thus consider-
ably diminishing the complexity of the decoding attack.

Suppose that the same message x is encrypted twice with our system. The
attacker gets the two ciphertexts y1 = (x + h(e1))Gpub + e1 and y2 = (x +
h(e2))Gpub + e2, where the ei’s contain some information and depend on r bits
of randomness and on the transformation P.

By computing the difference, he gets y1 − y2 = (h(e1) − h(e2))G + e1 − e2.
Provided h(e1) �= h(e2), there is no way to distinguish this difference with the
difference of two random ciphertexts. The probability that such an event occurs
depends on the random parameter r. Even if it happens, distinguishing the
ciphertexts does not enable one to recover the plaintext easily.

This analysis shows that the hash function introduces a kind of semantic
security in our system. Another type of active attack that we consider are the
reaction attacks.

Reaction attacks
Studying reaction attacks in case of rank metric is not so simple. Indeed, what
plays the important role in the error vector is not a bit itself but a full vector
space.

Reaction attacks can be described as follows: An attacker eavesdrops the
channel and gets a ciphertext y. He modifies a few bits of the ciphertext and
then submits the new text to a decryption oracle. If the oracle does not reject
the ciphertext it means that it is a valid ciphertext. Thus one obtains some
information about the changed bits. This kind of attack is particularly adapted
to Hamming metric, [12].

In rank metric, the basic idea would be in the same way to add some error on
the ciphertext and then sees if this new message is accepted as a valid ciphertext.
We can imagine the following attack:

– He picks up a vector f and compute y′ = y + f .
– He submits the new y′ to the decryption oracle and sees its reaction: Accept

or Reject.



Designing an Efficient and Secure Public-Key Cryptosystem 227

By properties of rank metric, the oracle will accept y′ as a valid ciphertext
if and only if f + e is of rank less than t, that is, since e = (e1, . . . , en) has rank
t, if and only if every coordinate fi of f is a linear combination of the ej ’s. We
can show that this attack can succeed in approximately t2m−t queries to the
decryption oracle. Namely you can obtain a set of t elements forming a basis of
the vector space spanned by the error-vector e, and then you can decode and
recover the plaintext in polynomial time. However note that in that case, the
complexity of reaction attack is not linear but exponential in the size of the
extension field. So the question how many queries can do the attacker to the
oracle to complete a reasonable attack. We cannot answer to that question here
but we see that if this is really problematic it is enough to increase the field size
to secure the system.

3.4 Proposition of Parameters

We propose two different sets of parameters :
First set: m = n = 22, k = 10, t = 6 and random parameter r = 80.

– Size of the public-key : 22 × 24 × 20 = 10560 bits if we consider only the
redundant part of the matrix.

– Transmission rate of the system : ≈ 0.78.
– Security against the decoding attacks :

1. Minimum rank weight decoding: ≈ 2126 binary operations.
2. Basis enumeration: ≈ 2100 binary operations.

Note that in this case, for an equivalent security the public-key size of McEliece
cryptosystem has to be of 700 kbits, that is 70 times larger [2]. The second set of pa-
rameters takes into account the necessary resistance to reaction attacks. Therefore
we increase the size of the chosen finite field.

Second set: m = 60, n = 20, k = 10, t = 5 and random parameter r = 80.

– Size of the public-key : 60 × 20 × 20 = 24000 bits if we consider only the
redundant part of the matrix.

– Transmission rate of the system : ≈ 0.65.
– Security against the decoding attacks :

1. Minimum rank weight decoding: ≈ 2109 binary operations.
2. Basis enumeration: ≈ 2281 binary operations.

This increases notably the size of the public-key but remains 30 times smaller
than the public-key size of a secure McEliece cryptosystem. In the parameters
we chose to propose a security of 2100. For a security corresponding to 280 binary
operations, the key size can be made smaller.

4 Conclusion

From a cryptosystem based on rank metric, we designed a new one. It has the
advantages of rank metric that is to know a small public-key size, and it is



228 T. Berger and P. Loidreau

resistant to different kinds of attacks. Namely, this system provides a kind of
semantic security and can be rendered secure against reaction attacks and mes-
sage resend attacks which are problematic if one uses systems such as McEliece
cryptosystem.

References

1. T. A. Berson. Failure of the McEliece public-key cryptosystem under message
resend and related-message attack. In Advances in Cryptology, CRYPTO 1997,
Lecture Notes in Computer Science, pages 213–220, 1997.

2. A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosystem.
In K. Ohta and D. Pei, editors, Advances in Cryptology - ASIACRYPT’98, number
1514 in LNCS, pages 187–199, 1998.

3. N. Courtois, M. Finiasz and N. Sendrier. How to achieve a McEliece-based signa-
ture scheme. In Colin Boyd, Editors, Advances in Cryptology - ASIACRYPT’2001,
number 2248 in LNCS, pages 151–174,2001

4. F. Chabaud and J. Stern. The cryptographic security of the syndrome decoding
problem for rank distance codes. In K. Kim and T. Matsumoto, editors, Advances
in Cryptology - ASIACRYPT ’96, volume 1163 of LNCS. Springer-Verlag, Novem-
ber 1996.

5. K. Chen. A new identification algorithm. In Cryptographic policy and algorithms,
volume 1029, pages 244–249. Springer, 1996.

6. E. M. Gabidulin. Theory of codes with maximal rank distance. Problems of
Information Transmission, 21:1–12, July 1985.

7. E. M. Gabidulin. A fast matrix decoding algorithm for rank-error correcting codes.
In G. Cohen, S. Litsyn, A. Lobstein, and G. Zémor, editors, Algebraic coding,
volume 573 of LNCS, pages 126–133. Springer-Verlag, 1991.

8. E. M. Gabidulin and A. V. Ourivski. Modified GPT PKC with right scrambler.
In Daniel Augot and Claude Carlet, editors, Proceedings of the 2nd International
workshop on Coding and Cryptography, WCC 2001, pages 233–242, 2001. ISBN
Number : 2-761-1179-3.

9. E .M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-
commutative ring and their application in cryptology. LNCS, 547:482 – 489, 1991.

10. J. K. Gibson. Severely denting the Gabidulin version of the McEliece public-key
cryptosystem. Designs, Codes and Cryptography, 6:37–45, 1995.

11. J. K. Gibson. The security of the Gabidulin public-key cryptosystem. In U. Maurer,
editor, EUROCRYPT’96, pages 212–223, 1996.

12. C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key
cryptosystems. In Proceedings of the 2nd International Conference on Information
and Communication Security, ICICS’99, number 1726 in LNCS, pages 2–12, 1999.

13. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Technical report, Jet Propulsion Lab. DSN Progress Report, 1978.

14. A. Ourivski and T. Johannson. New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmission,
38(3):237–246, September 2002.

15. A. V. Ourivski and E. M. Gabidulin. Column scrambler for the GPT cryptosystem.
Discrete Applied Mathematics, 128(1):207–221, May 2003. Special issue of the
second International Workshop on Coding and Cryptography (WCC2001).



Designing an Efficient and Secure Public-Key Cryptosystem 229

16. A. V. Ourivski, E. M. Gabidulin, B. Honary, and B. Ammar. Reducible rank
codes and their applications to cryptography. IEEE Transactions on Information
Theory, 49(12):3289–3293, December 2003.

17. G. Richter and S. Plass. Fast Decoding of Rank-Codes with Rank Errors and
Column Erasures In Proceedings of ISIT 2004, 2004.

18. J. Daemen, V. Rijmen The Block Cipher Rijndael, Smart Card Research and Ap-
plications, LNCS 1820, J.-J. Quisquater and B. Schneier, Eds., Springer-Verlag,
2000, pp. 288-296.

19. J. Daemen, V. Rijmen Rijndael, the advanced encryption standard, Dr. Dobb’s
Journal , Vol. 26, No. 3, March 2001, pp. 137–139.

20. http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaelref.zip
21. R. M. Roth. Maximum-Rank array codes and their application to crisscross error

correction. IEEE Transactions on Information Theory, 37(2):328–336, March 1991.
22. N. Sendrier. Efficient generation of binary words of given weight. In C. Boyd,

editor, Cryptography and Coding, 5th IMA Conference, Circencester, UK, LNCS,
pages 184–187, December 1995.

23. H.-M. Sun. Enhancing the security of the McEliece public-key cryptosystem. Jour-
nal of Information Science and Engeneering, 16:799–812, 2000.

24. A. Vardy. The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory, 43(6):1757–1766, November 1997.



HEAD: Hybrid Encryption with Delegated
Decryption Capability

Palash Sarkar

Cryptology Research Group, Applied Statistics Unit,
Indian Statistical Institute, 203, B.T. Road,

Kolkata, India 700108
palash@isical.ac.in

Abstract. We consider the problem of adding the functionality of del-
egated decryption on top of usual encryption schemes. An appropriate
security model is described for such schemes. Our main contribution is
to present a practical and efficient public key encryption scheme HEAD,
which achieves the functionality of delegated decryption. The new scheme
is obtained by combining bilinear map based techniques with Kurosawa-
Matsuo modification of DHIES. The scheme HEAD is proved to be secure
based on appropriate security assumptions on the components.

Keywords: public key encryption, DHIES, delegated decryption.

1 Introduction

Consider the following scenario: A busy corporate manager receives a large num-
ber of e-mails every day. For reasons of confidentiality, all e-mails are encrypted
using the public key of the manager. Every day, the manager decrypts each e-
mail, reads it and then delegates it to an assistant for proper handling. It turns
out that most of the e-mails are of routine nature and could be handled directly
by an assistant without the involvement of the manager.

Thus the problem boils down to the ability of the manager to delegate the
decryption capability to an assistant. Clearly, the manager does not want any
one assistant to be able to read all e-mails. The e-mails can be classified into
categories and each category can be handled by one assistant. Any e-mail sent to
the manager will have an unencrypted subject line mentioning the category and
the body of the e-mail will be encrypted. An assistant who has been delegated
to handle the particular category should be able to decrypt the e-mail and take
proper action.

Let us consider how this can be achieved using standard encryption. One
possibility is to write a “wrapper” around the mailer daemon, which performs
a decryption using the secret key of the manager and then encrypts using the
key of the assistant. There are several difficulties to this approach. First, if
communication with the assistant is done using a symmetric cipher, then the

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 230–244, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



HEAD: Hybrid Encryption with Delegated Decryption Capability 231

manager needs to share a secret key with each of the assistant; if this is done
using an asymmetric cipher, then the assistant has to obtain a public key/private
key pair from a CA, which involves additional cost. Secondly, and perhaps more
importantly, we have to address the question of automatic decryption using the
manager’s secret key. Secret keys are to be protected and so one would expect
some kind of involvement by the manager during the decryption process. For
example, if the manager is on vacation, then (s)he would not like to leave the
secret key on the hard disk. This would stop the entire wrapper process during
the manager’s vacation period, which is an unacceptable situation.

From the above discussion, it is clear that trying to solve the problem with
standard encryption technique introduces several difficulties. Thus, we are ac-
tually asking for a new primitive which has an additional functionality on top
of standard cryptographic encryption. This functionality is that of delegated
decryption. The question before the designer is to design a secure and efficient
encryption scheme with the added functionality of delegated decryption.

In this paper, we provide a solution to this problem by modifying a known
hybrid encryption scheme. We note that delegated decryption was briefly men-
tioned in [4] as a possible application of bilinear maps. However, a proper security
model and a concrete scheme was not presented. To the best of our knowledge,
the current work is the first one to propose a fully functional, efficient and prov-
ably secure encryption scheme with delegated decryption capability.

DHIES [2] is a hybrid encryption scheme which is present in draft standards of
IEEE P1636a and ANSI X9.63 [3]. It combines an ElGamal type encryption with
a symmetric encryption and a message authentication code (MAC) generation
scheme. DHIES is an efficient encryption scheme and has been proved to be
secure under the oracle Diffie-Hellman assumption; chosen plaintext security for
symmetric encryption and unforgeable chosen message security for the MAC
scheme. In a recent work, Kurosawa and Matsuo [10] showed that the MAC
component can be removed from DHIES. Instead, they require the symmetric
encryption scheme to satisfy chosen ciphertext security.

We also modify DHIES to achieve delegated decryption functionality. Fol-
lowing [10], we do away with the MAC component and use only a symmetric
encryption scheme. Our main innovation, however, is in the replacement of the
public key part of DHIES. We use a bilinear pairing based technique to achieve
the required functionality of delegated decryption. The new encryption scheme
is called HEAD. As a result of introducing a bilinear based public key part, we
have to introduce a new hard problem, which we call the oracle bilinear Diffie-
Hellman problem. This is an adaptation of the oracle Diffie-Hellman problem
introduced in [2].

The scheme HEAD is proved to be secure. For this, we introduce an ap-
propriate notion of security for an encryption scheme with delegated decryption
capability. In the current version of the paper, we do not consider insider attacks,
i.e., attack by a collusion of assistants. It is not difficult to modify our security
model and proof technique to prove resistance against insider attacks. This will



232 P. Sarkar

be presented in a future communication along with several other applications of
the basic primitive.

For the security proof to work, we need an extension of the usual notion
of chosen ciphertext security for the symmetric encryption component. Though
we have not been able to prove that this new notion is equivalent to the usual
notion, we believe that the symmetric encryption schemes in [8, 9] satisfy the
new notion. Settling this is a possible future research problem.

HEAD is an efficient enciphering scheme. For encryption and decryption, we
require one pairing each plus symmetric key encryption and decryption. Com-
pared to the Kurosawa-Matsuo variant of DHIES, we have replaced the expo-
nentiations by pairings. While this leads to a slowdown, we are able to achieve
the added functionality of delegated decryption.

Related Primitives: There are several primitives which have functionality
similar to that of delegated decryption. We mention these below.

In an earlier work [12], a different (and somewhat weaker) form of delegated
decryption was considered. In the setting of [12], a user has a public key and a
private key to be used for the dual purpose of decryption and signing. He (or
she) can delegate the decryption capability to an assistant, while retaining (and
not delegating) the capability to sign a message. The assistant who receives the
delegated decryption key can decrypt all messages of the user. In contrast, in
our setting, decryption keys can be selectively assigned to different assistants.
Since the main secret key of the user is not given away, the signing ability is
retained by the master user.

In proxy signature schemes, the signing capability is delegated to an assistant,
i.e., the assistant can sign a message on behalf of a user. This was introduced by
Mambo et al in [11] and has later been studied by a number of authors. There is
also a recent proposal on bilinear map based proxy signature scheme [13]. See [1]
for a bibliography on proxy signatures. In both proxy signatures and delegated
decryption, the assistant is given a secret key which is derived from the secret
key of the master user. On the other hand, the encryption method that we
propose is a hybrid encryption method. Thus, even though proxy signature and
delegated decryption (with hybrid encryption) have similarities, it is not clear
how to obtain one primitive from the other.

In a recent work, Boneh et al [5] have introduced a new primitive – that of
public key encryption with keyword search. This primitive allows a third party
(i.e., neither Alice nor Bob) to search for selective keywords in an encrypted
message on behalf of Alice. However, this third party does not learn anything
more about the e-mail; in particular it cannot decrypt the e-mail. On the other
hand, in delegated decryption, we require the third party to be able to decrypt
selected e-mails on behalf of Alice. This, of course, trivially implies the ability
to look for keywords in the e-mail. Note that this feature might not always
be desirable and the applications of encrypted keyword search and delegated
decryption are really different.

Lastly, we would like to mention the primitive of broadcast encryption. In
this primitive, there are several private keys corresponding to a single encryption



HEAD: Hybrid Encryption with Delegated Decryption Capability 233

key. The distribution centre encrypts a message using the encryption key and
broadcasts the message. The individual users with proper decryption keys can
decrypt the message. Note that in this set-up all users are able to decrypt the
message. This is a special case of our protocol. In fact, our protocol can also be
used for broadcast encryption, with the added functionality of allowing different
sets of users to decrypt different messages.

2 Basics

This section consists of several subsections describing models of system compo-
nents and hardness assumptions. We start by presenting the model of asymmetric
encryption possessing the capability for delegating decryption ability.

2.1 Asymmetric Encryption with Delegated Decryption Capability

A usual asymmetric encryption scheme asym is a tuple
asym = (M, C,SK,PK, asym.keygen, asym.enc, asym.dec) where

• M and C are respectively the message and cipher spaces;
• SK and PK are respectively the secret and public key spaces;
• asym.enc(pk, M) is the encryption algorithm which takes as input a key

pk ∈ PK and
a message M ∈ M and produces a cipher C ∈ C.

• asym.dec(sk, C) is the decryption algorithm which takes as input a key
sk ∈ SK and a cipher C ∈ C and either returns Bad or produces a
message M ∈ M such that asym.dec(sk, asym.enc(pk, M)) = M .

A matching pair of private-public key (sk, pk) is produced by invoking the key
generation algorithm asym.keygen on the security parameter. The encryption al-
gorithm and the key generation algorithms are randomized algorithm. Further,
the run-time of all the algorithms is polynomial time in the security parame-
ter. This is usually enforced by providing the unary encoding of the security
parameter as an additional input to all the algorithms.

For an asymmetric encryption scheme possessing delegated decryption capa-
bility, the following modifications are required. There is a master user and a set
of assistants each of whom are identified by a binary string called a subject line.

1. There are l subject lines SL1, . . . ,SLl.
2. Corresponding to a subject line SLi, the master user generates a secret

information Qi.
3. The secret Qi is transmitted securely to the i-th assistant.
4. The encryption algorithm takes an additional input SLi.
5. The decryption algorithm takes an additional input Qi provided by the

i-th assistant.

The idea is that the i-th assistant and the master user can decrypt the mes-
sage which has been encrypted using subject line SLi. Nobody else should be able



234 P. Sarkar

to decrypt the message. Below we formalize this as part of the security require-
ment. First, we describe the usual notion of security for asymmetric encryption
and then describe the modification required for handling delegated decryption.

The usual notion of security for asymmetric encryption is as follows. The
adversary runs in two stages – the find stage followed by the guess stage. In
both stages, the adversary has access to a decryption oracle, which is the de-
cryption algorithm instantiated by a randomly chosen secret (i.e., unknown to
the adversary) key. In both stages, the adversary can query the decryption ora-
cle with messages and receive the corresponding ciphertexts. At the end of the
find stage, the adversary outputs two messages (x0, x1). A bit b ∈ {0, 1} is se-
lected at random and xb is encrypted using the encryption oracle. The adversary
then starts the guess stage. In the guess stage, the adversary is not allowed to
query the decryption oracle on the target y. At the end of the guess stage, it
outputs a bit b′. The adversary’s advantage in breaking the system is defined to
be 2|Pr[b = b′] − 1/2|.

In case of delegated decryption capability, the modifications required are as
follows:

1. The find stage remains as above.
2. The target generation is changed: The message xb is encrypted using all

the l subject lines and the l targets T1, . . . , Tl are given to the adversary.
3. The guess stage remains as above with the (natural) restriction that the

adversary cannot query the decryption oracle on any of the l targets
T1, . . . , Tl.

At the end, the adversary outputs b′ and the advantage of the adversary
is defined as above. The encryption algorithm being a randomized algorithm
ensures that with very high probability the targets T1, . . . , Tl are distinct; the
probability that two are equal being determined by the birthday paradox.

Another kind of possible attack on a scheme with delegated decryption capa-
bility is insider attack, i.e., an attack by a collusion of assistants. For this we have
to consider the possibility that the adversary can (adaptively) obtain the keys
of some of the assistants. We have to prove that this does not provide the adver-
sary with significant advantange in winning the adversarial game. It is possible
to extend our proof technique to obtain such a proof. For the proof to work we
require a separate hardness assumption on the map-to-point funtion M() used
in the protocol. The details of the model and the proof will be presented in a
future communication.

2.2 Symmetric Encryption

A symmetric encryption scheme sym is a tuple
sym = (M, C,K, sym.keygen, sym.enc, sym.dec) where

• M, C and K are respectively the message, cipher and key spaces;
• sym.enc(K, M) is the encryption algorithm which takes as input a key

K ∈ K and a message M ∈ M and produces a cipher C ∈ C.



HEAD: Hybrid Encryption with Delegated Decryption Capability 235

• sym.dec(K, C) is the decryption algorithm which takes as input a key
K ∈ K and a cipher C ∈ C and either returns Bad or produces a message
M ∈ M such that sym.dec(K, sym.enc(K, M)) = M .

The algorithm sym.keygen() is a randomized algorithm which takes as input
a security parameter and returns a key for the system. In our application, the
key generation algorithm will return a key uniformly at random from the set of
all possible keys.

We consider chosen ciphertext security for sym. The usual model of security
is extended in the following manner. First l keys K1, . . . , Kl ∈ {0, 1}kS are
chosen randomly. An adversary A for sym is given access to l decryption oracles
DKi(y) = sym.dec(Ki, y). The adversary A runs in two stages – the find stage
followed by the guess stage.

In the find stage, A can make arbitrary queries to any of DKi
(). At the end

of the find stage, A produces two messages x0 and x1.
A bit b is randomly chosen and xb is encrypted using the keys K1, . . . , Kl to

obtain l ciphertexts y1, . . . , yl. These l ciphertexts are given to A.
Adversary A then enters the guess stage. In the guess stage, the adversary is

allowed access to the decryption oracles with the only (natural) restriction that
DKi

() is not queried with yi.
Finally, A produces a bit b′. Formally, we define

AdvsymA = 2
∣∣∣∣Pr[b = b′] − 1

2

∣∣∣∣ (1)

to be the advantage that A has in breaking sym. The quantity Advsym(t, q) is
defined to be the maximum of AdvsymA , where the maximum is taken over all
adversaries A running in time at most t and making a total of at most q queries
to its decryption oracles. Note that we do not allow A access to encryption
oracles, since this feature will not be required in our security proof.

In the usual notion of chosen ciphertext security l = 1. It is clear that any
adversary which can break a scheme given l1 targets can also break it given
l2 > l1 targets. The converse, however, is not clear. On the other hand, it is
unlikely that for secure symmetric encryption schemes (as in [8, 9]), choosing
l to be a small value (around 100 or so) will provide additional information
to an adversary. The exact theoretical status of the problem appears to be an
interesting research question.

2.3 Cryptographic Bilinear Map

Let G1 = 〈P 〉 and G2 be two groups of the same prime order p. We view G1 as an
additive group and G2 as a multiplicative group. A mapping e : G1 × G1 → G2
satisfying the following properties is called a cryptographic bilinear map:

Bilinearity : e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Zp.
Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
Computability : There exists an efficient algorithm to compute e(P, Q)

for all P, Q ∈ G1.



236 P. Sarkar

Modified Weil Pairing [4] and Tate Pairing [6, 7] are examples of crypto-
graphic bilinear maps. Informally, the bilinear Diffie-Hellman (BDH) problem
is the following: Given P, aP, bP and cP compute e(P, P )abc. Again, informally,
the BDH assumption is that there is no “efficient algorithm” to solve the BDH
problem. We do not formalize the BDH problem or the BDH assumption, since
this will not be required by us. Instead we will formalize a variant of the BDH
problem, whose hardness will be the basis for our security proof.

2.4 Hardness Assumption

Let G1 = 〈P 〉, G2 be groups of prime order p and e(, ) be as defined in Section 2.3.
Following Bellare and Rogaway [2], we introduce a new hardness assumption in-
volving the bilinear Diffie-Hellman problem, a hash function H : G1 × G2 →
{0, 1}k and a map-to-point function M : {0, 1}∗ → G1. We call the new as-
sumption the oracle bilinear decision Diffie-Hellman (OBDH) assumption. The
OBDH problem is formally defined as follows.

Instance : (P, aP, bP,SL, str), where SL ∈ {0, 1}∗, a, b ∈ Zp and
str ∈ {0, 1}k.

Oracle : Ha(X, Y ), with X, Y ∈ G1. When invoked with (a1P, a2P )
returns H(a1P, e(a1P, a2P )a).

Oracle Restriction : Cannot query Ha(, ) on (bP, M(SL)).
Task : Determine whether str = H(bP, e(bP, M(SL))a) or

str is random.

Notes:

1. The map from G1×G1 to G2 defined by (Q, R) → e(Q, R) is not a bijection;
for any c ∈ Zp, the pairs (Q, R) and (cQ, c−1R) both map to e(Q, R). To
avoid this problem, we create a bijection from G1 × G1 to G1 × G2 by
(Q, R) → (Q, e(Q, R)). This bijection is used in the definition of the OBDH
problem.

2. The function H() will be instantiated by a cryptographic hash function such
as SHA-256. The input to H() is the pair (Q, e(Q, R)). Providing Q in “raw
form” as input to H() is expected to destroy algebraic properties.

Informally, the OBDH assumption states that there is no “efficient algorithm”
to solve the OBDH problem. We formalize this statement in a manner which
will be useful for our reduction based security proof. We consider algorithms
to solve OBDH in the following manner. Any algorithm A takes as input an
instance (P, aP, bP,SL, str) of OBDH and produces as output either zero or one.
The advantage of an algorithm A in solving OBDH is formally defined in the
following manner.

Advobdh
A = |Pr[A outputs 1|E1] − Pr[A outputs 1|E2]| (2)

where E1 is the event that str = H(bP, e(bP, M(SL))a) and E2 is the event that
str is random. The quantity Advobdh(t, q) denotes the maximum of Advobdh

A



HEAD: Hybrid Encryption with Delegated Decryption Capability 237

where the maximum is taken over all adversaries running in time at most t and
making at most q queries to the oracle Ha(, ).

The intuitive justification for OBDH assumption in the context of decision
Diffie-Hellman problem has been given in [2]. Similar arguments hold here and
hence we do not repeat them. The basic idea is that if H() is a “cryptographic”
hash function, then access to the oracle (subject to the oracle restriction) will
not help the adversary in solving the OBDH problem.

3 Description of HEAD

There is a master user and a set of assistants. Each encrypted message comes with
a subject line. An assistant who has been delegated to deal with the particular
subject line can decrypt the message on behalf of the master user.

3.1 Basic Components and Set-Up

The following components are required.

1. Let G1 = 〈P 〉, G2 be groups of order p and e(, ) be as defined in Section 2.3.
2. A symmetric encryption scheme sym = ({0, 1}∗, C, {0, 1}kS , sym.enc, sym.dec).
3. A hash function H : G1 × G2 → {0, 1}kS .
4. A map-to-point function M : {0, 1}∗ → G1.

Note that the length of the symmetric key is kS . We assume the OBDH
problem to be hard for (G1, G2, e, H, M) in the sense defined in Section 2.4.

The master user generates a random a ∈ Zp and computes Pub = aP . The
value a is kept secret while Pub is made public. Only the master user knows the
value a. In a PKI set-up, we assume that the public information Pub is signed
by the certifying authority (CA).

3.2 Encryption

Suppose a user wants to send a message x to the master user. The encryption
algorithm is as follows.

Algorithm HEAD.enc(x)
1. generate random r ∈ Zp and compute rP ;
2. choose a subject line SL ∈ {0, 1}∗;
3. compute sym.key = H(rP, e(Pub, M(SL))r);
4. compute y = sym.enc(sym.key, x);
5. the ciphertext is (rP, y, SL);
end algorithm.

The message x is encrypted with subject line SL. The assistant (or the master
user) who decrypts the ciphertext must possess a secret key corresponding to
the subject line SL. There may be a requirement that for certain messages which
are marked “personal” only the master user should be able to decrypt. In this
case, the master user acts as his own assistant.



238 P. Sarkar

3.3 Decryption

Suppose (X = rP, y, SL) is received, where X ∈ G1. Decryption by an assistant
is as follows. We assume that the assistant possesses a secret key corresponding
to the subject line SL. This key is privately given to him or her by the master user
and is defined as QSL = aM(SL). This key may be given to the assistant after
the message is received or it may have been given earlier. The exact procedure
depends on the application. We discuss more about it in Section 3.4.

Algorithm HEAD.dec(X, y, SL)
1. compute sym.key = H(X, e(X, QSL));
2. compute x = sym.dec(sym.key, y);
3. return x;
end algorithm.

Note that if sym.dec(sym.key, y) returns Bad then HEAD.dec also returns Bad.
The decryption succeeds because of the following computation:

e(X, QSL) = e(rP, aM(SL)) = e(aP, M(SL))r = e(Pub, M(SL))r.

The second step involves the bilinearity property of e(, ).

3.4 Applications

The first thing to observe is that the only information signed by the CA is Pub.
The subject lines or their map-to-point images are not signed by the CA. Thus
the involvement with the CA is one-time and subject lines can be created as and
when required.

There is a similarity between HEAD and the identity based encryption scheme
of Boneh and Franklin [4]. As in the case of identity, the subject line can be any
string. This provides a great degree of flexibility in designing applications.

There might be a fixed set of assistants who are defined using certain key-
words. These keywords could be their IDs or keywords defining their roles. One
issue in such a set-up is that of key escrow. If an employee leaves the company
or is redeployed for other work, (s)he should not be able to decrypt any further
messages corresponding to his or her earlier role. This can be achieved by defin-
ing a subject line to be a pair of strings consisting of the role and the assistant
ID. If a new assistant takes over the role, the subject line changes and the old
assistant should be unable to decrypt any new messages. Additionally, a time
stamping mechanism can be used.

Another interesting application is to allow a more dynamic form of delegation.
Note that during encryption, there is no involvement of any assistant or the
master user. Thus, the sender can choose any subject line and use it to encrypt
the message. The encrypted message which is received by the master user cannot
be decrypted by any of the assistants at this point, since none of them have the
secret key corresponding to the subject line which has been used. The master
user can read the message and delegate the handling of the message to one of
the assistants. To do this, he creates the secret key corresponding to the subject



HEAD: Hybrid Encryption with Delegated Decryption Capability 239

line and gives the key to the designated assistant. This allows for a dynamic
delegation scheme.

Both fixed and dynamic delegation can be used. The fixed delegation corre-
sponds to routine messages, while dynamic delegation corresponds to new mes-
sages that might be received. The security model described in Section 2.1 con-
siders only fixed delegation, i.e., a set of pre-defined subject lines. In Section 4,
we define an easy extension of the model to allow dynamic delegation.

4 Security Reduction

The security model for asymmetric encryption with delegated decryption ca-
pability is given in Section 2.1. This model provides for use of l pre-defined
subject lines. For the case of HEAD, the subject lines can be both pre-defined
and dynamic as explained in Section 3.4. In the security proof below we allow the
adversary to make decryption queries with arbitrary subject lines. However, the
targets given to the adversary before the start of the guess stage are encrypted
using the l pre-defined subject lines.

In this section, we prove the security of HEAD, i.e., we show that breaking
HEAD implies either solving OBDH, or breaking sym in the sense described in
Section 2.2. Suppose the system components and the public parameters have
been fixed as in Section 3.1. Additionally, there are l pre-defined subject lines
SL1, . . . ,SLl.

We model the adversarial behaviour described in Section 2.1 as a game in
the following manner. For 0 ≤ i ≤ l, we define the game Gi as follows. The find
and guess stages of Section 2.1 remain unchanged. At the end of the find stage
the adversary generates (x0, x1) as usual. The target generation for game Gi is
changed as follows:

choose a random bit b ∈ {0, 1}.
for j = 1 to i do

randomly choose rj ∈ Zp and form Xj = rjP ;
randomly choose sym.key ∈ {0, 1}kS ;
set yj = sym.enc(sym.key, xb);
set Tj = (Xj , yj , SLj);

end for;
for j = i + 1 to l do

generate Tj from xb using SLj and Pub as defined by HEAD.enc;
end for;
output targets (T1, . . . , Tl);

Note that the keys for sym are independently and randomly chosen for the
targets T1, . . . , Ti.

At the end of the guess stage, the adversary outputs b′. We define the output
of Gi to be 1 if b = b′, else we define it to be 0. The notation Pr[A(Gi) = 1]
denotes the probability that the game Gi with adversary A outputs one. We
formally define



240 P. Sarkar

AdvHEAD
A = 2 |Pr[A(G0) = 1]− 1/2| (3)

to be the advantage that an adversary A has in breaking HEAD. We define
AdvHEAD(t, q) to be maximum of AdvHEAD

A where the maximum is taken over
all adversaries running in time at most t and making at most q queries to its
decryption oracle.

Lemma 1. Let A be an adversary for HEAD which runs in time t and makes q
queries to its decryption oracle. Then for all 0 ≤ i ≤ l − 1,

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| ≤ p

p − q
Advobdh(t, q).

Proof. Our proof is a reduction. We show that if A can “distinguish” between
Gi and Gi+1, then it is possible to construct an algorithm C to solve the OBDH
problem.

Let (aP, bP,SL, str) be an instance of the OBDH problem with an associated
oracle Ha(, ). Algorithm C first constructs an instance of HEAD in the follow-
ing manner. For j = 1, . . . , l with j �= i + 1, randomly choose SLj ∈ {0, 1}∗.
Set SLi+1 = SL and Pub = aP . The public information (Pub, SL1, . . . ,SLl) is
provided to A.

The find stage decryption queries are simulated in the following manner: Sup-
pose (rP, y, SL′) is a decryption query. Invoke Ha(, ) on (rP, M(SL′)) to obtain
str′ = H(rP, e(rP, M(SL′))a). Decrypt y using str′ and return the answer to A.
Note that if SL′ = SL, then with certain probability r = b and due to the oracle
restriction, algorithm C cannot invoke Ha on (rP = bP, M(SL)) and thus fail to
answer the query. In this case, algorithm C outputs a random bit and exits. Let
Fail be the event that C fails to answer some find stage decryption query. The
probability that C fails for any particular query is the probability that for that
query r = b and this probability is equal to 1/|Zp| = 1/p. Since A makes a total
of q queries, we have Pr[Fail] = q/p.

The targets are generated in the following manner. First b is chosen randomly
from {0, 1}.

For 1 ≤ j ≤ i, randomly generate rj ∈ Zp and form Xj = rjP . Randomly
choose K1, . . . , Ki ∈ {0, 1}kS . Encrypt xb with K1, . . . , Ki to obtain y1, . . . , yi

respectively. Set Tj = (Xj , yj , SLj), for 1 ≤ j ≤ i.
For j = i + 1, set Xi+1 = bP and encrypt xb with str to obtain yi+1. Set

Ti+1 = (bP, yi+1, SLi+1 = SL).
For i + 2 ≤ j ≤ l, encrypt xb properly using HEAD.enc on Pub and subject

line SLj to obtain target Tj . All the targets T1, . . . , Tl are given to the adversary.
Simulation of the decryption queries in the guess stage is as follows: Let the

submitted query be (X, y, SL′). There are several cases:

Case 1: X = Xj and SL′ = SLj for some j ∈ {1, . . . , i}: We must have y �= yj , as
otherwise (X, y, SL′) = Tj , which is not allowed. In this case, use Kj to decrypt
y and provide the answer to A.

Case 2: X = Xi+1 = bP and SL′ = SLi+1 = SL: Again y �= yi+1 and we use
str to decrypt y and provide the answer to A.



HEAD: Hybrid Encryption with Delegated Decryption Capability 241

Case 3: Either (X = Xj and SL′ = SLj for some j ∈ {i+2, . . . , l}) or (X, SL′) �=
(Xj , SLj) for any j ∈ {1, . . . , l}: In this case obtain str′ by querying Ha(, ) on
(X, M(SL′)). Use str′ to decrypt y and provide the answer to A.

This completes the description of the simulation of adversary A by algorithm
C. Let E1 be the event that str = H(bP, e(bP, M(SL))a) and E2 be the event
that str is random. Suppose that E1 occurs. Then there are two possibilities –
either Fail occurs or Fail does not occur. In the first case, C outputs a random
bit and in the second case, C runs A on game Gi. Thus,

Pr[C = 1|E1] =
1
2
× q

p
+ Pr[A(Gi) = 1]×

(
1 − q

p

)
.

By a similar argument, if E2 occurs, we have

Pr[C = 1|E2] =
1
2
× q

p
+ Pr[A(Gi+1) = 1]×

(
1 − q

p

)
.

Combining the above two equations we have,

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| =
p

p − q
× |Pr[C = 1|E1] − Pr[C = 1|E2]|.(4)

Since adversary A for HEAD makes at most q decryption queries, algorithm C
for OBDH also makes at most q oracle queries. Further, since adversary A runs
in time t, algorithm C also runs in time t. Thus we have, |Pr[C = 1|E1]− Pr[C =
1|E2]| ≤ Advobdh(t, q). Substituting this in (4), we get the desired result. ��

We now consider the game Gl. For this game, the targets T1, . . . , Tl are gen-
erated using random keys for sym and these keys have no relation to the subject
lines or the public key part (rP ). Thus the only way the adversary can win this
game is to break sym. We formalize this below.

Lemma 2. Let A′ be an adversary for Gl running in time t and making q queries
to its decryption orable. Then 2|Pr[A′(Gl) = 1]− 1/2| ≤ Advsym(t, q).

Proof. We bound the success probability of A′ in winning game Gl. For this, we
construct an adversary A for breaking sym in the sense described in Section 2.2.

The adversary A is given l decryption oracles DK1 , . . . ,DKl
corresponding to

randomly chosen keys K1, . . . , Kl ∈ {0, 1}kS . The first task of A is to set up an
instance of HEAD. To do this A chooses a random a ∈ Zp and forms Pub = aP .
It then chooses l subject lines SL1, . . . ,SLl and gives (Pub, SL1, . . . ,SLl) to A′.

Let (X = rP, y, SL) be a find stage decryption query by A′. To answer this
query A forms

str = H(X, e(X, M(SL))a) = H(rP, e(rP, M(SL))a)
= H(rP, e(aP, M(SL))r) = H(rP, e(Pub, M(SL))r).

It then uses str to decrypt y and sends the answer to A′.



242 P. Sarkar

At the end of the find stage, A′ outputs two messages x0 and x1. Adversary A
also outputs these two messages as the output of its find stage. Now A is given
l encryptions (targets) y1, . . . , yl of xb using the keys K1, . . . , Kl respectively.
Next, A randomly chooses r1, . . . , rl in Zp. It forms l targets T1, . . . , Tl by setting
Tj = (Xj = rjP, yj , SLj). These targets are given to A′.

We now describe the simulation of the guess stage decryption queries of A′

by A. Let (X, y, SL) be a decryption query. There are several cases to consider:

Case 1: X = Xj and SL = SLj for some j ∈ {1, . . . , l}. We must have y �= yj as
otherwise (X, y, SL) = Tj . A now queries its j-th decryption oracle DKj

() on yj

and returns the answer to A′.

Case 2: (X, SL) �= (Xj , SLj) for any j ∈ {1, . . . , l}. In this case, the query is dealt
with as in the find stage.

Finally, A outputs whatever is produced by A′. The above ensures a correct
simulation by A of A′ on Gl. Also, the number of decryption queries made by A
to all its decryption oracles is at most equal to q. Since A′ runs in time t, the
advantage of A′ while running on Gl is

2|Pr[A′(Gl) = 1]− 1/2| ≤ Advsym(t, q).

This completes the proof. ��

Now we are in a position to prove the main result.

Theorem 1.

AdvHEAD(t, q) ≤ 2lp

p − q
× Advobdh(t, q) + Advsym(t, q).

Proof. Let A be any adversary for HEAD which runs in time at most t and
makes at most q queries to the decryption oracle. Then from definition, we have

AdvHEAD
A = 2 |Pr[A(G0) = 1]− 1/2| .

From Lemma 1, we have for each i ∈ {0, . . . , l − 1},

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1]| ≤ Advobdh(t, q).

Now consider

|Pr[A(G0) = 1]− Pr[A(Gl) = 1]| =

∣∣∣∣∣
l−1∑
i=0

(Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1])

∣∣∣∣∣
≤

l−1∑
i=0

|Pr[A(Gi) = 1]− Pr[A(Gi+1) = 1])|

≤ l × p

p − q
× Advobdh(t, q).

Further, from Lemma 2, we have 2|Pr[A(Gl) = 1] − 1/2| ≤ Advsym(t, q).
Let α = Pr[A(G0) = 1], β = Pr[A(Gl) = 1], γ = (p/(p − q))Advobdh(t, q) and



HEAD: Hybrid Encryption with Delegated Decryption Capability 243

δ = Advsym(t, q). Then we have |α − β| ≤ lγ and 2|β − 1/2| ≤ δ. The second
inequality can be rewritten as 1/2− δ/2 ≤ β ≤ 1/2+ δ/2 and the first inequality
can be rewritten as β − lγ ≤ α ≤ β + lγ. Combining these two inequalitites, we
obtain 1/2 − δ/2 − lγ ≤ α ≤ 1/2 + δ/2 + lγ and hence |α − 1/2| ≤ lγ + δ/2.
Substituting the values of α, γ and δ gives us

2|Pr[A(G0) = 1]− 1/2| ≤ 2lp

p − q
× Advobdh(t, q) + Advsym(t, q).

Since A was chosen to be an arbitrary adversary (running in time at most
t and making at most q queries to the decryption oracle), the above inequality
holds for all such adversaries A and hence for any adversary which maximizes
the advantage. This gives us

AdvHEAD(t, q) ≤ 2lp)
p − q

× Advobdh(t, q) + Advsym(t, q).

This completes the proof. ��

5 Concluding Remarks

In this paper, we have considered in detail the functionality of delegated decryp-
tion for encryption schemes. We have described an appropriate security model
for such schemes. Our main contribution has been to present HEAD, which is
an efficient and secure public key encryption scheme with delegated decryption
capability.

References

1. http://www.i2r.a-star.edu.sg/icsd/staff/guilin/bible/proxy.htm.
2. M. Abdalla, M. Bellare and P. Rogaway. DHIES : An encryption scheme based

on the Diffie-Hellman problem, Proceedings of CT-RSA 2001, Lecture Notes in
Computer Science, Springer-Verlag, pages 143–158.

3. American National Standards Institute (ANSI) X9.F1 sub-committee. ANSI X9.63
Public Key Cryptography for the Financial Services Industry: Elliptic Curve Key
Agreement and Transport Schemes, 1998. Working draft version 2.0.

4. D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.
Proceedings of CRYPTO 2001, Lecture Notes in Computer Science, volume 2139,
Springer-Verlag, pages 213–229.

5. D. Boneh, G. Di. Crescenzo, R. Ostrovsky and G. Persiano. Public Key Encryp-
tion with Keyword Search. Proceedings of EUROCRYPT 2004, Lecture Notes in
Computer Science, Springer-Verlag, pp 506-522.

6. P. S. L. M. Barreto, H. Y. Kim and M. Scott. Efficient algorithms for pairing-based
cryptosystems. Proceedings of Crypto 2002, Lecture Notes in Computer Science,
volume 2442, Springer-Verlag, pages 354–368.

7. S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate Pairing. Pro-
ceedings of Algorithm Number Theory Symposium - ANTS V, 2002, Lecture Notes
in Computer Science, volume 2369, Springer-Verlag, pages 324–337.



244 P. Sarkar

8. S. Halevi and P. Rogaway. A tweakable enciphering mode. Proceedings of Crypto
2003, Lecture Notes in Computer Science, volume 2729, Springer-Verlag, pages
482–499.

9. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Proceedings of CT-
RSA 2004, Lecture Notes in Computer Science, Springer-Verlag, pages 292–304.

10. K. Kurosawa and T. Matsuo. How to remove MAC from DHIES. Proceedings of
ACISP, 2004, Lecture Notes in Computer Science, Springer-Verlag, pp 236-247.

11. M. Mambo, K. Usuda and E. Okamoto. Proxy Signatures for Delegating Signing
Operation. Proceedings of the ACM Conference on Computer and Communications
Security 1996, pp 48-57.

12. Y. Mu, V. Varadharajan and K.Q. Nguyen. Delegated Decryption. Proceeding of
IMA Conference on Coding and Cryptography, 1999, Lecture Notes in Computer
Science, Springer-Verlag, Volume 1746, 258–269, 1999.

13. F. Zhang, R. Safavi-Naini and W. Susilo. An Efficient Signature Scheme from
Bilinear Pairings and Its Applications. Proceedings of Public Key Cryptography
2004, Lecture Notes in Computer Science, volume 2947 , pp. 277-290. Springer-
Verlag, 2004.



A Provably Secure Elliptic Curve Scheme with
Fast Encryption

David Galindo1, Sebastià Mart́ın1, Tsuyoshi Takagi2, and Jorge L. Villar1

1 Dep. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
Campus Nord, c/Jordi Girona, 1-3, 08034 Barcelona

{dgalindo, sebasm, jvillar}@mat.upc.es
2 Technische Universität Darmstadt, Fachbereich Informatik, Alexanderstr.10,

D-64283 Darmstadt, Germany
ttakagi@cdc.informatik.tu-darmstadt.de

Abstract. We present a new elliptic curve cryptosystem with fast en-
cryption and key generation, which is provably secure against passive
adversaries in the standard model. The scheme uses arithmetic modulo
n2, where n is an RSA modulus, and merges ideas from Paillier and Ra-
bin related schemes. Despite the typical bit length of n, our encryption
algorithm is the fastest elliptic curve based encryption algorithm to the
best of our knowledge, even faster than El Gamal elliptic curve encryp-
tion. The one-wayness (OW-CPA) of the new cryptosystem is as hard
as factoring n while the semantic security (IND-CPA) is proved under a
reasonable decisional assumption.

Two new length-preserving trapdoor permutations equivalent to fac-
toring are also described.

Keywords: public-key cryptography, provable security, elliptic curves,
fast encryption, Rabin-Paillier scheme.

1 Introduction

Several elliptic curve based cryptosystems have been proposed during the last
decades. On the one hand, cryptosystems related to the elliptic curve discrete
logarithm problem (such as elliptic curve versions of El Gamal) have the feature
of having small keysizes, at the cost of moderate encryption/decryption times.
On the other hand, cryptosystems based on elliptic curves over the ring Zn have
security related to the hardness of factoring n = pq. Therefore, their keysizes
are the same as in RSA schemes while encryption/decryption times are greater.
In both cases, messages are hidden by means of computing multiples of points.
Thus, the computational cost depends on the size of the multiplier.

In this paper, a minimal encryption-time cryptosystem based on elliptic
curves is proposed. The motivation comes from the Rabin-Paillier probabilis-
tic encryption scheme [6]. Roughly speaking, that scheme works as follows. Let
(n, e) be an RSA public key, Zn be the ring of integers modulo n and Qn be
the set of squares in Zn. To encrypt a message m ∈ Zn, a random r ∈ Qn is

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 245–259, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



246 D. Galindo et al.

used and the ciphertext is r2e +mn mod n2. The scheme is proved to be one-way
under the factoring assumption and provides semantic security against passive
adversaries under a reasonable decisional assumption.

The optimal encryption efficiency in the Rabin-Paillier scheme would be ob-
tained using e = 1. In this case, the scheme is one-way but it is not semantically
secure anymore, since the related decisional assumption is trivially solved. What
we do is to design its analogue using elliptic curves over rings, and prove that in
this case semantic security is obtained under a reasonable decisional assumption.
As a result, the encryption algorithm is faster than those obtained in the elliptic
curve versions of El Gamal. Furthermore, if the encryption efficiency is measured
in terms of encryption time per plaintext bit, the difference is even greater.

As done in [11], the new cryptosystem works on a family of supersingular
elliptic curves. Since doubling points on elliptic curves over Zn is not a bijection,
the set of allowed points must be restricted to the subset Dn of doubles of points.
We show that if p ≡ q ≡ 5 mod 12 then doubling points in Dn is a trapdoor
permutation whose one-wayness is equivalent to factoring n.

Now, by following the ideas in [3, 6], this bijection is lifted to Zn2 and the
definition of the new cryptosystem arises. Its semantic security is proven equiva-
lent to deciding the existence of small roots of some polynomials. Since the best
result in this area (namely [4]) does not apply to our case, the new problem
is supposed to be intractable. To prove the scheme one-way, some interesting
techniques are developed.

The rest of the paper is organised as follows. Section 2 is devoted to introduce
the definition and some results about elliptic curves. In Section 3 we propose new
trapdoor permutations equivalent to factoring. In Section 4, we describe the new
scheme and prove that its one-wayness is based on the hardness of factoring the
modulus. We also prove that the proposed scheme is semantically secure (IND-
CPA) under a new assumption. Then, we argue why one should be confident
on this new assumption. Finally, the computational cost of the new scheme is
discussed in Section 5.

2 Some Results About Elliptic Curves

In this section, we are going to summarize the definition and some results about
elliptic curves defined over the finite field Zp, and over the rings Zp2 and Zn2 ,
where n is an RSA modulus.

Definition 1. Let p > 3 be a prime. An elliptic curve over the finite field Zp,
denoted by Ep(a, b), where a, b ∈ Zp, and gcd(4a3 + 27b2, p) = 1, is the set of
points (x, y) ∈ Zp × Zp such that y2 = x3 + ax + b mod p, with a point O called
the point at infinity.

The set Ep(a, b) is a group, with the usual tangent-and-chord operation. We
will denote by |Ep(a, b)| the number of elements of the group Ep(a, b) and by r#P
the r-th multiple of a point P ∈ Ep(a, b). For an extensive treatment on elliptic
curves we refer to [14], and for an overview on elliptic curve cryptosystems, see [13].



A Provably Secure Elliptic Curve Scheme with Fast Encryption 247

Elliptic curves can also be defined on the projective plane P2(Zp) as the set
of points (x : y : z) satisfying y2z = x3 + axz2 + bz3 mod p, and gcd(x, y, z, p) =
1. In particular, the point (0 : 1 : 0) corresponds to the point at infinity O.
Following [5], this definition can be extended to the ring Zp2 . The natural map
πp : Ep2(a, b) → Ep(a, b) that reduces coordinates modulo p, is a surjective
group morphism whose kernel is the set {Om = (mp : 1 : 0) | m ∈ Zp}, called
the set of points at infinity.

En2(a, b) can be defined from the natural surjective maps from En2(a, b) to
Ep2(a, b) and Eq2(a, b). Via the Chinese Remainder Theorem, En2(a, b) can be
seen as a group isomorphic to Ep2(a, b)×Eq2(a, b). The natural group morphism
from En2(a, b) to En(a, b) will be denoted as πn. These morphisms are depicted
in Diagram 1.

En2(a, b) Ep2(a, b) × Eq2(a, b)

En(a, b) Ep(a, b) × Eq(a, b)
�

πn

�∼
πp2 × πq2

�
πp × πq

�∼
πp × πq

Diagram 1: Some morphisms related to En2(a, b)

Points on curves En2(a, b) can be classified in three types:

– Points at infinity: Om = (mn : 1 : 0), m ∈ Zn, (the kernel of πn)
– Affine points: (x, y) = (x : y : 1) ∈ En2(a, b).
– Semi-infinite points: (x : y : z) ∈ En2(a, b), with gcd(z, n) = p or q.

The usual tangent-and-chord formulas allow to perform addition of affine
points on En2(a, b), without knowledge of the factorisation of n. In particular,
the formula to double an affine point is the following:

2#(x, y) = (λ2 − 2x,−λ3 + 3xλ− y), where λ = (3x2 + a)(2y)−1.

To deal with points at infinity the following addition formulas are used:

Om + Om′ = Om+m′ .
(x, y) + Om = (x− 2ymn, y − (3x2 + a)mn).

3 New Trapdoor Permutations

In this section, the well-known Blum-Williams trapdoor permutation is adapted
to the elliptic curve setting.

3.1 Blum-Williams Function

Let n = pq be an RSA modulus with p ≡ q ≡ 3 mod 4, and let Qn be the set of
quadratic residues modulo n. The squaring function restricted to Qn, i.e.



248 D. Galindo et al.

Gn : Qn −→ Qn

x �−→ x2 mod n

is a trapdoor one-way permutation if factoring large numbers is unfeasible (see
page 34 in [8]). Let us briefly recall how to invert Gn, provided the factorisation
of n (see [15] for a nice account on this). We first compute the numbers f =
c

p+1
4 mod p and g = c

q+1
4 mod q, which are the square roots of c modulo p and

modulo q that are quadratic residues to their respective modulus. Then, by using
the Chinese Remainder Theorem, we obtain an s ∈ Qn such that s2 = c mod n.

3.2 Point-Doubling Trapdoor Permutation

As in KMOV scheme [11], only supersingular curves En(0, b), b ∈ Z∗
n, will be

considered; in particular curves with p ≡ q ≡ 2 mod 3. A new restriction on the
prime factors of n must be introduced, in order to avoid the existence of points
of order 4.

Observation 1. If p ≡ 5 mod 12, then |Ep(0, b)| ≡ 2 mod 4, and consequently
there are no points of order 4 on Ep(0, b). Also, there is a unique point of order
2, namely (η, 0), where η is the unique cubic root of −b. This implies that given
a point P ∈ Ep(0, b), the equation 2#P̄ = 2#P has exactly two solutions: P̄ = P
and P̄ = P + (η, 0), since the order of the point P̄ − P divides 2.

Now, the elliptic analogue to the set of quadratic residues is defined.

Definition 2. For n = pq, and p ≡ q ≡ 5 mod 12, let

Dn = {2#(x, y) ∈ Zn × Zn | x ∈ Zn, y ∈ Z∗
n, y2 − x3 ∈ Z∗

n},

where the double 2#(x, y) is computed on the curve En(0, b), with b = y2 − x3.

We say that (x, y) ∈ Zn×Z∗
n is a double if it is in Dn. We will also consider the

sets Dp and Dq defined in the same way as Dn, but using modulo p and q instead
of n. From the Chinese Remainder Theorem, it is clear that Dn = Dp × Dq.

Lemma 1. If (u, v) ∈ Dn, then v ∈ Z∗
n.

Proof. Let Q = (u, v) ∈ Dn. Then, there exists a point P = (x, y) on the same
curve such that Q = 2#P and y ∈ Z∗

n. Let us suppose that v = 0 mod p. This
implies that 2#πp(Q) = O and then 4#πp(P ) = O. Since there are no points of
order 4 on Ep(0, b), we can assure that 2#πp(P ) = O. So, y ≡ 0 mod p, which is
a contradiction. ��

Lemma 2. |Dp| = (p−1)2

2 and |Dn| = (p−1)2(q−1)2

4 .

Proof. Let Q ∈ Ep(0, b)∩Dp where b ∈ Z∗
p. From observation 1 it is clear that the

equation 2#P = Q has exactly two solutions P, P̄ ∈ Ep(0, b). Since there are p−1
affine points P = (x, y) on Ep(0, b) with y ∈ Z∗

p, then |Ep(0, b) ∩ Dp| = p−1
2 .

By considering the p − 1 possible values for b, we obtain the claimed result
|Dp| = (p−1)2

2 . Finally, |Dn| = (p−1)2(q−1)2

4 comes from Dn = Dp × Dq. ��



A Provably Secure Elliptic Curve Scheme with Fast Encryption 249

Proposition 1. Let n = pq, with p ≡ q ≡ 5 mod 12. Then, the following map is
a bijection:

Δn : Dn −→ Dn

(x, y) �−→ 2#(x, y)

Proof. Δn is well-defined by the definition of Dn and lemma 1. In order to prove
that Δn is injective, let us consider Q1 and Q2 in Dn such that 2#Q1 = 2#Q2.
This implies, on the one hand, that there exist P1 and P2 such that Q1 = 2#P1
and Q2 = 2#P2. On the other hand, P1, P2, Q1 and Q2 lie on the same curve
and 2#(Q2 − Q1) = O. Thus, 4#(P2 − P1) = O which implies 2#P2 = 2#P1,
since there are no points of order 4 in En(0, b). Therefore, Q2 = Q1. Finally, by
a simple counting argument, Δn must be surjective. ��

We point out that Δn is an elliptic analogue of Blum-Williams function.

Proposition 2. If p ≡ q ≡ 5 mod 12, then Δn is a trapdoor permutation equiv-
alent to factoring n.

Proof. Let us see, given the trapdoor information, p and q, how to invert Δn

efficiently on a point Q ∈ Dn. Since Δn is a bijection, there exist a point P ∈ Dn

such that Q = 2#P , but there also exists another point R ∈ Dn such that
P = 2#R, that is Q = 4#R. Let us consider the points Tp = p+3

4 #πp(Q)
and Tq = q+3

4 #πq(Q). Then, Tp = (p + 3)#πp(R) = 2#πp(R) = πp(P ) and
Tq = (q + 3)#πq(R) = 2#πq(R) = πq(P ). Thus, the preimage P of Q can be
easily computed from Tp and Tq by the Chinese Reminder Theorem. In fact, a
point-halving procedure that works in a more general case can be found in [11].

Now, to conclude the proof, it suffices to show a reduction from the one-
wayness of Δn to the problem of factoring n. To do this, take a random pair
P̄ = (x̄, ȳ) ∈ Zn × Z∗

n and compute Q = 2#P̄ , that is uniformly distributed
in Dn. Observe that πq(P̄ ) ∈ Dq but πp(P̄ ) �∈ Dp with probability 1/4. Let us
consider we are in this case. Since Q ∈ Dn, there exists a point P = (x, y) ∈ Dn

such that Q = 2#P . Let us consider an algorithm A such that on input (n, Q)
returns P with probability ε. If A succeeds then 2#P̄ = 2#P . We can assure now
that πq(P̄ ) = πq(P ) and x̄ �= x mod p (note that, if x̄ = x mod p, then πp(P̄ ) =
±πp(P ) and πp(P̄ ) ∈ Dp, which is a contradiction). Finally, gcd(x̄−x, n) = p. By
considering also the case πp(P̄ ) ∈ Dp and πq(P̄ ) �∈ Dq, it is straightforward to
show that this procedure gives a nontrivial factor of n with probability ε/2. ��

3.3 Lifted Trapdoor Bijection

Next, a lifted version of the map Δn is presented. The technique used here is
somewhat related to the one used in [6]. The following useful property allows to
lift a point P0 ∈ En(0, b0) to a special point P on each curve En2(0, b) such that
b ≡ b0 mod n.

Property 1. Let b ∈ Z∗
n2 and P = (x0, y0) ∈ En(0, b mod n), with y0 ∈ Z∗

n. Then,
there exists a unique point (x0, y) ∈ En2(0, b) such that y ≡ y0 mod n.



250 D. Galindo et al.

Proof. Let y = y0 + γn ∈ Z∗
n2 , where γ ∈ Zn. Then, (x0, y) belongs to En2(0, b)

if and only if

γ =
x3

0 − y2
0 + b

n
(2y0)−1 mod n.

��

Let n = pq, with p ≡ q ≡ 5 mod 12, and let us consider the following sets:

Ωn = {(x, y) ∈ Zn2 × Z∗
n2 | πn(x, y) ∈ Dn},

ωn = {(x, y) ∈ Ωn | x < n}.

and the function

ψn : ωn × Zn −→ Ωn

(x, y, m) −→ 2#P + Om

where P = (x, y), and the double as well as the addition are performed on
En2(0, b), with b = y2 − x3 mod n2.

Lemma 3. If p ≡ q ≡ 5 mod 12, then the map ψn is well defined and bijective.

Proof. The map ψn is well-defined since ψn(x, y, m) is always in Ωn. This comes
from the definition of Ωn, since ψn(x, y, m) ∈ Ωn if and only if πn(ψn(x, y, m)) ∈
Dn. As (x, y) ∈ ωm, πn(x, y) ∈ Dn and then πn(ψn(x, y, m)) = πn(2#(x, y)) =
2#πn(x, y) ∈ Dn.

In order to show that ψn is injective, let us suppose ψn(x, y, m) = ψn(x′, y′, m′)
for some (x, y), (x′, y′) ∈ ωn and m, m′ ∈ Zn. Reducing this equality modulo n,
we obtain 2#πn(x, y) = 2#πn(x′, y′). By the injectivity of Δn and from the fact
that πn(x, y) and πn(x, y) are points in Dn we deduce πn(x, y) = πn(x′, y′).

Now, taking into account that (x, y), (x′, y′) belong to the same curve En2(0, b),
and that 0 ≤ x, x′ < n, we use Property 1 to deduce (x, y) = (x′, y′). From this,
it is easy to see that Om = Om′ , so m = m′.

Finally, let us show that ψn is surjective. Let C = (u, v) ∈ Ωn and b =
v2−u3 mod n2. Then there exists P0 = (x0, y0) ∈ Dn such that πn(u, v) = 2#P0.
Let P = (x0, y) be the point on En2(0, b) given in Property 1. Clearly, P ∈ ωn

and 2#P − C is a point at infinity, say Om. Then, C = ψn(x0, y, m). ��

Proposition 3. If p ≡ q ≡ 5 mod 12, then ψn is a trapdoor bijection equivalent
to factoring n.

Proof. Let us see, given the trapdoor information, p and q, how to invert ψn

efficiently on a point C = (u, v) ∈ Ωn. Let b = v2 − u3 mod n2. Compute Q0 =
πn(C) that is a point in Dn and let P0 ∈ Dn such that Q0 = 2#P0. The point P0
can be efficiently computed by using the procedure for inverting Δn described
in the proof of proposition 2. Then, let P = (x, y) ∈ En2(0, b) the point given
in property 1 computed from P0. Clearly, P ∈ ωn and C − 2#P is a point at
infinity, say Om. Then, C = ψn(x, y, m).



A Provably Secure Elliptic Curve Scheme with Fast Encryption 251

To conclude the proof, it suffices to show a reduction from the one-wayness
of ψn to the problem of factoring n. As in the proof of proposition 2, take a
random pair (x̄, ȳ) ∈ Zn × Z∗

n and compute Q0 = (u0, v0) = 2#(x̄, ȳ). Now
randomly lift Q0 obtaining C = (u0 +μn, v0 + νn), where μ and ν are randomly
selected in Zn. Note that C is uniformly distributed on Ωn. Let us consider an
algorithm A such that on input (n, C) returns P = (x, y) ∈ ωn and m ∈ Zn such
that C = ψn(x, y, m), with probability ε. If A succeeds, then Δn(πn(x, y)) =
2#πn(x, y) = πn(C) = Q0. So, by following the same steps as in the proof of
proposition 2, a nontrivial factor of n is found with probability ε/2. ��

4 The New Scheme

Based on the previous trapdoor bijection, in this section we present an ellip-
tic curve cryptosystem (ECC) over the ring Zn2 which is semantically secure
against passive adversaries under a new decisional assumption a nd has the
fastest encryption and the highest one-way security among the known ECC, in
the standard model.

Key generation. Given a security parameter �, choose at random two primes p
and q with � bits such that p ≡ q ≡ 5 mod 12. Then the public key is PK={n},
n = pq, and the private key is SK={p, q}.
Encryption. To encrypt a message m ∈ Zn we choose at random z ∈ Zn and
t ∈ Z∗

n such that b0 = t2 − z3 ∈ Z∗
n. This choice determines an elliptic curve

En(0, b0) and a point R = (z, t) on it. Let P0 = (x0, y0) = 2#R and γ chosen at
random in Zn, and compute y = y0 + γn. Then P = (x0, y) is a random point
in ωn. The encryption of the message m ∈ Zn is C = ψn(x0, y, m).

Decryption. To recover the message m from the ciphertext C = (u, v) = ψn(x, y,
m), the randomness (x, y) ∈ ωn is computed firstly and, afterwards, m is easily
obtained from Om = C−2#(x, y). This is just the procedure detailed in the proofs
of propositions 2 and 3. We recall the steps to obtain (x, y) from C. Firstly, com-
pute πn(x, y) by inverting Δn on πn(C) (using the Chinese Reminder Theorem).
Next, compute (x, y) ∈ En2(0, b), where b = v2 −u3 mod n2, by using property 1.

In the following, the security of this scheme is analyzed. Let us introduce
some convenient notations. If A is a finite set, x ← A will denote that x is
randomly selected with uniform distribution in A. We will denote by D1 ≈ D2
the fact that two probability distributions D1 and D2 are polynomially indistin-
guishable. Notice that if g is a bijection such that g and g−1 can be computed
in probabilistic polynomial time, then D1 ≈ D2 is equivalent to g(D1) ≈ g(D2).

M� will denote the set of integers n = pq such that p and q are two primes
with � bits, and p ≡ q ≡ 5 mod 12.

4.1 One-Wayness

The following lemma allows to compute, with overwhelming probability, a ra-
tional function of the coordinates of a point P0 ∈ Dn, given two special lifted
points Q1 and Q2 such that πn(Q1) = πn(Q2) = 2#P0.



252 D. Galindo et al.

Lemma 4. Let Q1 = (u1, v1) = 2#P1 and Q2 = (u2, v2) = 2#P2 where P1 and
P2 are different points in ωn such that πn(P1) = πn(P2). Let b1 = v2

1−u3
1 mod n2

and b2 = v2
2 − u3

2 mod n2. Let (x0, y0) = πn(P1). Then

9α

(
x0

y0

)4

= −4β mod n,

where α = (b2 − b1)/n and β = (u2 − u1)/n.

Proof. Since P1, P2 ∈ ωn we can write P1 = (x0, y1) and P2 = (x0, y2), where
y1 ≡ y2 ≡ y0 mod n and x0 < n. Observe that both points lie in different curves.
Indeed, Q1 and P1 are in En(0, b1) while Q2 and P2 are in En(0, b2). Since
b1 ≡ b2 mod n, α = (b2 − b1)/n is well defined.

By using the doubling formula, we obtain

u1 =
(

3x2
0

2y1

)2

− 2x0 =
9x4

0

4(x3
0 + b1)

− 2x0 mod n2

u2 =
(

3x2
0

2y2

)2

− 2x0 =
9x4

0

4(x3
0 + b2)

− 2x0 mod n2

and then,

u2 − u1 =
9x4

0

4(x3
0 + b2)

− 9x4
0

4(x3
0 + b1)

=
9x4

0(b1 − b2)
4(x3

0 + b1)(x3
0 + b2)

= −9
4

x4
0

y2
1y2

2
αn mod n2.

Therefore

β =
u2 − u1

n
= −9

4

(
x0

y0

)4

α mod n.

��

Note that if Q1 and Q2 are chosen at random (but fulfilling the conditions
in lemma 4) then α ∈ Z∗

n with overwhelming probability.
From this lemma, given a random modulus n, we can exploit an adversary

A against the one-wayness of the proposed scheme to build such two points Q1
and Q2, and efficiently derive a nontrivial factor of n.

Proposition 4. The one-wayness (OW-CPA) of the proposed scheme is equiv-
alent to the unfeasability of factoring the modulus.

Proof. Let A be an adversary trying to break the one-wayness of the proposed
cryptosystem. Let us consider the following probability

SuccOW
A (�) = Prob [A(n, ψn(x, y, m)) = m n ← M�; (x, y) ← ωn; m ← Zn] .

The following algorithm B can be used to obtain a nontrivial factor of n ← M�.



A Provably Secure Elliptic Curve Scheme with Fast Encryption 253

B(n)
1 x̄0 ← Zn; ȳ0 ← Zn; b0 = ȳ2

0 − x̄3
0 mod n

2 if gcd(ȳ0, n) �= 1 return gcd(ȳ0, n)
3 if gcd(b0, n) �= 1 return gcd(b0, n)
4 (u0, v0) = 2#(x̄0, ȳ0), computed in En(0, b0)
5 γ1 ← Zn; δ1 ← Zn; C1 = (u0 + γ1n, v0 + δ1n)
6 m1 = A(n, C1); (u1, v1) = C1 − Om1

7 γ2 ← Zn; δ2 ← Zn; C2 = (u0 + γ2n, v0 + δ2n)
8 m2 = A(n, C2); (u2, v2) = C2 − Om2

9 α = (v2
2 − u3

2 − v2
1 + u3

1)/n
10 if gcd(α, n) �= 1 return gcd(α, n)
11 β = (u2 − u1)/n

12 return gcd
(

x̄4
0

ȳ4
0

+ 4β
9α , n

)
At steps 1 to 4 of the algorithm, a random point Q0 = (u0, v0) ∈ Dn is built.

Next, points Q1 = (u1, v1) and Q2 = (u2, v2) are built by calling A twice using
two randomly lifted points C1 and C2 coming from the same point Q0.

If A succeeds in the first call, at step 6, then Q1 can be written as Q1 = 2#P1
where P1 ∈ ωn. This is a consequence of the bijectivity of ψn, since C1 ∈ Ωn,
and then there exists a unique P1 ∈ ωn and a unique m1 ∈ Zn such that C1 =
ψn(P1, m1). The same occurs with Q2 = 2#P2, if A succeeds in the second call.

Let us consider the case that A succeeds in both calls. Note that Q0 =
πn(C1) = πn(C2) and Q0 = 2#πn(P1) = 2#πn(P2). But there is only one point
in Dn whose double is Q0. Thus, πn(P1) = πn(P2). Let P0 = (x0, y0) = πn(P1) =
πn(P2). Since Q1 and Q2 fulfil the conditions in the previous lemma, then

(
x0

y0

)4

= −4β

9α
mod n

if α ∈ Z∗
n.

On the other hand, Q0 = 2#(x̄0, ȳ0) = 2#P0. Observe that P0 ∈ Dn but P̄0 =
(x̄0, ȳ0) is chosen at random. By using the Chinese Reminder Theorem, πp(P̄0) =
πp(P0) with probability 1/2, and independently πq(P̄0) = πq(P0) with probabil-
ity 1/2. So, with probability 1/4, πq(P̄0) = πq(P0) but πp(P̄0) �= πp(P0). The
last expression implies x̄0 �= x0 mod p. To see this, let us suppose x̄0 = x0 mod p.
Then, πp(P̄0) = −πp(P0). From 2#P̄0 = 2#P0 we deduce 4#πp(P̄0) = O. Since
there are no points with order 4 on Ep(0, b0 mod p) then 2#πp(P̄0) = O and con-
sequently ȳ0 ≡ 0 mod p. But, this is not possible due to step 2 in the algorithm.

Except for anegligible fractionof thevalues of (x̄0, ȳ0), it canbealso shownthat1

1 The exception are points (x̄0, ȳ0) such that x̄0 mod p is a root of a certain polynomial
of degree 8. However, by making some cumbersome calculations, it can be shown
that if p ≡ 1 mod 8 then there are no exceptional points, otherwise, i.e. p ≡ 5 mod 8,
there are only p − 1 exceptional points (modulo p), that is, only a fraction 1/p. (See
appendix B for details.)



254 D. Galindo et al. (
x̄0

ȳ0

)4

�=
(

x0

y0

)4

mod p.

Then, by using lemma 4,

gcd
(

x̄4
0

ȳ4
0

+
4β

9α
, n

)
= p.

By considering the other case, πp(P̄0) = πp(P0) but πq(P̄0) �= πq(P0), the
previous gcd expression leads to the other nontrivial factor of n.

Finally, except for a negligible function of � (due to the technical steps 2, 3
and 10, and the anomalous values of (x̄0, ȳ0)) the success probability

SuccFACT
B (�) = Prob [B(n) ∈ {p, q} n ← M�]

is one half the probability that A is successful in both calls. Notice that these two
calls are not independent, since they share the same values of n and Q0. However,
by using lemma 5 (given in appendix A) with algorithm A, predicate P = “A
succeeds” and map f(n, C) = (n, πn(C)), the following inequality is obtained:

SuccFACT
B (�) ≥ 1

2

(
SuccOW

A (�)
)2

.

��

4.2 Semantic Security

The scheme is semantically secure under the following assumption:

Assumption 1 (Decisional Small-x Double (DSD) Assumption). The
following probability distributions are polynomially indistinguishable

Ddouble = (n, 2#(x, y)) where n ← M�, (x, y) ← ωn

Drandom = (n, (x′, y′)) where n ← M�, (x′, y′) ← Ωn.

Proposition 5. The proposed scheme is semantically secure (IND-CPA) if and
only if the DSD assumption holds.

Proof. Semantic security is equivalent to indistinguishability of encryptions, so
we have to prove that for all m0 ∈ Zn, the distributions

D0 = (n, ψn(x, y, m0)) where n ← M�, (x, y) ← ωn , and
D = (n, ψn(x, y, m)) where n ← M�, (x, y) ← ωn, m ← Zn.

are polynomially indistinguishable. From the definition of sum of an affine point
and a point at infinity given at the end of section 2, it is easy to see that the
map

Ωn −→ Ωn

P �−→ P − Om0



A Provably Secure Elliptic Curve Scheme with Fast Encryption 255

is a polynomial time bijection. Then, D0 ≈ D is equivalent to

(n, 2#(x, y)) ≈ (n, 2#(x, y) + Om′), with (x, y) ← ωn, m′ ← Zn .

Note that the distribution on the left side is Ddouble. Besides, since 2#(x, y) +
Om′ = ψn(x, y, m′), and ψn is a bijection, then D and Drandom are identical
distributions. ��

Finally, we argue why one should be confident about the hardness of the new
decisional problem presented in this paper.

According to the formula for computing the double of a point on an elliptic
curve En2(0, b) (see end of Section 2), given (u, v) = 2#(x1, y1), x1 is a root of
the univariate polynomial R(x) = x4 + 4x3u − 8bx + 4bu ∈ Zn2 [x]. Then, DSD
assumption is related to the difficulty of deciding if the polynomial R(x) has a
root smaller than n.

Similarly, the semantic security of other related cryptosystems (such as [3]) is
related to the difficulty of deciding if a certain polynomial has a root smaller than
n. The best known way to attack the above decisional problems is to solve their
computational versions. The problem of finding small roots of polynomials mod-
ulo a large integer with unknown factorisation has been directly studied in the
literature. The most powerful result in this area was obtained by Coppersmith in
[4]. This result ensures that one can efficiently compute (i.e. in polynomial time)
all roots x1 of a polynomial P (x) ∈ ZK [x] with degree d such that |x1| < K1/d.
Up to now, despite a lot of research in this area (for instance in [9, 1, 10]), no
improvement on this bound has been made. The result by Coppersmith implies
we can only find the roots |x1| < (n2)1/4 = n1/2 of the polynomial R(x), which
does not affect the validity of DSD assumption.

5 Efficiency Analysis

Now we study the encryption cost of our scheme. Since operations modulo a
large number are involved, we neglect the cost of performing additions, mul-
tiplications and divisions by small integers. We will express the cost in terms
of multiplications modn, because modular inverses can be computed within a
constant number of modular multiplications.

Generating (x, y) ∈ ωn: 5 multiplications modulo n, 1 inverse modulo n, and 1
n-length integer multiplication.

Computing 2#(x, y): 5 multiplications modulo n2, 1 inverse modulo n2.

Adding Om: 3 multiplications modulo n, 2 n-length integer multiplication.

We point out that a−1 mod n2 can be obtained by computing a−1 mod n and
then performing two multiplications modulo n2. Let c be the number of multi-
plications modulo n needed to compute a−1 mod n. Since the cost of multiplying
two numbers mod n2 is roughly the cost of 4 multiplications modulo n, we deduce



256 D. Galindo et al.

that a−1 mod n2 can be computed in 8 + c multiplications modulo n. Practical
implementations, suggests than the value c = 8 can be taken (see [2]).

Then, since the n-length integer multiplication cost is bounded by the cost of
a multiplication modulo n, the encryption cost of our scheme is 55 multiplications
modulo n. Thus we have proved that our scheme is drastically more efficient
than the previous semantically secure elliptic curve cryptosystems (ECC) in the
standard model based on factoring.

Next, we will compare the efficiency of our scheme with the well-known
El Gamal ECC scheme. We assume that El Gamal ECC is performed over Z∗

p,
where p is 160 bits long, and our scheme is performed over Z∗

n2 , where n is 1024
bits long (cf. [12]). We will express both encryption costs in terms of multiplica-
tions modulo n.

In El Gamal ECC the most time consuming operation is the computation of
two multiples r#P and ra#P , where r is a random integer whose size is roughly
the same as the modulus p, and a is a fixed integer. Then, using the double and
add algorithm, the computation of these two multiples requires on average k
additions of points and 2k doublings, where k is the bit length of r. Assuming
that a point addition or doubling requires about 12 modular multiplications, then
El Gamal ECC would take approximately 3 · 160 · 12 multiplications modulo p.
Since the time needed to perform a modular multiplication is quadratic in the
size of the modulus, the ratio between the time of a multiplication modulo p

and a multiplication modulo n is 1602

10242 . It follows that the encryption time of
El Gamal ECC would be equivalent to 159 multiplications modulo n, which is
almost three times the encryption cost of our scheme. If the efficiency is measured
in terms of encryption-time per plaintext bit, this ratio must be multiplied by
the ratio of the message lengths. Therefore, our cryptosystem is 18 times faster
than El Gamal ECC in encryption-time per bit.

Thus, our cryptosystem is the provably secure IND-CPA elliptic curve cryp-
tosystem in the standard model with the fastest encryption algorithm to the best
of our knowledge. The key generation of the proposed cryptosystem is also very
fast; indeed it is even faster than generating an RSA key, since only the modu-
lus is needed. Regarding decryption, the main cost is due to the computation of
p+3
4 #P ∈ Ep(0, b), and q+3

4 #P ∈ Eq(0, b), from P ∈ En(0, b) which is almost the
same as in the other existing ECC over Zn2 . Nevertheless, due to its decryption
cost, it is unlikely that our scheme could compete with El Gamal ECC.

Acknowledgments

This work was partially supported by Sapanish Ministerio de Ciencia y Tecnologá
under project TSC 2003-008660.

References

1. D. Boneh and G. Durfee. Cryptanalysis of RSA with Private Key d Less than
N0.292. EUROCRYPT 1999 LNCS 1592 1–11 (1999)



A Provably Secure Elliptic Curve Scheme with Fast Encryption 257

2. R. P. Brent. Some Integer Factorization Algorithms using Elliptic Curves. Aus-
tralian Computer Science Comunications 24–26 (1986) (Republished 1998).

3. D. Catalano, R. Gennaro, N. Howgrave-Graham and P. Q. Nguyen. Paillier’s Cryp-
tosystem Revisited.ACM CCS ’2001 ACM Press (2001).

4. D. Coppersmith. Finding a small root of a univariate modular equation. EURO-
CRYPT ’96, LNCS 1070 155–165 (1996).

5. S. Galbraith. Elliptic Curve Paillier Schemes. Journal of Cryptology 15 (2) 129–138
(2002).

6. D. Galindo, S. Mart́ın, P. Morillo and J. L. Villar. A Practical Public Key Cryp-
tosystem from Paillier and Rabin Schemes. PKC’03 LNCS 2567 279–291 (2002).

7. D. Galindo, S. Mart́ın, P. Morillo and J. L. Villar. An efficient semantically secure
elliptic curve cryptosystem based on KMOV. Proceedings of International Work-
shop on Coding and Cryptography (WCC’03), (2003).

8. S. Goldwasser and M. Bellare. Lecture Notes on Cryptography.
http://www-cse.ucsd.edu/users/mihir

9. N.A. Howgrave-Graham. Computational Mathematics Inspired by RSA. PhD The-
sis. University of Bath (1999)

10. N.A. Howgrave-Graham. Approximate Integer Common Divisors. CaLC’01, LNCS
2146 51–66 (2001)

11. K. Koyama, U.M. Maurer, T. Okamoto and S.A. Vanstone. New Public-Key
Schemes Based on Elliptic Curves over the Ring Zn. CRYPTO ’91, LNCS 576
252–266 (1991).

12. A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes.
http://cryptosavvy.com/cryptosizes.pdf

13. A. Menezes. Elliptic Curve Public-Key Cryptosystems. Kluwer Academic SECS
234 (1993)

14. J.H. Silverman. The arithmetic of elliptic curves. Springer GTM 106 (1986).
15. H.C.A. van Tilborg. A Professional Reference and Interactive Tutorial. Kluwer

Academic Publishers SECS 528 (1999).

A Technical Lemma

This technical lemma is useful when dealing with two non-independent calls to
a probabilistic algorithm.

Lemma 5. Consider a probabilistic algorithm A with input x ∈ X, a (surjec-
tive) map f : X → Y , and a predicate P on the input and the output of A (e.g.
P (n,A(n)) true if A(n) is a nontrivial factor of n).

Let ε = Prob [P (x,A(x)) x ← X]. Then,

Prob
[
P (x1,A(x1)) ∧ P (x2,A(x2)) x1 ← X; x2 ← f−1(f(x1))

]
≥ ε2,

where the internal random coins used by A in the two calls are independent.

Proof. For any y ∈ Y , let us define

wy = Prob [f(x) = y x ← X] and
εy = Prob

[
P (x,A(x)) x ← f−1(y)

]
.



258 D. Galindo et al.

Then
∑

y∈Y wy = 1 and
∑

y∈Y wyεy = ε. Given the following experiment
x1 ← X; x2 ← f−1(f(x1)), then,

Prob [P (x1,A(x1)) ∧ P (x2,A(x2))] =

=
∑
y∈Y

Prob [P (x1,A(x1)) ∧ P (x2,A(x2)) ∧ f(x1) = y] =

=
∑
y∈Y

Prob [P (x1,A(x1)) ∧ P (x2,A(x2)) f(x1) = y] Prob [f(x1) = y] .

But the condition f(x1) = y is equivalent to modifying the experiment into
x1 ← f−1(y); x2 ← f−1(y). So, in this new probability space, x1 and x2 are
identically distributed independent random variables, and

Prob [P (x1,A(x1)) ∧ P (x2,A(x2)) f(x1) = y] =

= (Prob [P (x1,A(x1)) f(x1) = y])2 = ε2y.

By using for instance the Cauchy-Schwartz inequality for a suitable weighted
inner product (i.e. a · b =

∑
y∈Y wyayby), it is straightforward to see that∑

y∈Y wyε2y ≥ ε2. ��
Observe that, although the two calls to A are not independent, they share

part of the input. So, there can be a positive correlation (due to the map f)
between their outputs. This is the reason (and not the independence) why the
success probability of the two calls can be bounded by the square of the success
probability of a single call. Typically, the image of f is a part of the input of A,
e.g. when the same RSA modulus is used in both calls to A.

This lemma applies to several security proofs in the literature related to an
RSA modulus, where more than one call to an adversary is made.

B Computing the Number of Exceptional Points

In this appendix, we compute the number of points (x̄, ȳ) ∈ Zp × Z∗
p such that

x̄ �= x and
(

x̄
ȳ

)4
=
(

x
y

)4
, where (x, y) ∈ Dp is the unique point such that

2#(x, y) = 2#(x̄, ȳ). From observation 1, (x̄, ȳ) = (x, y) + (η, 0). Thus

x̄ =
(

y

x − η

)2

− x − η =
x3 − η3

(x − η)2
− x − η =

x2 + ηx + η2

x − η
− x − η = η

x + 2η

x − η

and

ȳ =
y

x − η
(η − x̄) =

ηy

x − η

(
1 − x + 2η

x − η

)
= − 3η2y

(x − η)2
.

Dividing both equations

x̄

ȳ
= − (x + 2η)(x − η)

3ηy
.



A Provably Secure Elliptic Curve Scheme with Fast Encryption 259

On the other hand, x̄
ȳ = ρx

y , where ρ is a fourth root of unity. This equation
is equivalent to (x + 2η)(x − η) = −3ρηx, that means x is a root of the poly-
nomial equation (x + 2η)4(x − η)4 = 81η4x4. So, there are at most 8 different
values of x, given η. Moreover, there are at most 16 points (x̄, ȳ) in each curve
Ep(0, b) satisfying the conditions at the beginning of this appendix. Finally, the
probability that one of these points is guessed at random is at most 16/p.

A tighter bound for this probability can be obtained if the quadratic equation
(x+2η)(x−η) = −3ρηx is discussed for each value of ρ. Let t = x/η. The equation
can be rewritten as (t+2)(t− 1) = −3ρt, and also as t2 +(1+3ρ)t− 2 = 0. The
discriminant of the equation is Δ = (1 + 3ρ)2 + 8 = 9ρ2 + 6ρ + 9.

Since p ≡ 1 mod 4, then
(−1

p

)
= 1 and there are 4 different values of ρ: 1, −1

and the two square roots of −1. Moreover, since p ≡ 5 mod 12, then
( 3

p

)
= −1,

and
( 2

p

)
= 1 if and only if p ≡ 1 mod 8.

Taking this into account, if ρ = 1, then Δ = 24, that is a quadratic residue
only if p ≡ 5 mod 8. If ρ = −1, then Δ = 12 that is not a quadratic residue.
Finally, if ρ2 = −1, then Δ = 6ρ. But(

ρ
p

)
= ρ

p−1
2 = (−1)

p−1
4 mod p

that is equal to 1 if and only if p ≡ 1 mod 8. This implies that 2ρ is always a
quadratic residue, so 6ρ never is.

Summing up the above information, the only values of t come up when p ≡
5 mod 8 and ρ = 1. This two values are t = −(2 ±

√
6). Now, x = ηt and

y2 = x3 − η3 = η3(t3 − 1). From that, for each value of t, only p−1
2 values of η

lead to existing values of y. It is easy to see that there are exactly 2(p−1) points
(x, y), but only p − 1 are in Dp.

This last step follows from a symmetry argument. In all equations, (x, y)
and (x̄, ȳ) play a symmetric role, since (x̄, ȳ) = (x, y) + (η, 0) is equivalent to
(x, y) = (x̄, ȳ) + (η, 0). But (x, y) ∈ Dp and (x̄, ȳ) �∈ Dp. Thus, only half of the
solutions found correspond to values of (x, y), and the other half correspond to
values of (x̄, ȳ).



Advances in Alternative Non-adjacent Form
Representations

Gildas Avoine�, Jean Monnerat��, and Thomas Peyrin

EPFL
Lausanne, Switzerland

Abstract. From several decades, non-adjacent form (NAF) representa-
tions for integers have been extensively studied as an alternative to the
usual binary number system where digits are in {0, 1}. In cryptography,
the non-adjacent digit set (NADS) {−1, 0, 1} is used for optimization of
arithmetic operations in elliptic curves. At SAC 2003, Muir and Stinson
published new results on alternative digit sets: they proposed infinite
families of integers x such that {0, 1, x} is a NADS as well as infinite
families of integers x such that {0, 1, x} is not a NADS, so called a NON-
NADS. Muir and Stinson also provided an algorithm that determines
whether x leads to a NADS by checking if every integer n ∈ [0, �−x

3 �]
has a {0, 1, x}-NAF. In this paper, we extend these results by provid-
ing generators of NON-NADS infinite families. Furthermore, we reduce
the search bound from �−x

3 � to �−x
12 �. We introduce the notion of worst

NON-NADS and give the complete characterization of such sets. Beyond
the theoretical results, our contribution also aims at exploring some al-
gorithmic aspects. We supply a much more efficient algorithm than those
proposed by Muir and Stinson, which takes only 343 seconds to compute
all x’s from 0 to −107 such that {0, 1, x} is a NADS.

1 Introduction

It is well known that every positive integer n can be represented as a finite
sum of the form

∑n
i=0 ai2i, denoted by (. . . a3a2a1a0)2, where the digits ai’s are

picked in the digit set D = {0, 1}. Using the digit set {0, 1} is a common way
to represent integers but for some efficiency purposes some alternative digit sets
have been proposed during the last decades.

Ternary representations (with radix 3) are mainly due to Lalanne [10] but
took off in 1951 when Booth [1] proposed a fast technique to compute the repre-
sentation of the product of two integers using the {−1, 0, 1} radix 2 representa-
tion. In 1960, Reitwiesner [17] proved that every integer has a canonical {−1, 0, 1}

� Supported in part by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

�� Supported in part by a grant of the Swiss National Science Foundation, 200021-
101453/1.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 260–274, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Advances in Alternative Non-adjacent Form Representations 261

radix 2 representation with a minimal number of nonzero digits. This representa-
tion called non-adjacent form (NAF) is obtained if for any two adjacent digits at
least one is zero. Later, in 1989, Jedwab and Mitchell [6] presented an interesting
cryptographic application of such representations showing that using the digit set
{−1, 0, 1} can reduce the number of multiplications in the square-and-multiply
algorithm for exponentiation. In elliptic curves, where inversion can be done for
(almost) free, exponentiations are much more efficient with such representations.
Using this property, Morain and Olivos [14] proposed in 1991 an algorithm speed-
ing up operations over elliptic curves using the {−1, 0, 1} digit set. More recently
Joye and Tymen [7] proposed a compact encoding of non-adjacent forms applied
to elliptic curves, in particular to the Koblitz curves. During the last decade, a
certain amount of work has been devoted to non-adjacent form representations
such as [2, 3, 4, 5, 8, 9, 12, 13, 18, 19].

In our case, we focus on ternary radix 2 representations using the digit set
{0, 1, x} where x is a negative integer. Determining which sets {0, 1, x} provide
non-adjacent forms for every positive integer is still an open problem. Such sets
are called non-adjacent digit sets (NADS). Muir and Stinson [15, 16] gave new
results at SAC 2003, proposing some properties that x must verify in order to
lead to a NADS and they gave some infinite families of x such that {0, 1, x} is or
is not a NADS. In the latter case, we say that {0, 1, x} is a NON-NADS. They
also provided an algorithm that determines whether x is a NADS by checking
whether every integer n ∈ [0, �−x

3 �] has a {0, 1, x}-NAF.
We extend in this paper their results by proposing generators that produce

infinite families of NON-NADS as much as we wish and we give a way to deter-
mine such generators. We reduce also the search bound from �−x

3 � to �−x
12 �. We

introduce the notion of worst NON-NADS and give a complete characterization
of these numbers. Our contribution aims also at exploring algorithmic aspects
related to NADS. So, we propose some improvements of the Muir and Stinson’s
algorithms [15, 16] that comes from our new theoretical results and we propose
a new approach to compute NADS. The first algorithm proposed in [15] took
about one day in order to find all x’s from −1 to −107 such that {0, 1, x} is a
NADS. While an improved version also due to Muir and Stinson [16] takes about
20 minutes, our own algorithm takes only 343 seconds.

2 Preliminaries and Previous Works

2.1 Definitions and Notation

Every positive integer n can be represented as a finite sum of the form
∑n

i=0 ai2i,
denoted by (. . . a3a2a1a0)2. Here, the digits ai’s are in the digit set D = {0, 1}.

Definition 1. The Hamming weight of a non-negative integer n, denoted by
w(n), is the number of ones in the usual {0, 1}-radix 2 representation of n.



262 G. Avoine, J. Monnerat, and T. Peyrin

Definition 2. The length of a radix 2 representation (. . . a2a1a0)2 is the largest
integer � such that a�−1 �= 0 but ai = 0 for all i ≥ �.

The set of all strings of digits from D is denoted by D∗ and contains the
empty string ε. Every D-radix 2 representation matches a string in D∗ and every
string in D∗ matches a D-radix 2 representation. For α, β ∈ D∗, we denote their
concatenation by α‖β. The terminology for representations can be applied to
strings. We note α̂ the string formed by deleting the leading zeros from α. For a
given digit set D and an integer n, we define the map RD(n) such that RD(n) = α̂
where α ∈ D∗ is a D-NAF for n, if one exists, and RD(n) = ⊥ otherwise. Here ⊥
represents the symbol not in D. We are interested in determining which integers
have D-NAF’s, so we define the set NAF(D) := {n ∈ Z : RD(n) �= ⊥}.

Definition 3. D is a nonadjacent digit set if Z+ ⊆ NAF(D).

2.2 Characterization of NADS

First of all, we give a few theorems, whose proofs can be found in [15], giving
necessary conditions for {0, 1, x} to be a NADS or a NON-NADS.

Theorem 1. Let D = {0, 1, x}. If there exists n ∈ NAF(D) with n ≡ 3 (mod 4),
then x ≡ 3 (mod 4).

Theorem 2. The only NADS of the form {0, 1, x} with x > 0 is {0, 1, 3}.

Theorem 3. If x ≡ 3 (mod 4), then any integer has at most one finite length
{0, 1, x}-NAF form with no leading zeros.

From Theorems 1 to 3 we see that a {0, 1, x}-NAF is unique and that x must
be negative and congruent to 3 modulo 4 for {0, 1, x} to be a NADS (except for
D = {0, 1, 3}). Hence, we only consider NADS such that x < 0. The following
lemmas lead to an algorithm that determines whether an integer n ∈ Z+ has a
{0, 1, x}-NAF.

Lemma 1. If n ≡ 0 (mod 4) then n ∈ NAF(D) if and only if n/4 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n

4 )‖00.

Lemma 2. If n ≡ 1 (mod 4) then n ∈ NAF(D) if and only if (n − 1)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD(n−1

4 )‖01.

Lemma 3. If n ≡ 2 (mod 4) then n ∈ NAF(D) if and only if n/2 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n

2 )‖0.

Lemma 4. If n ≡ 3 (mod 4) then n ∈ NAF(D) if and only if (n − x)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD(n−x

4 )‖0x.



Advances in Alternative Non-adjacent Form Representations 263

We define now the function fD : N → N as follows: fD(n) = n
4 if n ≡ 0

(mod 4), fD(n) = n−1
4 if n ≡ 1 (mod 4), fD(n) = n

2 if n ≡ 2 (mod 4), fD(n) =
n−x

4 if n ≡ 3 (mod 4). For the sake of simplicity, we abuse the notation by
denoting f0(n) = n

4 , f1(n) = n−1
4 , f2(n) = n

2 , and f3(n) = n−x
4 . Note that

∀n ∈ [0, x
3 ], f0(n) < n, f1(n) < n, f2(n) < n, and f3(n) > n. We denote f i

the i-fold composition of the function f . We introduce now the graph Gn of an
integer n for a given digit set {0, 1, x}, whose vertices are the iterations of the
function fD on n:

n −→ fD(n) −→ f2
D(n) −→ f3

D(n) −→ . . .

where either ∃k ≥ 0 such that fk
D(n) = 0 or ∃k1, k2, 0 ≤ k1 ≤ k2 such that

fk1
D (n) = fk2

D (n). In other words, either Gn is a path terminating at 0, or Gn

contains a directed cycle of integers in the interval {0, 1, 2, . . . , �−x
3 �} as proved

hereafter. The length of the cycle is defined as k2 − k1. Every vertex of Gn is
positive. Suppose that f i

D(n) < −x
3 , we prove that f i+1

D (n) < −x
3 . If f i

D(n) ≡
0, 1, 2 (mod 4) we have f i+1

D (n) ≤ f i
D(n) < −x

3 . If f i
D(n) ≡ 3 (mod 4) then

f i
D(n) <

−x

3
=⇒ f i

D(n) − x

4
<

−x
3 − x

4

=⇒ f i+1
D (n) <

−x − 3x

12
=

−x

3
.

By extension, we define the graph G(x) of an integer x as G(x) :=
⋃� −x

3 �
n=0 Gn.

Note that if {0, 1, x} is a NADS, then G(x) is a directed tree whose root is
0. We define now the function gD : N → D∗ such that: gD(n) = “00” if n ≡ 0
(mod 4), gD(n) = “01” if n ≡ 1 (mod 4), gD(n)= “0”if n ≡ 2 (mod 4) , gD(n) =
“0x” if n ≡ 3 (mod 4). From Lemmas 1 to 4 and the definitions of fD and gD,
Muir and Stinson proposed Lemma 5 that yields Algorithm 1.

Algorithm 1: NAF(n,x)

α ← ε
while n > −x

3

do
{

α ← gD(n)‖α
n ← fD(n)

S ← ∅

while n �= 0

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if n ∈ S
then return ⊥

S ← S ∪ {n}
α ← gD(n)‖α
n ← fD(n)

return α̂

Algorithm 2: Is-NADS?(x)

N ← 3

while N ≤ −x
3

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ← N
S ← ∅

while n �= 0

do

⎧⎪⎪⎨
⎪⎪⎩

if n ∈ S
then return false

S ← S ∪ {n}
n ← fD (n)

N ← N + 4

return true



264 G. Avoine, J. Monnerat, and T. Peyrin

Lemma 5. For any n ∈ N, n ∈ NAF(D) if and only if fD(n) ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(fD(n))‖gD(n).

The time complexity of the NAF algorithm in the worst case is straightfor-
ward: the complexity of the first loop is O(log n) while the complexity of the
second one is O(|x|). The complexity of the algorithm, in the worst case, is
therefore O(log n + |x|). We expose now Theorem 4 that provides algorithm Is-
NADS? (See Algorithm 2) determining whether or not a given x < 0 leads to a
NADS.

Theorem 4. Suppose x is a negative integer and x ≡ 3 (mod 4). If every ele-
ment in the set {n ∈ Z+ : n ≤ �−x

3 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF, then
{0, 1, x} is a NADS.

The algorithm Is-NADS? requires O(|x|) tests (one test is roughly equivalent
to the second loop of the algorithm NAF), therefore the complexity of Is-NADS?
is O(|x|2). Finally, Muir and Stinson [15] give some characterizations of infinite
families of NADS and NON-NADS. Among them, we will use the two following
theorems.

Theorem 5. Let x be a negative integer with x ≡ 3 (mod 4). If (2s − 1) | x for
any s ≥ 2, then {0, 1, x} is not a NADS.

Theorem 6. Let x be a negative integer with x ≡ 3 (mod 4). If (4 · mi − 1) <
−x < (3 · 2i) for some i ≥ 0, then {0, 1, x} is not a NADS, where

mi :=

{
2 · 2i−1

3 for i even
2i+1−1

3 for i odd.

3 New Theoretical Results

3.1 Improvement on the Search Domain

By Theorem 4, we know that determining whether {0, 1, x} is a NADS can
be performed by checking whether every element of the set {n ∈ Z+ : n ≤
�−x

3 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF. Here, we prove that the search
bound �−x

3 � can be improved when 3 or/and 7 do not divide x. So, Theorem 7
reduces the bound to �−x

6 � and Theorem 8 goes further reducing the search
domain to ]0, �−x

12 �] ∪ [�−x
7 �, �−x

6 �].

Theorem 7. Let x be a negative integer such that 3 � x and x ≡ 3 (mod 4). If
every element in the set {n ∈ Z+ : n ≤ �−x

6 �, n ≡ 3 (mod 4)} has a {0, 1, x}-
NAF, then {0, 1, x} is a NADS.



Advances in Alternative Non-adjacent Form Representations 265

Proof. Let n ≡ 3 (mod 4) be a positive integer such that n ≤ �−x
3 �. Since 3 � x,

n < −x
3 . We have to show that Gn must contain at least one vertex which is

less than −x
6 . In other words, this corresponds to show the existence of j ∈ N

satisfying f j
D(n) < −x

6 . From definition of fD, we also remark that if f i
D(n) < −x

3
is congruent to 0, 1, 2 modulo 4, then f i+1

D (n) < −x
6 . So, it remains to show that

f i
D(n) cannot be congruent to 3 modulo 4 for all i ∈ N. From Section 2.2, we

know that f i
D(n) < −x

3 ⇒ f i+1
D (n) < −x

3 for i ∈ N and that fD is strictly
increasing on the upper bounded set {n ∈ Z+ : n ≤ −x

3 , n ≡ 3 (mod 4)}.
Hence, f i

D(n) cannot be congruent to 3 modulo 4 for all i ∈ N. ��

We give here a further improvement on the search domain.

Theorem 8. Let x be a negative integer such that 3 � x, 7 � x and x ≡ 3
(mod 4). If every element in the set {n ∈ Z+ : n ≤ �−x

12 �, n ≡ 3 (mod 4)}
⋃
{n ∈

Z+ : �−x
7 � ≤ n ≤ �−x

6 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF, then {0, 1, x} is a
NADS.

Proof. Let n be a positive integer such that n ≡ 3 (mod 4) and �−x
12 � ≤ n ≤

�−x
7 �. We will show that Gn contains at least a vertex that lies in the interval

[−x
7 , −x

6 ] or that is less than −x
12 . First, we notice that if an element of Gn is

congruent to 0 or 1 modulo 4, then this one will be sent to an integer less than
−x
12 since this element cannot be greater than or equal −x

3 . So, it remains to
consider the n’s for which Gn contains only vertices congruent to 2 or 3 mod-
ulo 4. Given that f2 ◦ f2 = f0, such a n is transformed by iterations of the
form

f2 ◦ f ik
3 ◦ f2 ◦ f

ik−1
3 ◦ · · · f2 ◦ f i1

3 , (1)

for some integer k ≥ 1 and where i1, . . . , ik are positive integers. We set
F := f2 ◦ f3. We see that F (n) = n−x

8 and that F (n) > n ⇔ n < −x
7 . From the

properties of the function f3, we can conclude that f2 ◦ f �
3(n) ≥ F (n) for � ∈ N

and n ≤ −x
3 . Hence, the value of some iterations of the form (1) applied to n is

greater or equal to F k(n). We finally deduce that there exists a positive integer
k such that the resulting integer n′ of the iteration (1) applied on n is greater
than −x

7 , since the intermediate value increases after each iteration of a function
of the form f2 ◦ f �

3 and since 7 � x. Moreover, n′ is less than −x
6 since every

values of Gn are less than −x
3 and that the last operation of (1) is a division

by 2.
��

Conjecture 1. Let x be a negative integer such that 3 � x, 7 � x and x ≡ 3
(mod 4). If every element in the set {n ∈ Z+ : n ≤ �−x

12 �, n ≡ 3 (mod 4)} has
a {0, 1, x}-NAF, then {0, 1, x} is a NADS.

The new results presented in this section are particularly important because
they allow to reduce significantly the running time of Algorithm 2, as we will
see in Section 4.



266 G. Avoine, J. Monnerat, and T. Peyrin

3.2 Generators of Infinite Families of NON-NADS

In this section, we present a way to generate as many NON-NADS families as
we want. From a theoretical point of view, this method allows to find all NON-
NADS. In practice, it will be used as a trade-off in our algorithm Find-NADS
(See Section 4) that computes every x such that {0, 1, x} is a NADS.

The idea of our method comes from the fact that n ∈ NAF(D) if and only if
Gn does not contain any directed cycle. So, the existence of an integer n such
that Gn contains a directed cycle implies that D is not a NADS. Instead of
looking for a criteria on x for which there exists such a n, we consider a cycle
of a given form and deduce the values x for which n lies in this cycle. More
precisely, we choose the length t of the cycle as well as the sequence of the t
different functions fi for i ∈ {0, 1, 2, 3} that are applied successively on n. Once
the form of the cycle is chosen, we set for a positive integer n ≡ 3 (mod 4) the
equation

f t
D(n) = fit ◦ fit−1 ◦ . . . fi1(n) = n, (2)

where ik ∈ {0, 1, 2, 3} for k = 1, 2 . . . , t. We denote such a cycle of length t as
i1|i2| . . . |it. From (2), we obtain a relation of the form c1n = c2x for two given
c1, c2 ∈ Z. It remains to substitute n = 4k − 1 in this equation and solve it
with the conditions that k ∈ N and x is negative with x ≡ 3 (mod 4). Note that
i1 = 3.

2-Cycles. To illustrate our method, we show how we can concretely find every
cycle of length 2. Such a cycle is called a 2-cycle. First, we observe that we have
3 possible 2-cycles, namely 3|0, 3|1 and 3|2. They correspond to the equations
n−x
16 = n, n−x−4

16 = n and n−x
8 = n. The first equation provides x = −15n and

since n = 4k − 1, we then have x = −60k + 15 for k ∈ N. By setting k = 7,
we see that n = 27, x = −405 and f3(27) = 108 = 4 · 27. The second equation
provides x = −15n − 4 = −60k + 11. Similarly, we obtain x = −28k + 7 from
the third equation.

Theorem 9. If x = −60k + 15, x = −60k + 11 or x = −28k + 7 with k ∈ N,
then {0, 1, x} is a NON-NADS.

Some Cycles of Arbitrary Length. Here, we apply our method to find an
infinite number of NON-NADS families. As an illustration, we look for the x’s
whose graph G(x) contain a cycle of the form 3|3|3| . . . |3|0. Let t ≥ 2 be the
length of this cycle, we have to solve f0 ◦ f t−1

3 (n) = n. Let us first compute
f t−1
3 (n). We have

f t−1
3 (n) =

n − x
∑t−1

i=1 4i−1

4t−1 =
n − x(4t−1−1)

3

4t−1

and hence we get the equation



Advances in Alternative Non-adjacent Form Representations 267

f0 ◦ f t−1
3 (n) =

n − x(22t−2−1)
3

22t−1 = n.

This holds if and only if −x(22t−2 − 1)/3 = n(22t−1 − 1). From this, x has to
be a multiple of (22t−1 − 1) since gcd((22t−2 − 1)/3, 22t−1 − 1) = 1. Moreover,
x ≡ 3 (mod 4) implies that x is of the form x = −(4k− 1)(22t−1 − 1) for k ∈ N.
We can also see that n = (4k − 1)(4t−1 − 1)/3 is congruent to 3 modulo 4 and
that it is positive.

Theorem 10. Let t ≥ 2 and k > 0 be two integers and x = −(4k−1)(22t−1−1).
Then {0, 1, x} is a NON-NADS.

Note that for t = 2, this generates the x-family corresponding to that of
Theorem 9, namely −28k + 7. Obviously, if we consider cycles of another form
(instead of 3|3|3| . . . |3|0) we obtain some other generators.

3.3 Worst NON-NADS

We introduce in this section the notion of worst NON-NADS and give a complete
characterization of it.

Definition 4. Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x} is
a worst NON-NADS if for all n ≤ −x

3 with n ≡ 3 (mod 4), n �∈ NAF ({0, 1, x}).

Theorem 11. Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x} is
a worst NON-NADS if and only if there exists i ≥ 2 such that (4mi−1) < −x <
(3 · 2i), where

mi :=

⎧⎨⎩2 · 2i−1
3 for i even

2i+1−1
3 for i odd

Proof. We first prove that if a given x is in an interval of the form ]−3·2i, 1−4mi[
then {0, 1, x} is a worst NON-NADS. Next we prove that if {0, 1, x} is a worst
NON-NADS then it is in such an interval. Such an interval is called a gap. The
first part of the proof directly comes from the proof of Theorem 21 of [16].

We prove now the converse statement. In other words, we show that for each x
which is not in a gap, there exists a n such that n ∈ NAF({0, 1, x}). We introduce
the notion of pivot : xp is a pivot if there exists a i ≥ 2 s.t. xp = 3− 2i+2.

We prove that, for all i ≥ 2, there is no worst NON-NADS in [3 − 2i+2,−3 ·
2i − 1]. Let xp be the pivot 3− 2i+2; we have

f{0,1,xp}(3) =
3 − (3 − 2i+2)

4
= 2i,

implying that 3 ∈ NAF({0, 1, xp}). We have furthermore f{0,1,xp+4k}(3 + 4k) =
f{0,1,xp}(3) for all integers k ≥ 1. Therefore, xp + 4k is a worst NON-NADS if



268 G. Avoine, J. Monnerat, and T. Peyrin

3 + 4k <

⌊
−xp − 4k

3

⌋
<

−xp − 4k

3
− 1.

Hence, we can compute that this inequality holds if and only if k < 2i−2− 15
16 .

This implies that for every x ∈ [3−2i+2,−3 ·2i−1], we have found an n < �−x
3 �

that is a {0, 1, x}-NAF.
It remains to prove that the interval Ii := [1−4mi+1, 3−2i+2] does not contain

any integer x ≡ 3 (mod 4) that is a worst NON-NADS. To this end, we first show
that 3 is a {0, 1, x}-NAF for the smallest x ∈ Ii, i.e., for x = 3− 4mi+1. Indeed,
for an odd i, it suffices to see that 3 = (101010 . . . 100x)2, where the sequence
01 is repeated (i + 1)/2 times. This is shown by the following computation

(1010 . . . 100x)2 = 3− 4mi+1 +

i+1
2∑

j=1

22j+1 =
17 − 2i+4

3
+ 8 · 2i+1 − 1

3
= 3.

We deduce that for xk = 4k+x, where k ≥ 1, we also have (1010 . . . 100xk)2 =
3 + 4k. Moreover, we can also show that 3 + 4k < �−xk

3 � for all k ≤ 2i−2
3 and

that these xk’s correspond to all elements of the interval Ii that are congruent
to 3 modulo 4. This proves that the intervals Ii’s for the odd integers i’s do not
contain any worst NON-NADS. The case where i is even can be proved in the
same way by showing that 3 = (0101 . . . 010x)2, where the sequence 01 occurred
i
2 + 1 times. This concludes our proof. ��

4 Algorithmic Considerations

We use in this section the theoretical results presented in Section 3 combined
with some algorithmic methods in order to reduce the running time of the NADS
search. First of all, we recall the basic algorithm (Algorithm 3) proposed by Muir
and Stinson [15] and then we bring some improvements that greatly improve the
performances. So, Section 4.2 takes benefit of the theoretical results of Sec-
tion 3.1. Results presented in Section 3.2 are on their hand used in Section 4.3.
We then give the performances of our best algorithm in Section 4.4 and show
that when xmax = −107, the running time of our algorithm is only 343 seconds.

Algorithm 3: Find-NADS (xmax)

NADS ← ∅

for i = −1 to i = xmax

do

⎧⎨
⎩

if ( Is-NADS? i )
then NADS ← NADS ∪ {i}

i ← i − 4

return NADS



Advances in Alternative Non-adjacent Form Representations 269

4.1 Basic Algorithm

The algorithm Find-NADS (Algorithm 3) is the algorithm proposed by Muir and
Stinson. It finds NADS from −1 to xmax, iterating on this interval the algorithm
Is-NADS? presented in Section 2.2 which aims at determining whether or not a
given negative x leads to a NADS. Its performances are given in Section 4.4.

4.2 Intra-X and Inter-X Techniques

The intra-X technique consists of using memoization method during the execu-
tion of Is-NADS?. Memoization is an optimization technique whose basic idea
is to remember function calls. A table is maintained that maps lists of argu-
ment values to previously computed return values for those arguments. When a
function is called, its list of arguments is looked up in the table. If an entry is
found, then the previously computed value is returned directly. Otherwise, the
value is computed and then stored in the table for future use. Such a technique
is well-suited for Algorithm 2 since function fD is called many times with the
same argument.

The Inter-X technique is an extension of the Intra-X technique using memo-
ization during the execution of Find-NADS. Note however that the return value
of fD depends on both n and x. However, the result of fD(n) is independent of
x when n �≡ 3 (mod 4). The intuitive idea consists roughly in establishing short-
cuts between n and successive iterations fk

D(n) until reaching a value congruent
to 3 modulo 4. We give hereafter a formal approach, by introducing equivalence
classes representing such shortcuts. Let b be the function from N to N defined by
b(n) = fk

D(n) where k ≥ 0, fk
D(n) ≡ 3 (mod 4) or fk

D(n) = 0, and ∀k′ 0 ≤ k′ < k,
fk′

D (n) �≡ 3 (mod 4) and fk′
D (n) �= 0. We define the equivalence relation R such

that nRn′ ⇔ b(n) = b(n′). The equivalence class of n induced by R, denoted by
ṅ is therefore the set {n′ ∈ N | nRn′}. The smallest element of ṅ is called the
representative of the class. Any element of ṅ has a {0, 1, x}-NAF if and only if the
representative of ṅ has a {0, 1, x}-NAF. As illustration, we give on Fig. 1 some el-
ements of the class whose representative is 7. The equivalence classes of 0 and all

29

469 234 465 464 232 233 232 116468

28

117 116 58 113 112 56

7

14

Fig. 1. Class of equivalence whose representative is 7



270 G. Avoine, J. Monnerat, and T. Peyrin

n such that n ≡ 3 (mod 4) are therefore pre-computed and stored in a table. This
pre-computation is lightweight: for every n ≡ 3 (mod 4) in the interval [0, −x

3 ],
the inverse of the procedure fD is recursively applied until n > −x

3 . The algo-
rithm Classes given in the appendix is the pseudo-code of this pre-computation
stage. When this pre-computation is achieved, each cell of the table, indexed with
n, contains the representative of ṅ. So, algorithm Is-NADS? uses the function
fD(n) only when n ≡ 3 (mod 4) and looks up the value in the table otherwise.
Note that the table induced only a low complexity space, that is O(|x| log |x|).

4.3 Algorithm Based on Elimination of NON-NADS

We present in this section an algorithm, based on a new approach, that con-
sists of finding all the x leading to a NADS by process of elimination of all
NON-NADS. This algorithm, Elim-NON-NADS, relies on the theoretical results
presented in Section 3.2. The rough idea of this algorithm is to eliminate all
NON-NADS lower than a given bound xmax having a cycle of length t, where t
varies from 1 to �−xmax

3 �. Indeed, x is a NON-NADS if and only if ∃n ∈ N,∃t ≥
2 such that f t

D(n) = n. For instance, the cycle 3|0 yields the equation n−x
16 = 16

that is −x = 3n. By iterating t, we can obtain all the possible values of x that
reach a cycle by using a depth-first search in the the exploration tree of the
different ways to construct a cycle. Using results of Section 3.2, we obtain:

−x =
n · (k1 − 1) + k3

k2
with k1 ≥ 4, k2 ≥ 1, k3 ≥ 0, n ≥ 3.

We move in the tree using the following formulas: k1 = 4k1, k2 = k2, k3 = k3,
if n ≡ 0 (mod 4); k1 = 4k1, k2 = k2, k3 = k3 + k1 if n ≡ 1 (mod 4); k1 = 2k1,
k2 = k2, k3 = k3 if n ≡ 2 (mod 4); and k1 = 4k1, k2 = k2 + k1, k3 = k3
if n ≡ 3 (mod 4). In practice, this algorithm does not allow to find all the
NON-NADS when x is large due to the exponential time complexity of the tree
exploration. However, it can be used to reduce the time complexity of Find-
NADS by finding all NON-NADS that have cycles of length lower or equal to
tmax such that tmax is small enough. Indeed, determining all NON-NADS having
small cycles is much more faster with Elim-NON-NADS than with the basic Find-
NADS. Consequently, finding all NON-NADS can be improved using a trade-off
between Elim-NON-NADS and the basic Find-NADS. tmax is the parameter of the
trade-off. As described in the appendix, Find-NADS uses Elim-NON-NADS as a
sieve in a first stage in order to rough out the search process.

4.4 Experimental Results and Memory Complexity

We give in this section some experimental results in order to compare the per-
formances of the presented algorithms. The tests were done on a standard work-
station. We experimented the following algorithms whose results are given in
Table 1 and represented in Fig. 2.

1. Curve A: the basic algorithm [15]; we ran the C source code that the authors
gracefully provided to us.



Advances in Alternative Non-adjacent Form Representations 271

2. Curve B: the improved basic algorithm [16]; we implemented ourself the
algorithm Is-NADS? provided in [16]. We implemented then the algorithm
Find-NADS using a sieve to eliminate NON-NADS characterized by Theo-
rem 5 initially proposed in [11] and Theorem 6.

3. Curve C: our algorithm, takes benefit of our new theoretical results pre-
sented in Sections 3.1 and 3.2, and practical results described in Sections 4.2
and 4.3. It is actually a trade-off of parameter tmax = 10 between the im-
proved version of Find-NADS and Elim-NON-NADS. The pseudo-code of this
algorithm is given in the appendix.

Note that the three implementations have been compared in a fair way (as
much as possible). They have been implemented in C, compiled with the same
optimization options, and executed on the same AMD AthlonTM XP2500+ pro-
cessor. We did not try to minimize the running time of the algorithms by using
some special low level functions of the language. We would like to emphasize that
the memory complexity in the worse case, that is when all the cycle lengths equal

Table 1. Running time of the experimented algorithms

xmax Running time (seconds)
Basic algorithm Improved basic algorithm Our algorithm

(curve A) (curve B) (curve C)
−105 7 1 <1
−106 655 15 3

−3 · 106 1550 137 35
−6 · 106 6132 435 127
−10 · 106 68532 1154 343
−13 · 106 – 1460 438
−17 · 106 – 2454 724

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  2e+06  4e+06  6e+06  8e+06  1e+07  1.2e+07  1.4e+07

T
im

e 
(s

ec
on

ds
)

-x

Curve A

Curve B

Curve C

Fig. 2. Running time of the experimented algorithms



272 G. Avoine, J. Monnerat, and T. Peyrin

�−x
3 �, is the same whatever the algorithm is. Indeed, the memory complexity is

in the worse case O(|x| log |x|). Our algorithm requires however slightly more
memory on average due to the precomputation steps. It fits nevertheless into a
quite small memory since it requires only a few tens of megabytes of RAM.

5 Conclusion

We extended in this paper previous works mainly done by Muir and Stinson [15,
16]. Our main contribution consists of a method providing generators of NON-
NADS infinite families and a reduction of the search domain to the interval
[0, �−x

12 �] ∪ [�−x
7 �, �−x

6 �] when x is not divided by 3 and 7. We claimed that
we can still reduce it to [0, �−x

12 �]. We also introduced the notion of worst NON-
NADS and characterized them. From these new theoretical results, we suggested
some algorithmic improvements that reduce significantly the running time of the
algorithm Find-NADS. Our algorithm takes only 343 seconds when xmax = −107,
while the best known algorithm [16] took about 20 minutes.

References

1. A. Booth. A signed binary multiplication technique. The Quarterly Journal Me-
chanics and Applied Mathematics, 4:236–240, 1951.

2. W. Bosma. Signed bits and fast exponentiation. Journal de théorie des nombres
de Bordeaux, 13(1):27–41, 2001.

3. E. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature
schemes based on elliptic curves. In J. Buhler, editor, Algorithmic Number Theory,
ANTS-III, LNCS 1423, pp. 252–266, USA, 1998. Springer.

4. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point halving
revisited. IEEE Transactions on Computers, 53(8):1047–1059, August 2004.

5. D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27(1):129–146, 1998.

6. J. Jedwab and C. Mitchell. Minimum weight modified signed-digit representations
and fast exponentiation. Electronics Letters, 25(17):1171–1172, 1989.

7. M. Joye and C. Tymen. Compact encoding of non-adjacent forms with applications
to elliptic curve cryptography. In K. Kim, editor, PKC 2001, LNCS 1992, pp. 353–
364, Korea, 2001. Springer.

8. M. Joye and S. Yen. Optimal left-to-right binary signed-digit recoding. IEEE
Transactions on Computers, 49(7):740–748, 2000.

9. K. Koyama and Y. Tsuruoka. Speeding up elliptic cryptosystems by using a signed
binary window method. In E. Brickell, editor, CRYPTO’92, LNCS 740, pp. 345–
357, USA, 1992. IACR, Springer.

10. L. Lalanne. Note sur quelques propositions d’arithmologie élémentaire. Comptes
rendus hebdomadaires des séances de l’Académie des sciences, 11:903–905, 1840.

11. D. Matula. Basic digit sets for radix representation. Journal of the Association
for Computing Machinery, 29(4):1131–1143, 1982.

12. K. Okeya and T. Takagi. The Width-w NAF Method Provides Small Memory and
Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks. CT-RSA,
LNCS 2612, pp. 328–343, USA, 2003. Springer.



Advances in Alternative Non-adjacent Form Representations 273

13. K. Okeya and T. Takagi. A More Flexible Countermeasure against Side Channel
Attacks Using Window Method. CHES 2003, LNCS 2779, pp. 397–410, Germany,
2003. IACR, Springer.

14. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. RAIRO – Theoretical Informatics and Applications,
24(6):531–543, 1990.

15. J. Muir and D. Stinson. Alternative digit sets for nonadjacent representations.
In M. Matsui and R. Zuccherato, editors, SAC 2003, LNCS 3006, pp. 306–319,
Canada, 2003. IACR, Springer.

16. J. Muir and D. Stinson. Alternative digit sets for nonadjacent representations.
Technical Report CORR 2004-09, Centre for Applied Cryptographic Research,
University of Waterloo, Canada, 2004, http://www.cacr.math.uwaterloo.ca.

17. G. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.
18. J. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.

In B. Kaliski, editor, Crypto’97, LNCS 1294, pp. 357–371, USA, 1997. IACR,
Springer.

19. J. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptogra-
phy, 19(2–3):195–249, 2000.

Appendix: The Final Algorithms

Algorithm: Find-NADS(xmax, tmax)

NADS ← ∅

Classes(xmax)
Elim-NON-NADS(xmax, tmax)

for i = −1 to i = xmax

do

⎧⎨
⎩

if ( Is-NADS? (i) )
then NADS ← NADS ∪ {i}

i ← i − 4

return NADS

Algorithm: Is-NADS?(x)

N ← 3
T ← ∅

while N < −x
12

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n ← N
S ← ∅

while n �= 0

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if n ∈ S
then return false

if n ∈ T
then break

S ← S ∪ {n}
T ← T ∪ {n}
if n ≡ 3 (mod 4)

then n ← n−x
4

else
then n ← V [n]

N ← N + 4

return true

Fig. 3. Final algorithms



274 G. Avoine, J. Monnerat, and T. Peyrin

Algorithm: Classes(xmax)

for i = 3 to i = −xmax
3

do
{

Classes-rec(xmax, i, i)
i ← i + 4

Algorithm: Classes-rec(xmax, nseed, ncur)

V [ncur] ← nseed

if ncur < −xmax
3⎧⎨

⎩
Classes-rec(xmax, nseed, 2 · ncur)
Classes-rec(xmax, nseed, 4 · ncur)
Classes-rec(xmax, nseed, 4 · ncur + 1)

Fig. 4. Precomputation: the classes of equivalence

Algorithm: Elim-NON-NADS(xmax, tmax)

Elim-NON-NADS-rec(xmax, 4, 1, 0, “0”, 1, tmax)

Algorithm: Elim-NON-NADS-rec(xmax, k1, k2, k3, eprev, tcur, tmax)

if eprev �= “0x”⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 3 to i = −xmax
6

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xcur = −i·(k1−1)+k3
k2

if (xcur is integer) and (xcur ≡ 3 (mod 4))
then B[xcur] ← true

i ← i + 4

if tcur ≤ tmax⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if eprev �= “0”⎧⎪⎪⎨
⎪⎪⎩

Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3, “00”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3 + k1, “01”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 2 · k1, k2, k3, “0”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2 + k1, k3, “0x”, tcur + 1, tmax)

else{
Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3 + k1, “01”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2 + k1, k3, “0x”, tcur + 1, tmax)

Fig. 5. Precomputation: the sieve



Attacks on Public Key Cryptosystems Based on
Free Partially Commutative Monoids and

Groups

Françoise Levy-dit-Vehel and Ludovic Perret

ensta, 32 Boulevard Victor, 75739 Paris cedex 15
{levy, lperret}@ensta.fr

Abstract. At indocrypt 2003, Abisha, Thomas and Subramanian have
proposed a public key encryption scheme and a zero-knowledge authenti-
cation protocol based on the word problem on monoids, as well as a group
variant of these systems. We here present a total break attack on each of
the two encryption schemes. The complexity bounds of our algorithms
show that these schemes are insecure for practical parameter sizes. In the
monoid setting, we go one step further by proposing an algorithm that
breaks the NP-hard problem underlying both the encryption scheme and
the zero-knowledge protocol, as well as an upper bound on its complexity.

Keywords: Public Key Cryptanalysis, Word Problem, Thue Systems,
Finitely Presented Groups, Free Partially Commutative Monoids, Ho-
momorphic Mappings.

1 Introduction

Following the need for alternatives to number-theoretic based public key cryp-
tosystems, Abisha, Thomas and Subramanian have designed in [1] encryption
schemes and zero-knowledge authentication protocols based on the word prob-
lem in monoids and groups. In a very general setting, the word problem is that
of deciding whether two words x and y over a finite alphabet Σ are equivalent
with respect to some set of relations R ⊂ Σ∗×Σ∗. This problem has been proven
undecidable for general instances (Σ, R) [14]. This problem, and more generally
the algebra of string rewriting systems admit a broad spectrum of applications
in computer science such as formula-manipulation systems, parallel computa-
tion, or modeling concurrency control problems in data base systems [3, 4, 2].
In the cryptographic context, several attempts have been made in the past to
design secure public key encryption schemes from this or related problems (e.g.
[15, 13, 11], and more recently [12, 10]), but most succumbed to cryptanalysis
[6, 9].

In this paper, we present an attack on each of the two public key encryption
schemes proposed in [1]: the one based on the word problem on monoids, that
we shall call fpcm system in the sequel, and its group-based counterpart, that

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 275–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



276 F. Levy-dit-Vehel and L. Perret

we name fpcg1. Both systems are constructed as follows: the public key is a
finitely presented monoid (resp. group) where the word problem is hard, and
the secret key is a free partially commutative monoid (resp. group) where the
word problem is known to be easy, together with a morphism mapping from one
structure to the other.

To break fpcm and fpcg systems, our idea is to observe that it suffices to
focus on the finding of a suitable morphism; the free partially commutative struc-
ture then follows. We then make use of the fact that the morphisms considered
to design these systems are of a special form.

In the monoid context, we go one step further by proposing a method to break
the hard problem underlying fpcm, that we call TMMI problem (Thue Monoid
Morphism Interpretation problem). Our method relies on a very nice property of
congruence relations in free partially commutative monoids due to R. Cori and
D. Perrin [5]. Thus, our attack also breaks the zero-knowledge authentication
protocol of [1].

It has to be mentioned that, soon after the publication of [1], a chosen cipher-
text attack [8] has been proposed, that breaks both of the encryption schemes2

by means of O(|Δ|2) queries to a decryption oracle (Δ being the public alpha-
bet). Although this attack is very efficient, our approach has a wider scope, in
the sense that it focuses on the underlying hard problem, as well as its particular
instances. The attacks we propose, still exponential in |Δ|, are fast enough to
compromise the use of practical sizes of Δ.

The paper is organized as follows: the next section introduces the necessary
material to present the monoid-based fpcm system. Section 3 will describe this
system and state the associated underlying hard problem TMMI, from which
the fpcm instances constitute a particular class. We follow by a description
of the algorithm for cryptanalysing fpcm (section 4). In section 5, we present
our method to break the general instances of TMMI (section 5), as well as a
synthetic algorithmic translation of it (algorithm 2). Next (section 6), we turn
to the group variant of the fpcm system, namely the fpcg system. Adapting
the ideas presented before to this setting, we propose another algorithm that
breaks fpcg. For all the algorithms presented, we give upper bounds on their
complexity. Some concluding remarks end the paper.

2 Terminology and Notations

Let Δ be a finite alphabet, and Δ∗ be the free monoid over Δ, with λ representing
the empty word. When dealing with strings, the appropriate notion of rewriting
systems is that of a Thue system, namely a subset T of Δ∗ × Δ∗. We here only
consider finite Thue systems, i.e. T is a finite set of pairs of strings. Each pair
(�, r) ∈ T is called a rule. The single step reduction relation on Δ∗ induced by T

1 fpcm stands for free partially commutative monoid, and fpcg stands for free par-
tially commutative group.

2 But not the zero-knowledge protocols of course.



Attacks on Public Key Cryptosystems 277

is defined as follows: for any s, t ∈ Δ∗, s ↔T t ⇐⇒ there exist x, y ∈ Δ∗ and
(�, r) ∈ T such that (s = x�y and t = xry) or (s = xry and t = x�y). The Thue
congruence, denoted by ∗↔T , generated by T is the reflexive transitive closure of
↔T . Two words u, v ∈ Δ∗ are congruent with respect to T iff u

∗↔T v.
Note that the set T is a presentation of the so-called finitely presented monoid

Δ∗/
∗↔T . The word problem for a Thue system T on Δ∗ is then the following:

Given two words u, v ∈ Δ∗, do we have u
∗↔T v? This can be rephrased as : are

u and v in the same equivalence class in Δ∗/
∗↔T ?

Let now Σ be a finite alphabet, and θ ⊆ Σ × Σ be a binary reflexive and
symmetric relation on Σ. Whenever (a, b) ∈ θ, each occurrence of ab (resp. ba)
in any word w ∈ Σ∗ can be replaced by ba (resp. ab). If a word v ∈ Σ∗ is
derived from a word w ∈ Σ∗ by such a sequence of replacements, then we denote
it by v ≡θ w. It is clear that ≡θ as defined is an equivalence relation. Taking
the quotient Σ∗/ ≡θ, we obtain the so-called free partially commutative monoid
generated by Σ with respect to the concurrency relation θ.

The word problem for free partially commutative monoids is the following:
Given two words v, w ∈ Σ∗, is v ≡θ w ? Relying on a result of [5], it has been
shown [4] that, for fixed Σ, the word problem in free partially commutative
monoids is decidable in linear time in the length of the inputs v and w.

3 Abisha, Thomas and Subramanian’s Monoid-Based
System

The fpcm system. In this part we briefly recall the public key system based on
free partially commutative monoids [1].
Public Key. An alphabet Δ, a Thue system T ⊆ Δ∗ × Δ∗ and y0, y1 ∈ Δ∗.
Secret Key. An alphabet Σ of cardinality smaller than that of Δ, a concurrency
relation θ ⊆ Σ × Σ and g ∈ Hom(Δ∗, Σ∗) - the set of monoid homomorphisms
between Δ∗ and Σ∗, mapping one letter to one letter or to the empty word3 -
such that, for each (l, r) ∈ T , we have either:(

g(l), g(r)
)
∈
{
(ab, ba), (ba, ab)

}
, for some (a, b) ∈ θ, or

g(l) = g(r). (1)

Therefore, u
∗↔T v implies g(u) ≡θ g(v), for any u, v ∈ Δ∗.

Additionally, two words x0, x1 ∈ Σ∗ such that x0 �≡θ x1, x0 ≡θ g(y0) and
x1 ≡θ g(y1) are also kept secret. Thus the secret key is (Σ, θ, g, x0, x1).

Encryption. To encrypt a bit b ∈ {0, 1}, Bob repeatedly apply to yb rewriting
rules specified by the Thue system T . The word c ∈ Δ∗ resulting from this
process is then sent to Alice.

3 In the sequel, the term morphism will always denote an application that maps one
letter to one letter or to the empty word.



278 F. Levy-dit-Vehel and L. Perret

Decryption. To decrypt a ciphertext c ∈ Δ∗, Alice first computes g(c) ∈ Σ∗ and
then solves the (easy) word problem in the free partially commutative monoid
generated by θ. If g(c) ≡θ x0, then the plaintext is 0, otherwise it is 1. We refer
to [1] for further details concerning this system.

The underlying hard problem: TMMI
Let Δ be an alphabet and T ⊆ Δ∗ × Δ∗ be a Thue system. The hard problem
underlying the above system is the one that we call Thue Monoid Morphism
Interpretation (TMMI) problem in the sequel. The essence of the problem is
that of recovering an alphabet Σ̃, a concurrency relation θ̃ ⊆ Σ̃ × Σ̃ and a
nontrivial (so-called) interpretation morphism g̃ ∈ Hom(Δ∗, Σ̃∗) such that

∀u, v ∈ Δ∗, u
∗←→T v =⇒ g̃(u) ≡θ̃ g̃(v).

This problem was introduced by Abisha, Thomas, and Subramanian in [1]
and has been proven to be NP-HARD. A more precise statement of it will be
given in section 5.

Remark: it has to be emphasized that the morphism g chosen for the fpcm
system satisfies a slightly weaker property than a general interpretation mor-
phism as defined above does. Indeed, as expression (1) shows, the constraint on
g is only to map rules of T onto congruent words modulo θ of the special form
(ab, ba) or (ba, ab), for (a, b) ∈ θ, and not onto any congruent words modulo θ.
This restriction will be exploited in the next section.

4 Cryptanalysis of the FPCM System

Our purpose is here to break the instances of the TMMI problem that are used
in fpcm systems. Before giving our algorithm, we shall briefly present the idea.
Our concern is to find a triple - say (Σ̃, θ̃, g̃) - that will play the same role as the
secret key (Σ, θ, g), i.e. that “fits” the public key (Δ, T ) in the sense of expression
(1). First, notice that concerning the alphabet Σ, the only thing that matters is
its cardinality. Indeed, any alphabet Σ̃ of size |Σ| will yield a solution which is
isomorphic to (Σ, θ, g). Next, observe that to find an equivalent secret key, it is
sufficient to find a suitable g̃; the concurrency relation θ̃ will then follow from g̃.

Thus, we shall focus on the retrieval of a (suitable) g̃.
To do this, we shall - for each possible cardinality i, 1 ≤ i ≤ |Δ|, of some

alphabet Σ̃, and for every morphism g̃ from Δ∗ onto Σ̃∗ - execute the following
algorithm. We know that a solution exists for i = |Σ|; besides, a design speci-
fication of the fpcm system is that |Σ| << |Δ|. Thus we know that a solution
will be found for i much smaller than |Δ|.

In this algorithm, Σ̃i = {σ̃1, · · · , σ̃i} is an alphabet of i ≥ 1 symbols. For
each i, 1 ≤ i ≤ Δ and each g̃i ∈ Hom(Δ∗, Σ̃∗

i ), we run:



Attacks on Public Key Cryptosystems 279

Algorithm 1
Input: g̃i ∈ Hom(Δ∗, Σ̃∗

i ) and a Thue system T ⊆ Δ∗ × Δ∗.

Output: A concurrency relation θ̃i ⊆ Σ̃i × Σ̃i or Error.
θ̃i ← ∅
For (u, v) ∈ T do

Compute g̃i(u) and g̃i(v)
If g̃i(u) �= g̃i(v) then

If there exist σ̃ �= σ̃′ ∈ Σ̃i, s.t. g̃i(u) = σ̃σ̃′ and g̃i(v) = σ̃′σ̃ then
If (σ̃, σ̃′) or (σ̃′, σ̃) are not in θ̃i then θ̃i ← θ̃i ∪ (σ̃, σ̃′)

Else Error
EndIf

EndFor
Return θ̃i

4.1 Proof of Correctness of the Algorithm

Proposition 1. Let T be a Thue system on Δ generated as in section 3. Then:

i) There exists an index i ≥ 1 and g̃ ∈ Hom(Δ∗, Σ̃∗
i ) for which algorithm 1

returns a concurrency relation θ̃ ⊆ Σ̃i × Σ̃i such that (Σ̃i, θ̃, g̃) is an equivalent
secret key for (Δ, T ).
ii) x0 �≡θ x1 ⇒ g̃(y0) �≡θ̃ g̃(y1).
iii) The pair (g̃, θ̃) is recovered by performing O

(
|T ||Σ|(|Σ|+ 1)|Δ|) operations.

Proof. i). Let k be the number of symbols of Σ and π ∈ Isom(Σ∗, Σ̃∗
k) (the set

of monoid isomorphisms from Σ∗ onto Σ̃∗
k , Σ̃k being any alphabet of size k).

By construction, we know that there exists a concurrency relation θ ⊆ Σ × Σ
and an interpretation morphism g for the Thue system T . From these, we define
g̃ = π ◦ g ∈ Hom(Δ∗, Σ̃∗

k) and θ̃ =
{
(π(a), π(b)) : ∃(u, v) ∈ T, with

(g(u), g(v)) ∈ {(ab, ba), (ba, ab)}, for some (a, b) ∈ θ
}
.

It is easy to see that, on input g̃ ∈ Hom(Δ∗, Σ̃∗
k), algorithm 1 returns θ̃.

Let (u, v) ∈ T . To conclude the proof of i), we remark that we have the
following equivalences:( (

g(u), g(v)
)
∈
{
(ab, ba), (ba, ab)

}
, for some (a, b) ∈ θ

)
⇐⇒

( (
g̃(u), g̃(v)

)
∈{

(ãb̃, b̃ã), (b̃ã, ãb̃)
}
, for some (ã, b̃) ∈ θ̃

)
, and g̃(u) = g̃(v) ⇐⇒ g(u) = g(v).

Therefore for each (u, v) ∈ T , we have either:
(
g̃(u), g̃(v)

)
∈
{
(ãb̃, b̃ã), (b̃ã, ãb̃)

}
for some (ã, b̃) ∈ θ̃, or g̃(u) = g̃(v), meaning that (Σ̃k, θ̃, g̃) is an equivalent secret
key for (Δ, T ).

ii). We define π(θ) =
{
(π(a), π(b)) : (a, b) ∈ θ

}
. One can see at once that, as

x0 = g(y0) and x1 = g(y1), we have x0 �≡θ x1 ⇐⇒ g̃(y0) �≡π(θ) g̃(y1). Therefore,
as θ̃ ⊆ π(θ), the fact that x0 �≡θ x1 implies g̃(y0) �≡θ̃ g̃(y1).
iii). We first remark that θ̃ is immediately deduced from the knowledge of g̃.



280 F. Levy-dit-Vehel and L. Perret

Indeed, from g̃, θ̃ is simply defined as

θ̃ =
{
(σ̃, σ̃′)∈Σ̃k × Σ̃k, ∃(u, v)∈T, with (g̃(u), g̃(v)) ∈ {(σ̃σ̃′, σ̃′σ̃), (σ̃′σ̃, σ̃σ̃′)}

}
.

Therefore, the complexity of recovering the pair (g̃, θ̃) is then equal to the
one of recovering g̃. To estimate this complexity, we simply have to enumerate
the number of elements in Hom(Δ∗, Σ̃∗

i ), for each i, 1 ≤ i ≤ k. Since each
gi ∈ Hom(Δ∗, Σ̃∗

i ) is uniquely determined by the images of the symbols of Δ
on Σ̃i ∪ {λ}, we deduce that |Hom(Δ∗, Σ̃∗

i )| = (i + 1)|Δ|. Finally, g̃ is obtained
by performing at most

∑k
i=1(i + 1)|Δ| iterations of the algorithm, and the pair

(g̃, θ̃) is recovered with O
(
|T |k(k + 1)|Δ|) operations, where an operation here

means an evaluation of g̃.
Now let (Δ, T, y0, y1) be a public key of the fpcm system. In light of property

1-i), we can recover from this key a triple (Σ̃k, θ̃, g̃), such that for every two words
u and v in Δ∗ with u

∗←→T v, we have g̃i(u) ≡θ̃i
g̃i(v). Moreover, according to

ii), setting x̃0 = g̃(y0) and x̃1 = g̃(y1) permit to decrypt all ciphertexts c ∈ Δ∗

generated from (Δ, T, y0, y1), in the same way as x0 and x1 of Σ∗ do : indeed,
given a ciphertext c, we simply compute its image through g̃, and if g̃(c) ≡θ̃ x̃0
then the cleartext is 0, otherwise it is 1.

Practical Complexity: in practice, the complexity of the above method is
much better than the one given in iii) of property 1. Indeed, let (Σ, θ, g) be a
solution of the TMMI problem, and set k = |Σ|. Let also Σ̃k be an alphabet of
size k. It is to be noted that any isomorphism π from Σ∗ onto Σ̃∗

k will also yield
a solution, namely (Σ̃k, π(θ), π ◦ g), with π(θ) = {(π(a), π(b)), (a, b) ∈ θ}. Thus,
as |Isom(Σ∗, Σ̃∗

k)| = k!, the expected number of iterations of the algorithm is(∑k
i=1(i + 1)|Δ|)/k!, and consequently the expected number of operations to

find a solution by this method is

O

((
|T |k(k + 1)|Δ|)

k!

)
.

As an illustration, on the fpcm system given as an example in [1] (with
Δ = 9, |T | = 11, |Σ| = 3), the bound of proposition 1 yields O(223), whereas
the expected complexity above gives O(218).

The bounds given here permit to have an idea of the parameter sizes to choose
in order to reach a reasonable level of security (indeed, in [1], no hint was given
on the suitable parameter sizes). For instance, with |Δ| = 28, |T | ≈ |Δ| and
|Σ| = |Δ|/2, the bound above yields O(280). Note that |Δ| = 28 is yet likely to
result in quite impractical schemes in terms of expansion rate and encryption
cost. Moreover, it remains unclear how to derive a secure public key/secret key
pair of satisfactory size (in the sense of the above bound).



Attacks on Public Key Cryptosystems 281

5 Breaking the TMMI Problem

We shall now give an algorithm that breaks the hard problem underlying both
the fpcm system and the zero-knowledge protocol on monoids proposed in [1].
First, let us state the TMMI problem and its hardness result, as in [1].

Theorem 1. Given a Thue system T on an alphabet Δ and two words y0 and
y1, the problem of constructing a nontrivial interpretation morphism g : Δ∗ →
Σ∗, so that g maps T into a free partially commutative monoid on Σ with a
concurrency relation θ is NP-hard. Here, g maps the words y0 and y1 respectively
to the words x0 and x1, with x0 �≡θ x1, g satisfying the following conditions:
- for each letter d ∈ Δ, g(d) is either a letter in Σ or the empty word λ.
- there exists a letter d ∈ Δ such that g(d) is a letter in Σ.
- for every two words u and v in Δ∗ with u

∗←→T v, we have g(u) ≡θ g(v).
- g(y0) = x0, g(y1) = x1.

Our algorithm relies heavily on the following result of Cori and Perrin, which
is indeed the core of the easiness of the word problem in free partially commu-
tative monoids.

In what follows, Σ is as usual a finite alphabet, and θ ⊆ Σ×Σ is a concurrency
relation on Σ. For B ⊆ Σ, let πB denote the monoid morphism from Σ∗ onto
B∗, defined by πB(b) = b if b ∈ B, πB(b) = λ if b ∈ Σ \ B.

Proposition 2. [5] Let u, v ∈ Σ∗. We have u ≡θ v if, and only if:

(i) π{a}(u) = π{a}(v), ∀a ∈ Σ, and
(ii) π{a,b}(u) = π{a,b}(v), ∀(a, b) �∈ θ.

The proof can be found in [5].

5.1 The Algorithm

For each possible cardinality i of some alphabet Σi, and for every morphism gi

from Δ∗ onto Σ∗
i , we execute algorithm 2 until a solution is found or until4 i =

|Δ|. Indeed, according to condition 1 of theorem 1, an interpretation morphism
would map Δ onto an alphabet g(Δ) of size at most that of Δ; thus it suffices
to consider alphabets Σ of size at most |Δ|.

The algorithm constructs a concurrency relation - say θi - fitting T and gi.
To construct θi, we make use of the “if” part of the previous proposition on the
images of the rules of T by gi: as they have to be congruent modulo a concurrency
relation θ - provided a solution (Σ, θ, g) exists for (Δ, T ) - we force condition
(ii) of proposition 2 to be true on those images (having checked beforehand that
condition (i) of proposition 2 is fulfilled).

Note that if the algorithm returns Error, it means that gi is not a suitable
interpretation morphism; thus the algorithm stops and has to be rerun with

4 Actually, the case i = |Δ| is not worth considering, as we shall explain in the para-
graph concerning the proof of correctness of algorithm 2.



282 F. Levy-dit-Vehel and L. Perret

another gi. If, for a given i, no suitable gi has been found, we increment i and
rerun the algorithm. The index i is here in the integer range [1, |Δ|].

Algorithm 2
Input: gi ∈ Hom(Δ∗, Σ∗

i ), a Thue system T ⊆ Δ∗×Δ∗, y0 and y1 ∈ Δ∗.
Output: A concurrency relation θi ⊆ Σi × Σi or Error.
θi ← ∅
For (u, v) ∈ T do

Compute gi(u) and gi(v)
For a ∈ Σi do

If π{a}(gi(u)) �= π{a}(gi(v)) then Error
EndFor
For (a, b) ∈ Σi × Σi do

If π{a,b}(gi(u)) �= π{a,b}(gi(v))
If (a, b) or (b, a) are not in θi then θi ← θi ∪ {(a, b)}

EndFor
EndFor
If gi(y0) ≡θi

gi(y1) then Error

Return θi

5.2 Proof of Correctness of the Algorithm

Theorem 2. Let T be a Thue system on an alphabet Δ. Then
i) If, for each i, 1 ≤ i ≤ |Δ|, and for each gi ∈ Hom(Δ∗, Σ∗

i ), algorithm 2
outputs “Error”, then there is no solution to the TMMI problem for (Δ, T ).
ii) If there exists an i for which, on input (Δ, T, Σi, gi, y0, y1), algorithm 2 returns
a concurrency relation θi, then (Σi, θi, gi) is a solution of the TMMI problem for
the instance (Δ, T, y0, y1).

Proof. i). If a solution (Σ, θ, g) of TMMI for (Δ, T ) were to exist, every rule of
T should be mapped to a pair of words that are congruent modulo θ. If, for one
letter a ∈ Σi, we reach the “Error” state of the loop on T for a pair (u, v) ∈ T ,
it means that condition (i) of proposition 2 is not fulfilled, and thus there is no
concurrency relation making gi(u) be congruent to gi(v) for this gi. Thus, gi is
not a good candidate, and we must try with another gi.

On the other hand, if we reach the “Error” state after the loop on T , then
gi(y0) ≡θi

gi(y1). Thus θi is not a good candidate, and we also must try with
another gi.

As said above, an interpretation morphism would map Δ onto an alphabet
of size at most that of Δ. As the algorithm performs an exhaustive search on all
morphisms from Δ onto an alphabet of size i, for all possible i’s from 1 to |Δ|,
it follows that if no morphism satisfying the conditions of proposition 2 on T is
found, it means that there exists no interpretation morphism compatible with
(Δ, T ).

ii). Let θi be the concurrency relation output by the algorithm, on input
(Δ, T, Σi, gi, y0, y1). To prove that (Σi, θi, gi) is a solution of the TMMI problem



Attacks on Public Key Cryptosystems 283

for (Δ, T, y0, y1), it is sufficient to show that gi(y0) �≡θi
gi(y1) - which is indeed

trivially satisfied by the very construction of gi - and that

u
∗↔T v =⇒ gi(u) ≡θi

gi(v). (2)

To show (2), first note that this implication is equivalent to

(u, v) ∈ T =⇒ gi(u) ≡θi
gi(v). (3)

Indeed, (2) ⇒ (3) is straightforward. The converse follows from the transi-
tivity properties of ∗↔T and ≡θi : indeed, suppose (3) is true. Let u, v ∈ Δ∗, with
u

∗↔T v. Then there exists a finite sequence u0, u1, . . . , uk, k ∈ N∗, of words of
Δ∗ such that

u0 = u ↔T u1 ↔T u2 ↔T . . . ↔T uk−1 ↔T uk = v.

For 0 ≤ j ≤ k − 1, uj ↔T uj+1 means that there exists (�, r) ∈ T , and
x, y ∈ Δ∗, with uj = x�y and uj+1 = xry. This yields gi(uj) = gi(x)gi(�)gi(y)
and gi(uj+1) = gi(x)gi(r)gi(y). As (3) holds, we have g(�) ≡θi

g(r), so that
gi(uj) ≡θi

gi(uj+1). Thus, we have the corresponding sequence

gi(u) ≡θi gi(u1) ≡θi gi(u2) ≡θi . . . ≡θi gi(uk−1) ≡θi gi(v),

so that (2) is true.
Let now (u, v) ∈ T . According to algorithm 2, θi is constructed such that,

whenever (a, b) �∈ θi, then π{a,b}(gi(u)) = π{a,b}(gi(v)). This is exactly condition
(ii) of proposition 2. Besides, condition (i) of this proposition is satisfied for gi(u)
and gi(v), otherwise the algorithm would not have returned any concurrency
relation. Thus, again by this proposition, we obtain that gi(u) ≡θi gi(v).
Note on the case i = Δ:
If a solution (Σ, θ, g) of TMMI for (Δ, T, y0, y1) were to exist for |Σ| = |Δ|,
g is either an isomorphism, in which case g maps any concurrency relation to
a concurrency relation, or (Σ̃, θ̃, g) is a solution for (Δ, T, y0, y1), with Σ̃ =
{g(δ) : δ ∈ Δ} and θ̃ = {(g(σ), g(σ′)) ∈ Σ̃ × Σ̃ : (σ, σ′) ∈ θ}. Since g is not
an isomorphism, we then have that Σ̃ � Σ, so that this case must have been
handled at a former stage of the algorithm.

5.3 Complexity Considerations

One iteration of algorithm 2 involves O(|Δ|2|T |) operations, where here an op-
eration is an evaluation of π or of gi. In the worst case (no solution, or a solution
for |Σ| = |Δ| − 1), algorithm 2 will be iterated

∑|Δ|−1
i=1 |Hom(Δ, Σi)| times.

With |Hom(Δ, Σi)| = (i+1)|Δ|, and using the rough bound (i+1)|Δ| ≤ |Δ||Δ|,
for all 1 ≤ i ≤ |Δ| − 1, we get that the number of iterations of algorithm 2
is5 O

(
|Δ||Δ|+1

)
. Thus, to solve6 TMMI one needs to perform O

(
|T ||Δ||Δ|+3

)
operations.

5 In all cases, i.e. on instances admitting a solution or not.
6 To find a solution or conclude that there is no.



284 F. Levy-dit-Vehel and L. Perret

Practical Complexity: For instances of the TMMI problem admitting a so-
lution - say (Σ, θ, g), with k = |Σ| - note that, by construction, g must be
such that ∀(u, v) ∈ T , π{a}(g(u)) = π{a}(g(v)),∀a ∈ Σ, and g(y0) �≡θi

gi(y1).
Therefore, any isomorphism π ∈ Isom(Σ, Σ), will also yield a solution, namely
(Σ, π(θ), π◦g), with π(θ) = {(π(a), π(b)), (a, b) ∈ θ}. Thus the expected number
of iterations of the algorithm is

(∑k
i=1(i+1)|Δ|)/k!, and the expected number of

operations to find a solution by this method is O
(

Ck

k!

)
, where Ck is the number

of7 operations on instances admitting a solution with an alphabet of size k, that
is Ck = O

(
|T | k|Δ|+3

)
.

6 The Group Setting

In [1], Abisha, Thomas and Subramanian have proposed a group variant of the
fpcm system, that we called fpcg system at the beginning of this paper. Before
describing it, we need

A few additional notations. Let Δ be a finite alphabet. We denote by Δ−1 =
{a−1, a ∈ Δ}, a set of formal inverses for the letters in Δ, and we set Δ± =
Δ ∪ Δ−1. Let R be a finite subset of Δ± ∗ × {λ}. We let ↔R be the binary
symmetric relation defined for any x, y ∈ Δ± ∗ by x ↔R y if, and only if, one of
the following cases hold:
x = urv and y = uv, with (r, λ) ∈ R, and u, v,∈ Δ± ∗,

x = uaεa−εv and y = uv, for a ∈ Δ, ε = ±1, and u, v,∈ Δ± ∗,
As before, we denote by ∗↔R the reflexive transitive closure of ↔R. A so-called

finitely presented group G is then the quotient Δ± ∗/
∗↔R, that we equivalently

denote by G =< Δ, R >. The set R is the set of defining relations of G. We shall
denote x ≡R y whenever two words x and y are in the same equivalence class in
G. Note that this amounts to saying that xy−1 ≡R λ.

The word problem for the group G is that of deciding, for any two words
x, y ∈ Δ± ∗, whether x ≡R y, or equivalently whether xy−1 ≡R λ holds.

This problem has been proven undecidable for general G [7].
Let Σ be a finite alphabet, and let θ0 be a partial commutativity relation

(concurrency relation) on Σ. We denote by θ, the extension of θ0 to Σ±, i.e.
θ = {(a, b), (a−1, b), (a, b−1), (a−1, b−1), (a, b) ∈ θ0}. We shall write the four
pairs (a, b), (a−1, b), (a, b−1), (a−1, b−1) in a concise way as (a±, b±), for a, b ∈ Σ.
With this notation, we have θ = {(a±, b±), (a, b) ∈ θ0}. Let

R(θ) = {(cd(dc)−1, λ), (c, d) ∈ θ} ⊂ Σ± ∗ × {λ}.

Then R(θ) is a presentation of the free partially commutative group G(θ) def=
Σ± ∗/

∗↔R(θ). The word problem for free partially commutative groups has been
proven decidable in linear time [16].

7 Actually this is an upper bound on the number of operations, as evaluated above,
but in the case of instances admitting a solution.



Attacks on Public Key Cryptosystems 285

6.1 The fpcg System

We here follow the exposition of [1]. Let Σ, θ0, θ, R(θ) and G(θ) be defined as
above. Let also x1 be a word of Σ± ∗, such that x1 �≡R(θ) λ. Denote by Δ, an
alphabet of cardinality much larger than that of Σ, and by g, a group morphism
from Δ± ∗ to Σ± . Let y0 and y1 be two words of Δ± ∗ such that g(y0) ≡R(θ) λ
and g(y1) ≡R(θ) x1.

Additionally, a finitely presented group G =< Δ, R̄ > is constructed from
a subset R̄ of Δ± ∗ × {λ} satisfying, for all (uv−1, λ) ∈ R̄, one of the following
conditions:

(c1) (g(u)g(v)−1, λ) ∈ R(θ)
(c2) g(u) ≡R(θ) λ and g(v) ≡R(θ) λ.

The public key is then (G, y0, y1), and the secret key is (G(θ), x1, g).
Encryption of bit 0 is done by choosing any word w ∈ Δ± ∗ equivalent to y0

w.r.t. R̄. Decryption of w is done by first computing g(w) and solving the easy
word problem in G(θ) to check if g(w) ≡R(θ) λ.

Note that θ0 completely determines G(θ). Thus, to break this system, it
suffices to recover a triple (Σ̃, θ̃, g̃), where g̃ is a group morphism from Δ± ∗

to Σ̃± ∗, and θ̃ is a concurrency relation on the alphabet Σ̃, g̃ and θ̃ being
compatible with the Thue system R̄ in the sense of conditions (c1) and (c2).

6.2 Breaking the fpcg System

Although fpcg and fpcm systems are quite alike, one cannot directly run al-
gorithm 1 for breaking fpcg. Indeed, while condition (c1) of fpcg is the ex-
act transcript of condition (1) of section 3, condition (c2) is not handled by
algorithm 1. In other words, attempting to construct a suitable concurrency
relation, say θi, fitting R̄ and a morphism gi, algorithm 1 as it is will not
add the pairs in θi corresponding to those rules (uv−1, λ) ∈ R̄ that map to
pairs (gi(u), gi(v)) satisfying condition (c2) with (g, R(θ)) being replaced by
(gi, R(θi)), with R(θi) = {(cd(dc)−1, λ), (c, d) ∈ θi} ⊆ Σ±∗

i × {λ}. We shall call
S2, the subset of R̄ of such rules.

Remark: of course, in the case when condition (c2) is simply reduced to g(uv−1)=
λ, for all rules in S2, algorithm 1 works with no modification. Another case when
algorithm 1 works as it stands is when the concurrency relation obtained by
this algorithm makes all rules (uv−1, λ) ∈ R̄ with (g(uv−1), λ) �∈ R(θi) satisfy
g(u) ≡R(θi) λ and g(v) ≡R(θi) λ.

Handling condition (c1):
Although algorithm 1 permits to fill θi with relations enabling the rules (uv−1, λ)
∈ R̄\S2 to be mapped to rules of θitest on the morphism gi. On the other hand,
property (i) of proposition 2 does the job in the monoid case. In order to use a
similar property, we derive an analog of the Cori-Perrin test in the group setting
(see proposition 3 below). But contrary to the monoid case, one cannot obtain a
pure analogue to this test. Indeed, the necessary condition is straightforward, but
due to simplifications by trivial relations of the form (aa−1, λ), the projections
π are no more length preserving, and thus one looses the sufficient condition.



286 F. Levy-dit-Vehel and L. Perret

As before, let Σ be a finite alphabet. For B ⊆ Σ, let πB± denote the group
morphism from Σ± ∗ to B± ∗, defined by πB±(b) = b if b ∈ B±, πB±(b) = λ if
b ∈ Σ± \ B±. Using the above definition of R(θ), we get:

Proposition 3. Let u, v ∈ Σ± ∗. If u ≡R(θ) v then

(i) π{a,a−1}(u) = π{a,a−1}(v), ∀a ∈ Σ, and
(ii) π{a,a−1,b,b−1}(u) = π{a,a−1,b,b−1}(v), ∀(a, b) �∈ θ

hold.

Proof. Let u, v ∈ Σ± ∗, with u ≡R(θ) v. Then it is plain that (i) holds. Moreover,
the words u and v being congruent modulo R(θ), it is also clear that their
projections onto pairs (a, b) not belonging to θ must yield equal words in Σ± ∗,
as those cannot be modified by the relations of R(θ). In other words, condition
(ii) of the proposition is satisfied.

With this proposition, one can, in the same spirit as in algorithm 2 for TMMI,
construct a concurrency relation using property (ii) above. Furthermore, the re-
sulting relation contains the one obtained by algorithm 1: indeed, by property
(ii), one actually also adds in θi all pairs (c, d) for which π{c,c−1,d,d−1}(gi(uv−1)) =
cd(dc)−1, and thus all the images of rules of R̄ that are rules of R(θ). Thus, in-
stead of algorithm 1, we perform a loop on R̄ as of algorithm 2 in order to
construct a concurrency relation fitting condition (c1). This will be the first part
of our algorithm to break fpcg, and we shall call θ̃i the relation obtained in this
way. For the sake of clarity, we shall now denote ≡R(θi) simply by ≡θi

.

Handling condition (c2):
Note that, concerning rules of R̄, one only knows uv−1, and thus one only has
to deal with8 gi(uv−1). But we can observe that, for (uv−1, λ) ∈ R̄, we have:

(uv−1, λ) ∈ S2 ⇔
(
gi(u) ≡θi λ and gi(v) ≡θi λ

)
⇒ gi(uv−1) ≡θi λ.

We shall call ER̄, the subset of R̄ of rules for which gi(uv−1) �≡θi λ, i.e.
ER̄ = R̄ ∩ {(z, λ), z ∈ Δ± ∗, gi(z) �≡θi λ}. Thus we have, for (uv−1, λ) ∈ R̄:

(uv−1, λ) ∈ ER̄ ⇒ (uv−1, λ) �∈ S2.

To begin with, we set θi = θ̃i. For a word w, we denote by alp(w) the set of
letters of w, and alp = ∪(uv−1,λ)∈ER̄

alp(gi(uv−1)). Also, (a, b) denotes an �-tuple
of pairs of letters ((a1, b1), . . . , (a�, b�)), for an integer � ∈ N∗.

The second part of our algorithm will perform a loop on all possible �-tuples
of pairs of letters of Σi × alp, until if finds one �-tuple (a, b) that will make
all the gi(uv−1) - for (uv−1, λ) ∈ ER̄ - be congruent to λ modulo the relation
θi ∪ {(ai, bi), (ai, bi) ∈ (a, b)}. In this case, it returns this augmented relation
that we still call θi. If no such �-tuple satisfies this property, then we increment

8 and not with gi(u) and gi(v).



Attacks on Public Key Cryptosystems 287

� and restart this loop. We do so until � reaches a predefined bound, say �′. Note
that � represents the number of rules of R̄ that actually are in S2. Thus, �′ is at
worse equal to |R̄|, but in practice, we can expect that no more than |R̄|/2 rules
of R̄ are in S2, and thus �′ ≤ |R̄|/2 in practice9.

If no relation has been found for � ≤ �′, then we restart the algorithm with
another gi. If no relation is found for any gi, then we increment i and restart
the whole process. At the end of the algorithm, if no Error is returned, we come
up with a relation θi such that the rules of R̄ are mapped by gi onto words of
Σ∗

i satisfying either gi(uv−1) = cd(dc)−1, with (c, d) ∈ θ̃i ⊆ θi(i.e. cond. (c1)),
or gi(uv−1) ≡θi λ. We now give the algorithm, as well as a proof that it indeed
breaks fpcg (prop. 4).

Algorithm 3
Input: gi ∈ Hom(Δ± ∗, Σ± ∗

i ), R̄ ⊆ Δ± ∗ × Δ± ∗, y0, y1 ∈ Δ± ∗ and �′.
Output: A concurrency relation θi ⊆ Σ±

i × Σ±
i or Error.

θ̃i ← ∅
For (uv−1, λ) ∈ R̄ do

Compute gi(uv−1)
For a ∈ Σi do

If π{a,a−1}(gi(uv−1)) �= 0 then Error
For (a, b) ∈ Σi × Σi do

If π{a,a−1,b,b−1}(gi(uv−1)) �= 0 then θ̃i ← θ̃i ∪ {(a±, b±)}
EndFor
If gi(y0) ≡θ̃i

gi(y1) then Error

θi ← θ̃i

ER̄ = R̄ ∩ {(z, λ), z ∈ Δ± ∗, g(z) �≡θi λ}
alp ← ∪(uv−1,λ)∈ER̄

alp(gi(uv−1))
� ← 1
While � ≤ �′ do

For (a, b) ∈ (Σi
± × alp)� do

If gi(uv−1) ≡θi∪(∪�
j=1{(aj

±,bj
±)}) λ for all (uv−1, λ) ∈ ER̄ then

θi ← θi ∪
(
∪�

j=1 {(aj
±, bj

±)}
)

If gi(y0) �≡θi gi(y1) then Return θi

EndFor
� ← � + 1

EndWhile
Return Error

Proposition 4. Let (G = (Δ, R̄), y0, y1) be the public key of an fpcg system,
generated as in section 6.1, and let (G(θ) = (Σ, θ), x1, g) be the corresponding
secret key. Set k = |Σ|. Then

9 In the example given in [1], no rule of R̄ maps to condition (c2) by g, i.e. S2 = ∅.



288 F. Levy-dit-Vehel and L. Perret

i) There exists an index i ≥ 1 and gi ∈ Hom(Δ± ∗, Σ± ∗
i ) for which algorithm

3 returns a concurrency relation θi ⊆ Σ± ∗
i × Σ± ∗

i such that (Σi, θi, gi) permits
to decrypt all ciphertexts of this system.
ii) x0 �≡θ x1 ⇒ gi(y0) �≡θi gi(y1).
iii) The pair (gi, θi) is recovered by performing O

(
k(k + 1)|Δ|(|R̄|(k2 + �′k2�′

))
)

operations10.

Proof. i). We know that there exists a triple (Σ, θ0, g) such that, for all (uv−1, λ)
∈ R̄, g(uv−1) ∈ Σ± ∗ satisfies either condition (c1) or (c2). Let then k = |Σ|.

Let ψ ∈ Isom(Σ± ∗, Σ± ∗
k ) (the set of group isomorphisms between Σ± ∗ and

Σ± ∗
k ). Define gk = ψ ◦ g ∈ Hom(Δ± ∗, Σ± ∗

k ) and

θ̃0,k =
{
(ψ(a), ψ(b)) : ∃(uv−1, λ) ∈ R̄, g(uv−1) = ab(ba)−1 for some (a, b) ∈ θ0

}
.

Then, on input gk, the loop on R̄ of algorithm 3 returns θ̃k, such that:

{(c±, d±), (c, d) ∈ θ̃0,k} ⊆ θ̃k.

Thus, θ̃k contains all pairs (c, d) ∈ Σ±
k ×Σ±

k , for which there exists (uv−1, λ) ∈
R̄, such that gk(uv−1) = cd(dc)−1.

Let θk by the relation obtained from θ̃k at the end of the loop over �. Then,
by the very construction of this loop, the algorithm will exactly add to θ̃k all the
pairs of Σ±

k ×Σ±
k needed for the images by gk of the remaining rules of R̄ - i.e.

those whose images under gk are not of the form = cd(dc)−1 nor congruent to
the empty word modulo θ̃k - to be congruent to the empty word modulo θk. Thus
the concurrency relation obtained at the end of the algorithm is such that, for
all rules (uv−1, λ) of R̄, we have either (gk(uv−1), λ) ∈ R(θk) or gk(uv−1) ≡θk

λ.
Consequently, since ii) is plainly true, the triple (Σk, θk, gk) enables to decrypt
all ciphertexts encrypted with (Δ, R̄), in the same way as (Σ, θ, g) does.
iii). The complexity of the algorithm can be evaluated as follows:

The loop on R̄ will take O
(
|R̄|k2

)
operations. For each �, the loop on Σi×alp

needs O
(
|R̄|k2�

)
op. Thus, for �′ iterations of this loop, we get a complexity of

O
(
�′|R̄k2�′)

op. Counting the number of group morphisms from Δ± ∗ to Σ± ∗
i , we

have, for each i, O
(
(i + 1)|Δ|(|R̄|(k2 + �′k2�′

))
)

op. Thus, the overall complexity
of the method to find a suitable (gi, θi) is O

(
k(k + 1)|Δ|(|R̄|k2 + �′k2�′

)
)

op.

7 Conclusion

In light of our cryptanalyses of fpcm and fpcg systems, and having in mind the
chosen ciphertext attack of [8], the use of those schemes as they are seems hard to
achieve. Concerning the zero-knowledge protocol based on the underlying hard
problem TMMI [1], our attack of section 5 also shows that it is insecure. The
group-based version of this protocol can still be of interest, as the group variant
of TMMI has not been broken yet. Indeed, one further line of research would
here be to find an attack on this hard problem.
10 An operation being an evaluation of gi or of π.



Attacks on Public Key Cryptosystems 289

References

1. P.J. Abisha, D. G. Thomas, K. G. Subramanian. Public Key Cryptosystems Based
on Free Partially Commutative Monoids and Groups. Proceedings of indocrypt
2003, LNCS 2904, Springer, pp.218-227.

2. A. Aho, R. Sethi, J. Ullman. Code optimization and finite Church-Rosser systems.
Design and Optimization of Computers, R. Rustin Ed., Prentice-Hall 1972, pp.89-
105.

3. R.V. Book. Confluent and other types of Thue systems. Journal of the ACM 29,
1982, pp.171-182.

4. R.V. Book, H.N. Liu. Rewriting systems and word problems in a free partially
commutative monoid. Information Processing Letters 26, 1987/88, pp.29-32.

5. R. Cori, D. Perrin. Automates et commutations partielles. R.A.I.R.O. Informatique
théorique 19, 1985, pp.21-32.

6. J. Kari. A cryptanalytic observation concerning systems based on language theory.
Discrete Applied Mathematics 21, 1988, pp.45-53.

7. P. S. Novikov. On the algorithmic unsolvability of the word problem in group theory.
Trudy Mat. Inst. Steklov 44 (1955), pp.1-143.

8. M.I. González-Vasco, R. Steinwandt. Pitfalls in public key systems based on free
partially commutative monoids an groups. Cryptology ePrint archive 2004/012.

9. M.I. González-Vasco, R. Steinwandt. A Reaction Attack on a Public Key Cryp-
tosystem Based on the Word Problem. Applicable Algebra Engineering, Commu-
nication and Computing, 14(5), 2004, pp.335-340.

10. V. A. Oleshchuk On Public-Key Cryptosystem Based on Church-Rosser String-
Rewriting Systems. Extended Abstract. Proceedings of COCOON’95, LNCS 959,
Springer-Verlag, pp.264-269.

11. A. Salomaa. A public key cryptosystem based on language theory. Computers and
Security 7, 1988, pp.83-87.

12. R. Siromoney, L. Matthew. A public key cryptosystem based on Lyndon words.
Information Processing Letters 35, 1990, pp.33-36.

13. K.G. Subramanian, R. Siromoney, P.J. Abisha. A DOL-TOL public key cryptosys-
tem. Information Processing Letters 26, 1987, pp.95-97.

14. A.M. Turing The word problem in semi-groups with cancellation. Annals of
Math.(2) vol.52, 1950, pp.491-505.

15. N. R. Wagner, M. R. Magyarik. A public key cryptosystem based on the word
problem. Proceedings of CRYPTO’84, LNCS 96, Springer-Verlag, pp.19-36.

16. C. Wrathall. The word problem for free partially commutative groups. Journal of
Symbolic Computation vol 6., 1988, pp.99-104.



Exact Analysis of Montgomery Multiplication

Hisayoshi Sato1, Daniel Schepers2,�, and Tsuyoshi Takagi2

1 Hitachi, Ltd., Systems Development Laboratory,
292, Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan

hisato@sdl.hitachi.co.jp
2 Technische Universität Darmstadt, Fachbereich Informatik,

Hochschulstr.10, D-64289 Darmstadt, Germany
{schepers, takagi}@informatik.tu-darmstadt.de

Abstract. The Montgomery multiplication is often used for efficient im-
plementations of public-key cryptosystems. This algorithm occasionally
needs an extra subtraction in the final step, and the correlation of these
subtractions can be considered as an invariant of the algorithm. Some
side channel attacks on cryptosystems using Montgomery Multiplication
has been proposed applying the correlation estimated heuristically. In
this paper, we theoretically analyze the properties of the final subtrac-
tion in Montgomery multiplication. We investigate the distribution of
the outputs of multiplications in the fixed length interval included be-
tween 0 and the underlying modulus. Integrating these distributions, we
present some proofs with a reasonable assumption for the appearance
ratio of the final subtraction, which have been heuristically estimated by
previous papers. Moreover, we present a new invariant of the final sub-
traction: x · y with y = 3x mod m, where m is the underlying modulus.
Finally we show a possible attack on elliptic curve cryptosystems using
this invariant.

Keywords: timing attack, elliptic curve cryptosystem, Montgomery mul-
tiplication, randomization.

1 Introduction

The Montgomery Multiplication is widely utilized in implementations for public-
key cryptosystems [10]. The Montgomery multiplication is an efficient algorithm
for computing modular multiplication without the use of relatively expensive di-
vision with remainder, and it is suitable for the memory-constraint devices such
as smart cards. In the past years researchers like Dhem, Quisquater or Schindler
[4, 11] etc. attacked this operation. Nevertheless it is still used in hardware im-
plementations and can be used for attacks.

Since 1996 timing attacks gained more and more interest. After Kocher [7, 8]
started with the first attacks on DSS and RSA numerous researchers worked on

� The second author is supported by SicAri Project (www.sicari.de) — German Federal
Ministry of Education and Research.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 290–304, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Exact Analysis of Montgomery Multiplication 291

this topic. RSA and DES were probably the targets which have been attacked
most. This kind of attack is especially attractive to smart cards. Dhem et al.
proposed the first timing attack on RSA using Montgomery multiplication [4].
They focused on the final subtraction which appears in the Montgomery mul-
tiplication. They experimentally showed a timing attack by analyzing the dis-
tribution of the appearance ratio correlated to the secret information. From
their experiment the appearance ratio is about 17% on average. Walter [18]
proposed a Montgomery multiplication without final subtraction, and Hachez
and Quisquater improved it [17]. However, these schemes cause overhead costs
comparing with the original Montgomery multiplication.

After the timing attack, some theoretical analysis about the final subtrac-
tion have been investigated. Schindler heuristically showed a relationship be-
tween the appearance ratio and the underlying parameters [11]. He estimated
the appearance ratio is x mod m

2R , where x ∈ ZZ/nZZ and R is the Montgomery
constant. On the other hand, Walter and Thomson estimated that the ratio
for a squaring is 0.33 and that for a multiplication is 0.25 if the modulus m
is near to Montgomery constant R [16]. The attacker is able to distinguish a
squaring and a multiplication by observing the final subtraction of Montgomery
multiplication.

In this paper, we present some exact analysis on Montgomery multiplica-
tion under a reasonable assumption. Firstly we divide the interval between 0
and the underlying modulus into intervals with length R, then we investigate
the distribution of outputs of multiplications in each interval. Integrating these
results, we prove that the appearance ratios of the final subtraction in Mont-
gomery multiplication and squaring are asymptotically m

4R and m
3R , respectively.

The assumption effects only the case that m ≈ R where m is the modulus and
R is the Montgomery constant. Schindler’s heuristic function x mod m

2R is proved
as well. This assumption describes clearly the behavior of the Montgomery mul-
tiplication’s final subtractions.

We present a new variant of the final subtraction attack as well. Namely we
show that the multiplication x ·y with y = 3x mod m has a different subtraction
ratio from both multiplication and squaring. This operation often appears in
the addition formula of elliptic curve cryptosystems. We show a possible timing
attack based on this invariant. Indeed, the randomization presented by Coron’s
3rd [3] could be vulnerable to the attack. This is different to the attack of Goubin
[5] because we have the opportunity of choosing more points than a special one
of the curve. Finally we show an experimental result on the appearance ratio
discussed in this paper.

This paper is organized as follows: In Section 2 we shortly review the Mont-
gomery multiplication and the timing attack using the final subtraction of the
Montgomery multiplication. In Section 3 we present the proposed exact esti-
mation about the appearance ratio of the final subtraction. In Section 4 we
show a new timing attack and its analysis. In Section 5 we state the concluding
remark.



292 H. Sato, D. Schepers, and T. Takagi

2 Montgomery Multiplication and Timing Attack

In this section we shortly review the Montgomery multiplication and some timing
attacks using the appearance probability of the last subtraction.

2.1 Montgomery Multiplication

The Montgomery Multiplication [10] is an efficient algorithm for computing mod-
ular multiplications without using relatively expensive divisions, and is widely
utilized for public-key cryptosystems. Especially, it is suitable for the memory-
constraint devices such as smart cards.

Note that the Montgomery multiplication has outputs slightly different from
ordinary modular multiplications. In an exponentiation these can be corrected by
three extra Montgomery multiplication. Because the Montgomery multiplication
outputs results in the residue class without any divisions it is the fastest way
to multiply. This is because if the radix b is chosen suitably the divisions are
only shifts. Shifts are basic operations in hardware and are therefore fast. The
following algorithm is taken from [9]

Algorithm 1: Montgomery multiplication

Input: m = (mn−1 · · · m0)b, X = (xn−1 · · · x0)b, Y = (yn−1 · · · y0)b, b = 2k,
R = bn, gcd(m, b) = 1, m′ = −m−1 mod b.

Output: XY R−1 mod m
1. A ← 0 (A = (an · · · a0)b).
2. For i from 0 to (n − 1) do:

temp ← 0,
For j from 0 to (n − 1) do:
{temp, aj} ← xjyi + aj + temp,

an ← temp, temp ← 0, ui ← a0m
′ mod b,

For j from 0 to n do:
{temp, aj} ← mjui + aj + temp,

A ← A/b.
3. If A ≥ m, A ← A − m. ⇐ Final Subtraction
4. Return(A).

The running time of the steps can be analyzed as follows: The computations
in step 2 are expected to take approximately constant time for fixed n. This is
because of the repetition in every multiplication and the constant n repetitions
of the for-loops. After step 2 the value of A varies between 0 and twice the
modulus. A subtraction has to be done if A is larger than the modulus. This
subtraction is called final subtraction.

2.2 Timing Attack and Its Analysis

We shortly review the timing attack on RSA cryptosystem using the Mont-
gomery multiplication.



Exact Analysis of Montgomery Multiplication 293

Dhem et al. simulated a timing attack on the CASCADE smart card [4].
They focused that the probability of the final subtraction depends on the mes-
sage and the secret bit. The attacker can guess the secret bit by observing the
distribution of the final subtraction. The authors stated the final subtraction
occurs in a multiplication of two random inputs in about 17% of the time. They
expected a 512-bit RSA key to be cracked within a few minutes once 350 000
timing measurements are collected. Later on Koeune, Quisquater and Schindler
[6] improved the result and cracked a 512-bit RSA key with 5000 timings by
success rate 0.5.

There are some theoretical estimations for the probability of the final subtrac-
tion. Walter and Thomson investigated the probability of the final subtraction
appeared in Montgomery multiplication and further on Walter and Schindler im-
proved the results [16, 15, 13]. Finally Schindler improved the results once again.
But these accurate analysis was not provable for us. [12]

They showed the following estimations under several convenient conditions
for simplicity.

Pmul =
R

4m

(
1 −
(
1 − m

R

)2
)
−
(
1 − m

R

)
− R

2m

(
1 − m

R

)2
log
(
1 − m

R

)
, (1)

Psqr = 1 − 2R

3m

(
1 −
(
1 − m

R

)3/2
)

, (2)

where Pmul, Psqr are the probability of the final subtraction appeared in Mont-
gomery multiplication for general multiplications and squarings respectively.
Interestingly, the probability for squaring is 1/3 and that for multiplication
is 1/4 for m ≈ R. It is an open problem to show a general formula of the
probability.

Schindler proposed another timing attack on RSA using the Chinese remain-
der theorem [11]. He estimated heuristically the probability of the final subtrac-
tion is

c mod m

2R
, (3)

where c is a cipher-text and m is the secret modulus. The secret modulus m can
be calculated by the chosen cipher-text setting. As he stated in the paper, the
precise proof for the formula is not given yet.

3 Exact Analysis of Montgomery Multiplication

In this section we analyze the distribution of the final subtraction in Montgomery
multiplication. We will investigate the distribution for the general case and some
special cases, and summarize these in section 3.5.

In case of R = b (n = 1), Montgomery Multiplication is given by the following
simple form:



294 H. Sato, D. Schepers, and T. Takagi

Algorithm 2: Montgomery multiplication - special case

Input: m, X, Y, R, gcd(m, R) = 1, m′ = −m−1 mod R
Output: XY R−1 mod m
S-1. u ← xym′ mod R.
S-2. A ← (xy + um)/R.
S-3. If A ≥ m, A ← A − m.
S-4. Return(A).

First of all, we will reduce the problem for Algorithm 1 to that for Algo-
rithm 2. Thus we will prove the following lemma.

Lemma 1. For same inputs m, X, Y and R of Algorithm 1 and Algorithm
2, the final subtraction in step 3 of Algorithm 1 is performed if and only if the
final subtraction in step S-3 of Algorithm 2 is performed.

Proof. In step 2 of Algorithm 1, in order to distinguish, let us denote A for
each i by Ai. Then it can be easily seen that

An−1 =
xy + (

∑n−1
i=0 ui)m

bn
,

and we can see that the subtraction in step 3 is performed if and only if
An−1 ≥ m. Let us set S =

∑n−1
i=0 ui. Then by the validity of Montgomery Mul-

tiplication, we have that An−1 is an integer, namely, xy + Sm ≡ 0 mod bn.
Hence S ≡ −xy/m mod R. Moreover, as an integer, S < R, thus we have
S = (−xy/m mod R).

Note that the right hand side is an integer not less than 0 and less than
R. Therefore, we have that the subtraction in step 3 is performed if and only
if xy + (−xy/m mod R)m ≥ mR, and this condition is nothing less than the
equivalent condition for the final subtraction in step S-3 of Algorithm 2. ��

3.1 Preparation

In the following, we will consider the problem for Algorithm 2. After step S-2
we obtain the following equation:

A = (xy + (xym′ mod R)m)/R (4)

Thus we can see that

A ≥ m ⇔ xy + (xym′ mod R)m ≥ mR. (5)

g(m, R) := #
{
w ∈ Z | 0 ≤ w ≤ (m − 1)2, w + (wm′ mod R)m ≥ mR

}
. (6)

When we represent w = η + ξR, 0 ≤ η < R, 0 ≤ ξ ≤ (m − 1)2/R, then the
equation in the right side of (6) becomes

η + ξR + (ηm′ mod R)m. (7)



Exact Analysis of Montgomery Multiplication 295

This number should be divisible by R, so that we can represent (ηm′ mod
R)m = −η + πR for some integer π = π(η) depending on η. Moreover, we know
π ≤ (R − 1)(m + 1)/R due to 0 ≤ (ηm′ mod R)m ≤ (R − 1)m. Therefore, if
m < R− 1 holds, then we obtain 0 ≤ π ≤ m− 1. Next, we assume the following
distribution.

Assumption DIS. α := ηm′ mod R distributes in interval 0 ≤ α < R uniformly
and randomly for R-fold different η.

We know that this assumption is adequate experientially†. From this as-
sumption, we can see that π distributes in interval 0 ≤ π < m uniformly and
randomly for R-fold different η. Indeed, for 0 < η, η′ < m, it is easy to see
that π(η) = π(η′) if and only if η = η′. Moreover the random distribution of
ηm′ mod R induces the random distribution of π. Hence we can see that one π
corresponds to R/(m+1)-fold η on average, namely there is an (R/(m+1))-to-1
map between π and η. On the other hand, Equation (7) can be represented as
R(ξ + π). If ξ + π ≥ m, then R(ξ + π) is greater than mR. For fixed ξ, the
conditions in (6) is true with ξ-fold π that satisfies m− ξ ≤ π ≤ m−1. We know
that ξ satisfies 0 ≤ ξ ≤ (m − 1)2/R, and thus we have obtained

g(m, R) ≈
(m−1)2

R∑
ξ=0

R

m + 1
ξ ≈

∫ (m−1)2

R

1

Rx

m + 1
dx ≈ m3

2R
− R

2m
. (8)

Note that we used m ± 1 ≈ m for the final approximation.

3.2 Distribution of the Final Subtraction in the General Case

Next, we consider the distribution of xyR−1 mod m with the final subtraction
in the following. Previously we set w = xy, but xy is not uniformly distributed
in interval [0, (m − 1)2] for 0 ≤ x, y ≤ m − 1. We consider the divided interval
[0, (m− 1)2] with width R. In general, we set GN := {0, 1, 2, · · · , N − 1} ⊂ Z for
natural integer N and let φ = φN be the multiplication map:

φ : GN × GN → G(N−1)2+1, (x, y) �→ xy.

For fixed ξ, the value w = η + ξR runs between ξR and (ξ + 1)R. Denote by
Fφ(ξ) the number of the images of φm : Fφ(ξ) := # { Im(φm) ∩ [ξR, (ξ + 1)R) }.
Then, for fixed ξ the probability that the integers in [ξR, (ξ + 1)R) are equal to
the image of map φm is given by Fφ(ξ)/R. In the words, the number of π that
are contained in the image of φm is given by

Fφ(ξ)
R

ξ. (9)

† Since m′ ∈ (Z/RZ)×, the m′-multiplication map η 
→ ηm′ mod R is bijective. Thus
ηm′ mod R are uniformly distributed.



296 H. Sato, D. Schepers, and T. Takagi

On the other hand, let Gφ(ξ) denote the number of integers 0 ≤ x, y ≤ m−1
whose images by φ = φm are in the interval [ξR, (ξ + 1)R):

Gφ(ξ) := #{(x, y) ∈ Gm × Gm | φm(x, y) ∈ [ξR, (ξ + 1)R)}.

From ξR ≤ xy ≤ (ξ + 1)R and the condition of x, y, we have

ξR

m
≤ x < m, (10)

and for a fixed x, the number of y that satisfies the conditions is exactly R/x
(more precisely we should consider its floor value). Hence we have

Gφ(ξ) ≈
∑

ξR/m≤x<m

R

x
≈ R(2 log m − log R − log ξ).

Therefore, among the image of φm from the interval [ξR, (ξ +1)R), there are
Gφ(ξ)/Fφ(ξ) ≈ R(2 log m− log R− log ξ)/Fφ(ξ) elements mapped from (x, y) on
average. Consequently, for fixed ξ, the number of images of the map φm is equal
to Fφ(ξ)ξ/R among ξ-fold π. Each image has R(2 log m−log R−log ξ)/Fφ(ξ)-fold
pre-images of (x, y) on average. Therefore, for w in [ξR, (ξ + 1)R), the number
that satisfies (4) with x, y is

R(2 log m − log R − log ξ)
Fφ(ξ)

· Fφ(ξ)
R

ξ · R

m + 1
=

R(2 log m − log R − log ξ)ξ
m + 1

.

Let s(m, R) denote the number of (x, y) that satisfies Equation (5):

s(m, R) := # {(x, y) ∈ Z × Z | 0 ≤ x, y ≤ m − 1, xy + (xym′ mod R)m ≥ mR} .

Then from the above argument, we have the following approximation formula.

s(m, R) ≈ R

m + 1

(m−1)2/R∑
ξ=1

(
log

m2

R
− log ξ

)
ξ

≈ R

m + 1

∫ (m−1)2/R

1

(
log

m2

R
− log x

)
xdx (11)

≈ R

m + 1

{
1
4

(
(m − 1)2

R

)2

+
(

1 − log
m2

R

)}
(12)

≈ m3

4R
+

R

m

(
1 − log

m2

R

)
. (13)

Here, the transformation from (11) to (13) is obtained by the partial deriva-
tion and m ± 1 ≈ m.



Exact Analysis of Montgomery Multiplication 297

3.3 The Case of x = y

We consider the case of x = y, which simplifies t(m, R) that satisfies equation
(5). Thus we will estimate the following.

t(m, R) := #
{
x ∈ Z | 0 ≤ x ≤ m − 1, x2 + (x2m′ mod R)m ≥ mR

}
.

We follow the estimation for the general case. Let Gψ(ξ) denote the number
of integers 0 ≤ x ≤ m − 1 whose images by ψ(x) = ψm(x) := x2 are in the
interval [ξR, (ξ + 1)R) :

Gψ(ξ) := #{x ∈ Gm | ψm(x) ∈ [ξR, (ξ + 1)R)}.

Because of
√

ξR ≤ x <
√

(ξ + 1)R < m, we have

Gψ(ξ) ≈
∑

√
ξR≤x<

√
(ξ+1)R

1 ≈
√

(ξ + 1)R −
√

ξR.

Hence, among the image of ψm in the interval [ξR, (ξ + 1)R), there are
Gψ(ξ)/Fψ(ξ) ≈ (

√
(ξ + 1)R−

√
ξR)/Fψ(ξ) elements mapped from x on average,

where Fψ(ξ) denote the number of the images of ψm: Fψ(ξ) := { Im(ψm) ∩ #[ξR,
(ξ + 1)R) }. Therefore, for w in [ξR, (ξ + 1)R), the number that stratifies (5)
with x is√

(ξ + 1)R −
√

ξR

Fψ(ξ)
· Fψ(ξ)

R
ξ · R

m + 1
=

√
R

m + 1

(√
(ξ + 1)−

√
ξ
)

ξ.

Thus we have following approximation.

t(m, R) ≈
√

R

m + 1

(m−1)2

R∑
ξ=1

(√
ξ + 1 −

√
ξ
)

ξ

≈
√

R

m + 1

∫ (m−1)2

R

1

(√
x + 1 −

√
x
)
xdx

≈
√

R

m + 1

(
1
3

(
(m − 1)2

R

)3/2

+
15
8

(
(m − 1)2

R

)1/2
)

.

As in the previous section, using m± 1 ≈ m and ignoring small constant, we
have

t(m, R) ≈ m2

3R
. (14)

3.4 The Case of Fixed x

We consider the case that x is fixed in the following. Let x be an integer such
that 0 ≤ x < m, and fix. If the multiplication xy for 0 ≤ y < m lies in the
interval [ξR, (ξ + 1)R), then from the equation (10), we have

ξ ≤ mx

R
. (15)



298 H. Sato, D. Schepers, and T. Takagi

In this case, for R/x-folds y, the image of φm is in [ξR, (ξ+1)R) (if ξ > mx/R,
then no image for y is in this interval). On the other hand, we have to consider
the distribution of xym′ mod R for m-fold y instead of that of ηm′ mod R for
R-fold η in Assumption DIS, and the former strongly depends on the fixed x.
We will focus on the gcd of x and R in the following.

Lemma 2. Let x′ = gcd(x, R). Then for any r(< R), there exists some s =
s(r) < R/x′ such that xr mod R = sx′ (< R as an integer).

Proof. As an integer, let xr = αR + β, β ≤ R − 1, then we have β ≡ 0 mod x′.
Hence putting β = sx′ as an integer, we have s ≤ (R−1)/x′ and xr mod R = sx′.

��
Using this lemma, in the equation (4), there exists s ≤ (R/x′) − 1 such

that xym′ mod R = x′s. Hence we have xy + (xym′ mod R)m = xy + x′sm ≤
mR + xy − x′m. Therefore, for y such that y < x′m/x, the subtraction is not
performed. So from equation ξm/x < y, for ξ satisfying

ξ <
x′m

R
, (16)

the subtraction is not performed. Hence, similarly to the general case, an ap-
proximation of the number

u(x, m, R) := #{y ∈ Z | 0 ≤ y ≤ m − 1, xy + (xym′ mod R)m ≥ mR}

is given by following (using m ± 1 ≈ m).

u(x, m, R) ≈ R

x(m + 1)

mx
R∑

ξ= mgcd(x,R)
R

ξ ≈ m

2xR
(x2 − gcd(x, R)2). (17)

Remark 1. In case of z := −x/m mod R is very small (e.g. z = 1, 2, . . .) or very
large(e.g. z = R− 1, R− 2, . . .), we can see that there are some bias. In order to
explain these bias, we need to consider u as a function of x, m, R and z.

3.5 Comparison of Probability

There are m2 inputs for the general case and m inputs for the case of x = y,
y = ax mod m and fixed x. Therefore, from the previous sections, we have
obtained the following probabilities.

g(m, R)
m2 ≈ m

2R
,

s(m, R)
m2 ≈ m

4R
,

t(m, R)
m

≈ m

3R
,

u(x, m, R)
m

≈ 1
2xR

(x2 − gcd(x, R)2).

Consequently, we obtain the following theorem.



Exact Analysis of Montgomery Multiplication 299

Theorem 1. We assume that the assumption DIS is true. The final subtraction
of Montgomery multiplication asymptotically appears with probability m

4R . If two
inputs are equal (i.e. Montgomery squaring), then the probability becomes m

3R .

If we choose m → R, then these ratios for Montgomery multiplication and
squaring converge 1

4 and 1
3 , respectively. On the other hand, for m → R/2, these

ratios converge 1
8 and 1

6 , respectively.

Corollary 1. For randomly chosen m, the average ratio of the final subtraction
in Montgomery multiplication (or Montgomery squaring) is asymptotically about
0.188 (or 0.250), respectively.

Proof. From the assumption, m randomly distributes in interval [R
2 , R]. Then

the average ratio for Montgomery multiplication is 3
16 = 0.1875. Similarly, we

can estimate 1
4 = 0.25 for Montgomery squaring. ��

4 Application to Elliptic Curve Cryptosystems

In this section we shortly review elliptic curve cryptosystems, and side chan-
nel attack on them. Then we show a new invariant of a special Montgomery
multiplication used for elliptic curve cryptosystems.

4.1 Elliptic Curve Cryptosystems

Elliptic curves over a finite prime field K = GF (m) with m > 3 are defined by

E : {(x, y) ∈ K2|y = x3 + ax + b} ∪ {O}, (18)

where a, b ∈ K, 4a3 + 27b2 �= 0, and O is a point at infinity. The Elliptic curve
E has a group structure with neutral element O. The group operation of the
elliptic curve is as follows:

Let E denote an elliptic curve and P1 = (x1, y1) and P2 = (x2, y2) denote
points on the curve then −P1 = (x1,−y1). P3 = P1 + P2 is calculated by

x3 =
{

λ2
1 − x1 − x2 : P1 �= P2

λ2
2 − 2x1 : P1 = P2

y3 =
{

(x1 − x3)λ1 − y1 : P1 �= P2
(x1 − x3)λ2 − y1 : P1 = P2

where λ1 = y1−y2
x1−x2

and λ2 = 3x2
1+a

2y1
.

We denote by ECADD by the first formula and ECDBL by the second, re-
spectively. In order to avoid the expensive inversion operation in the affine co-
ordinates, we usually use the Jacobian coordinates [2]. A point P = (x, y) in the
affine coordinates is represented by P = (X, Y, Z) with x = X/Z2 and y = Y/Z3

in the Jacobian coordinates. The addition formula in the Jacobian coordinates
is as follows:



300 H. Sato, D. Schepers, and T. Takagi

ECDBL in Jacobian Coordinates (ECDBLJ ):
X3 = T , Y3 = −8Y1

4 + M(S − T ), Z3 = 2Y1Z1,
S = 4X1Y1

2, M = 3X1
2 + aZ1

4, T = −2S + M2.

ECADD in Jacobian Coordinates (ECADDJ ):
X3 = −H3 − 2U1H

2 + R2, Y3 = −S1H
3 + R(U1H

2 − X3), Z3 = Z1Z2H,
U1 = X1Z2

2, U2 = X2Z1
2, S1 = Y1Z2

3, S2 = Y2Z1
3, H = U2−U1, R = S2−S1.

The group offers the scalar multiplication of k · P, k ≤ ord(E) for a point P
with order q on a curve E. A standard double-and-add algorithm can compute
the scalar multiplication, but it is not secure against the timing attack. The
double-and-add-always method can resist the timing attack [3].

Algorithm 3: Coron dummy
Input: d = (dn−1 · · · d1d0)2, P ∈ E(K) (dn−1 = 1)
Output: dP .
1. Q[0] ← P
2. For i = (n − 2) down to 0 do:

Q[0] ← ECDBL(Q[0]),
Q[1] ← ECADD(Q[0], P )
Q[0] ← Q[di]

3. Return(Q[0]).

4.2 DPA and Countermeasure

The differential power analysis (DPA) observes many power consumptions and
analyze these information together with statistic tools. Even if a method is secure
against the timing attack, it might not be secure against the DPA. The DPA
attacker tries to guess that the computation cP for an integer c is performed
during the exponentiation. She gathers many power consumptions cPi with i ∈
1, 2, 3, . . ., and detects the spike arisen from the correlation function based on
the specific bit of cPi. The DPA can break Algorithm 3, because the sequence
of generated points is deterministic and the DPA is able to find correlations for
a specific bit.

Coron pointed out that it is necessary to insert random numbers during
the computation of dP to prevent DPA [3]. The randomization eliminates the
correlation between the secret bit and the sequence of points. The main idea
of these countermeasures is to randomize the base point before starting the
scalar multiplication. If the base point is randomized, there is no correlation
among the power consumptions of each scalar multiplication. The DPA cannot
obtain the spike of the power consumption derived from the statistical tool.
This countermeasure is based on randomization of Jacobian coordinates. To
prevent DPA we transform P = (x, y) in affine coordinate to P = (r2x, r3y, r) in
Jacobian coordinates for a random value r ∈ K∗. This randomization produces
the randomization in each representation of the point and the randomization of
power consumptions during scalar multiplication dP .



Exact Analysis of Montgomery Multiplication 301

However, Goubin proposed a DPA on Coron’s randomization [5]. He pointed
out that the point (0, y) can not be randomized by Coron’s randomization. Ak-
ishita and Takagi extended his attack to the case of auxiliary registers, called
zero-value point attack [1]. The attack adaptively chooses a base point P and
observes side channel information of the scalar multiplication dP , where d is a
secret scalar. The bits of the secret scalar can be recovered if the point (0, y) or
zero-valued register appears. For example, the second most significant bit dn−1
should be 1 in Algorithm 3 if and only if for the point (0, y) appears during the
scalar multiplication dP with base point P = (6−1#E)(0, y).

4.3 Proposed Attack

We propose an new attack on Algorithm 3 using the Coron’s 3rd randomization.
Recall that the recommended curve from SECG uses the curve coefficient

a = −3 [14]. If a is chosen as a = −3, the auxiliary parameter M = 3X2 + aZ4

of ECDBL in the Jacobian coordinate is computed by M = 3(X +Z2)(X −Z2),
and the computation time of ECDBL is reduced from 10M to 8M , where M is
the cost of a multiplication in K.

Assume that the underlying curve has the point P whose x-coordinate is
equal to 2 (i.e., (2, y)). This point is randomized by the Coron’s 3rd method:
(2r2, r3y, r) with a random element r ∈ K. Then the auxiliary parameter M
takes value 3(2r2 + r2)(2r2 − r2) = 3(3r2)(r2). This means that ECDBL with
input (2, y) is not totally randomized by the Coron’s 3rd method — there is
an invariant of multiplication with the form (3r2)(r2) under the Coron’s 3rd
randomization method.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 16000  18000  20000  22000  24000  26000  28000  30000  32000  34000

pe
rc

en
t f

in
al

 r
ed

uc
tio

ns

primes

Fig. 1. The distribution of the final subtractions appeared in Montgomery multiplica-
tion for x2 (upper), x · y with y = 3 · x mod m (middle), and x · y (lower)



302 H. Sato, D. Schepers, and T. Takagi

Figure 1 shows the result of m = 215 and the primes run from 214 up to
m. It shows that we can statistically distinguish the operation xy mod m with
y = 3x mod m from other operations (e.g., multiplication or squaring). The
lowest curve shows the percentage of final subtractions which take place in the
computation of x · y with 0 ≤ x, y < m. The curve in the middle shows the
results for x · y with y = 3 · x and the upper curve the results for x2.

Because the distinction can be done a timing attack should be possible. The
Coron’s dummy method is vulnerable under the adaptive chosen cipher-text de-
scribed in the previous section. We prove the distribution of the final subtraction
appeared in xy mod m with y = 3x mod m in the following.

Theorem 2. We assume that the assumption DIS is true. The final subtraction
of Montgomery multiplication for xy with y = 3x mod m asymptotically appears
with probability 5m2

18R , where m is the underlying modulus.

Proof. Let assume that gcd(3, m) = gcd(3, R) = 1 in this section. We consider
the case of y = 3x mod m in the following. Let c(m, R) be the number of x that
satisfies Equation (5):

c(m, R) :=# {x ∈ Z | 0≤x≤m−1, y=3x mod m, xy + (xym′ mod R)m≥mR}.

We follow the estimation for the case of x = y. The number of integers
0 ≤ x ≤ m− 1 and whose images by φm,3(x) = x(3x mod m) are in the interval
[ξR, (ξ + 1)R) is

G3(ξ) := #{x ∈ Gm | φm,3 ∈ [ξR, (ξ + 1)R)}.

The function φm,3(x) is explicitly represented as follows:

φm,3(x) =

⎧⎨⎩ 3x2 : 0 ≤ x < m
3

x(3x − m) : m
3 ≤ x < 2m

3
x(3x − 2m) : 2m

3 ≤ x < m.

Using the formula for solving quadratic equation, we can obtain the relation-
ship:

G3(ξ) ≈

⎧⎪⎨
⎪⎩

√
ξ + 1 − √

ξ + μ1(ξ) − μ0(ξ) + ν1(ξ) − ν0(ξ) : 1 ≤ ξ < (m−1)2

3R

μ1(ξ) − μ0(ξ) + ν1(ξ) − ν0(ξ) : (m−1)2

3R
≤ ξ < 2(m−1)2

3R

ν1(ξ) − ν0(ξ) : 2(m−1)2

3R
≤ ξ < (m−1)2

3R
,

where μi(ξ) =
√

m2+12(ξ+i)R
6 and νi(ξ) =

√
4m2+12(ξ+i)R

6 . From the same argu-
ment in the previous section, we are able to obtain the estimation about c(m, R).

c(m, R)

≈ 1
m

√
R

3

⎛⎜⎝(m−1)2

3R∑
ξ=1

(
√

x + 1−
√

x)+

2(m−1)2

3R∑
ξ=1

(μ1(x)−μ0(x))+

(m−1)2

R∑
ξ=1

(ν1(x)−ν0(x))

⎞⎟⎠



Exact Analysis of Montgomery Multiplication 303

≈ 1
m

√
R

3

((
1
3

)5/2(
m2

R

)3/2

+
5
√

3
54

(
m2

R

)3/2

+
4
√

3
27

(
m2

R

)3/2
)

≈ 5
18

m2

R
.

��

The average probability of occurring the final subtraction over randomly
chosen K is 5

24 = 0.208, which is not equal to that of multiplication (0.188) or
squaring (0.250). Similarly, we can prove that multiplication x · (ax) with small
a has a different probability.

5 Conclusion

In this paper we presented some exact analysis related to the final subtraction
of Montgomery multiplication. We investigated the distribution of outputs of
multiplications in short intervals included between 0 and the underlying mod-
ulus. Integrating these results, we proved that the appearance ratios of the fi-
nal subtraction during the Montgomery multiplication in the multiplication and
squaring are asymptotically m

4R and m
3R , respectively.

Based on the analysis we proposed a new invariant for the subtraction, namely
multiplication x · (3x). We showed that this invariant appears at the random-
ization of parameter proposed by Coron, we could break it by DPA using the
differences of the appearance ratios between general multiplications, squarings
and the above case.

It is an interesting open problem to investigate further invariants of the Mont-
gomery multiplication.

References

1. T. Akishita and T. Takagi, “Zero-Value Point Attacks on Elliptic Curve Cryp-
tosystem”, ISC 2003, LNCS 2851, pp.218-233, 2003.

2. H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation Using
Mixed Coordinates”, ASIACRYPT ’98, LNCS 1514, pp. 51-65, 1998.

3. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems”, CHES ’99, LNCS 1717, pp. 292-302, 2002.

4. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.
Willems, “A Practical Implementation of the Timing Attack,” CARDIS 1998,
LNCS 1820, pp.167-182, 2002.

5. L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems”,
PKC 2003, LNCS 2567, pp. 199-211, 2003.

6. F. Koeune, W. Schindler and J-J. Quisqater “Improving Divide and Conquer At-
tacks against Cryptosystems by Better Error Detection / Correction Strategies,”
Cryptography and Coding 2001, Cirencester, LNCS 2260, 245-267, 2001

7. C. Kocher, “Timing attacks on Implementations of Diffie-Hellman, RSA, DSS, and
other Systems,” CRYPTO ’96, LNCS 1109, pp.104-113, 1996.



304 H. Sato, D. Schepers, and T. Takagi

8. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” CRYPTO ’99,
LNCS 1666, pp.388-397, 1999.

9. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1997.

10. P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods of Factor-
ization”, Mathematics of Computation, vol. 48, pp. 243-264, 1987.

11. W. Schindler, “A Timing Attack against RSA with the Chinese Remainder Theo-
rem,” CHES 2000, LNCS 1965, pp.109-124, 2000.

12. W. Schindler, “Optimized Timing Attacks against Public Key Cryptosystems,”
Statistic & Decisions 20, 191-210, 2002, R. Oldenbourg Verlag, Munich

13. W. Schindler and C. Walter, “More Detail for a Combined Timing and Power
Attack against Implementations of RSA,” IMA 2003, LNCS 2898, pp.245-263, 2003.

14. Standards for Efficient Cryptography Group (SECG), Specification of Standards
for Efficient Cryptography. Available from http://www.secg.org

15. C. Walter, “Precise Bounds for Montgomery Modular Multiplication and Some
Potentially Insecure RSA Moduli,” CT-RSA 2002, LNCS 2271, pp.30-39, 2001.

16. C. Walter and S. Thompson, “Distinguishing Exponent Digits by Observing Mod-
ular Subtractions,” CT-RSA 2001, LNCS 2020, pp.192-207, 2001.

17. G. Hachez and J.-J. Quisquater “Montgomery Exponentiation with no Final Sub-
traction: Improved Results,” CHES 1999, LNCS 1965, pp.293-301, 1999.

18. C. D. Walter “Montgomery’s Multiplication Technique: How to Make It Smaller
and Faster,” CHES 1999, LNCS 1965, pp.80-93, 1999.



Cryptography, Connections, Cocycles and
Crystals: A p-Adic Exploration of
the Discrete Logarithm Problem

H. Gopalkrishna Gadiyar, K. M. Sangeeta Maini, and R. Padma

AU-KBC Research Centre,
M.I.T. Campus of Anna University,
Chromepet, Chennai 600044, India

{gadiyar, maini, padma}@au-kbc.org

Abstract. Applying Hensel’s lemma to the discrete logarithm problem
over prime fields reveals the rich geometric and algebraic structure un-
derlying the problem. It is shown that the problem has links to cocycles,
connections, group extensions and crystalline cohomology. It is reminis-
cent of the recent use of Monsky-Washnitzer cohomology for counting
points on hyperelliptic curves. Further some weak keys of the cryptosys-
tems based on the hardness of the discrete logarithm problem over prime
fields are discussed.

1 Introduction

The intractability of the discrete logarithm problem is the basis of the security
of several cryptographic primitives. The Diffie - Hellman key exchange protocol
is the first published public key cryptographic algorithm which is based on the
difficulty of this problem. The El Gamal cryptosystem, the El Gamal signature
scheme and the elliptic curve cryptosystem are a few other algorithms depending
on the hardness of the discrete logarithm problem. The well known attacks on
the problem like the baby step - giant step method, Pohlig - Hellman method
and the index - calculus method are algebraic in nature. The first p-adic attacks
on this hard problem were due to Smart [1], Semaev [2], Satoh and Araki [3] on
anomalous elliptic curves. In [4] the p-adic methods are discussed from computer
science perspective.

In this paper we apply the p-adic method to arrive at a very interesting
structure underlying the discrete logarithm problem over prime fields. We find
that the problem gets naturally linked to algebraic and geometric structures
like the cocycles, connections, group extensions and crystalline cohomology. The
body of the paper consists of four parts: In Section 2 a brief explanation of the
p-adic attack on anomalous curves is given. In Section 3 we present the p-adic
attack on non-anomalous curves. In addition we give a simplified version of the
p-adic attack on the discrete logarithm problem over prime fields and explain
why this attack fails. In Section 4 the failure of the attack is analyzed in detail
and its connections to cocycles, connections, group extensions and crystalline

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 305–314, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



306 H.G. Gadiyar, KMS. Maini, and R. Padma

cohomology are explained. It is found that the attack can be generalized to
elliptic curve discrete logarithm problem (ECDLP). In Section 5 we use the
results of Section 3 to demonstrate some weak keys.

2 The Anomalous Attack on ECDLP

Let E denote an elliptic curve over the p-adic field Qp. The Weierstrass equation
of E is given by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 . (1)

where ai ∈ Qp. Let E(Fp) denote the elliptic curve after reduction of the
coefficients of E modulo p. Let Ens denote the set of nonsingular points of
E(Fp). Let

E0(Qp) = {P ∈ E(Qp) : P̃ ∈ Ens(Fp)} , (2)

and
E1(Qp) = {P ∈ E(Qp) : P̃ = Õ} , (3)

where P̃ denotes the reduction point of P modulo p. One can also describe this
group as follows.

E1(Qp) = {P ∈ E(Qp) : ordp(x(P )) ≤ −2} . (4)

Also let
E2(Qp) = {P ∈ E(Qp) : ordp(x(P )) ≤ −4} , (5)

where x(P ) denotes the x-coordinate of P . Let Zp denote the ring of p-adic
integers. The group E1(Qp) is isomorphic to the group Ê(pZp) of pZp valued
points of the one-parameter formal group associated to E and the isomorphism
is given below.

Ê(pZp) → E1(Qp) (6)

z →
{

O , if z = 0 ,
( z

w(z) , − 1
w(z) ) , otherwise, i.e., z = −x

y ,
(7)

where ω(z) is a power series in z, which is the formal power series solution to
the equation

ω = z3 + a1zω + a2z
2ω + a3ω

2 + a4zω2 + a6zω3. (8)

Using the power series for ω(z) the Laurent series for x(z), y(z), w(z) can be
computed, where w(z) denotes the invariant differential on Ê(pZp). These Lau-
rent series have their first few terms given by

x(z) =
z

ω(z)
=

1
z2 − a1

z
− a2 − a3z − (a4 + a1a3)z3 − · · · , (9)

y(z) =
−1

ω(z)
=

−1
z3 +

a1

z2 +
a2

z
+ a3 + (a4 + a1a3)z + · · · , (10)



Cryptography, Connections, Cocycles and Crystals 307

w(z) =
dx(z)

2y(z) + a1x(z) + a3
(11)

= (1 + a1z + (a2
1 + a2)z2 + (a3

1 + 2a1a2 + a3)z3 + · · ·)dz (12)
= (1 + d1z + d2z

2 + d3z
3 + · · ·)dz . (13)

For points on E1(Qp) the p-adic elliptic logarithm is defined to be the group
homomorphism

ϑp :

{
E1(Qp) → Ĝa

P �→
∫

ω(zp) = zp + d1z2
p

2 + d2z3
p

3 + · · · .
(14)

The elliptic curve E is said to be an anomalous curve if #E(Fp) = p. Smart,
Semaev, Satoh and Araki gave a polynomial time algorithm to solve the discrete
logarithm problem on such curves. We sketch the anomalous attack below.

Let P̃ and Q̃ be points on E(Fp) such that Q̃ = [n]P̃ . The ECDLP is to find
n given P̃ and Q̃. To do this, the p-adic approach was used. Let P and Q denote
arbitrary lifts of the points P̃ and Q̃ on an elliptic curve over Qp whose reduction
mod p is the elliptic curve E(Fp) where the lifting is done using Hensel’s lemma
[5]. In other words, P and Q ∈ E0(Qp) and

Q − [n]P ∈ E1(Qp) . (15)

We know that
E0(Qp)/E1(Qp) ∼= E(Fp) , (16)

and
E1(Qp)/E2(Qp) ∼= F+

p (= (Z/pZ,+)) . (17)

What makes the anomalous attack work is due to the reason that #E(Fp) = p.
That is, we have the isomorphism

E0(Qp)/E1(Qp) ∼= E1(Qp)/E2(Qp) ∼= F+
p . (18)

Thus from (18) and (15), the points [p]P and [p]Q ∈ E1(Qp) (so that their
elliptic logarithms exist) while their difference

[p]Q − [n][p]P ∈ E2(Qp) . (19)

By taking elliptic logarithm ϑp on every term in (19) one gets

ϑp([p]Q) − n ϑp([p]P ) ≡ 0 mod p2 . (20)

Since [p]P , [p]Q ∈ E1(Qp), and ϑp([p]P ) , ϑp([p]Q) ∈ pZp, one obtains a
linear congruence in n and the value of n can be computed. That is,



308 H.G. Gadiyar, KMS. Maini, and R. Padma

n ≡ ϑp([p]Q)
ϑp([p]P )

mod p . (21)

The elliptic logarithm is computed via the formal group variable and this can
be done very easily. Hence one obtains n in polynomial time if ϑp([p]P ) �= 0.
In case ϑp([p]P ) ≡ 0, a different curve E(Qp) is chosen which reduces to E(Fp)
and the method is repeated.

3 The p-Adic Attack on Non-anomalous Curves

In this section we try to apply the anomalous attack on non-anomalous curves.
There are two subsections where in Section 3.1 we give a general attack on non-
anomalous curves followed by a discussion on the discrete logarithm problem
over prime fields. In Section 3.2 we give a simplified p-adic attack on the same
and the reason for its failure.

3.1 The p-Adic Attack on the Discrete Logarithm Problem Over
Prime Fields

Let #E(Fp) = l (�= p). From (16) we have [l]P and [l]Q ∈ E1(Qp) so that their
elliptic logarithms exist. So we have

[l](Q − [n][P ]) ∈ E1(Qp) , (22)

but in general
[l](Q − [n][P ]) /∈ E2(Qp) , (23)

while we still have (19) but [p]Q and [p]P /∈ E1(Qp). Hence for the points P̃ and
Q̃ related by Q̃ = [n]P̃ if

[l](Q − [n][P ]) ∈ E2(Qp) , (24)

and if [l]P and [l]Q are not O, then the value of n can be found out immediately.
Let us apply the above discussion to the discrete logarithm problem over

prime fields. Let a0 be a primitive root of the prime p. The discrete logarithm
problem in Fp is to find n given a0 and b0 where

an
0 ≡ b0 mod p . (25)

It is well known that the multiplicative group F ∗
p is isomorphic to the nonsin-

gular points on the curve y2+xy ≡ x3 mod p and its cardinality is equal to p−1.
In this case the formal group law is given by F (z1, z2) = z1 + z2 −z1z2. Let us
denote 2 ◦ z = F (z, z) and n◦ z = F ((n−1)◦ z, z). Then n◦z = 1− (1−z)n

and the map given by (7) is

z →
{

O , if z = 0 ,
( 1−z

z2 , − 1−z
z3 ) , otherwise .

(26)



Cryptography, Connections, Cocycles and Crystals 309

If x ∈ F ∗
p , then the corresponding formal group element z = (1− 1

x ) mod p.
If za and zb correspond to arbitrary lifts of a0 and b0, then the left hand side of
(22), written in terms of the formal group elements, is given by

(p − 1) ◦ zb − n ◦ (p − 1) ◦ za , (27)

which is equal to
(1 − za)n(p−1) − (1 − zb)p−1 . (28)

At this point we would like to stop and give a simplified approach to the discrete
logarithm problem. One can easily see that the information we would get from
(28) modulo p2 is the same as what we would get by the method given below.

3.2 Simplified p-Adic Attack on the Discrete Logarithm Problem
Over Prime Fields

Let a0 ∈ F ∗
p . We use the following notation for an

0 mod p2.

(an
0 )p2 = (an

0 )p + βnp , (29)

where βn is the carry and it takes value between 0 and p−1 and the subscript pk

donotes the reduction modulo pk. Hensel lifting a0 and b0 using the polynomial
xp − x one gets a0 +a1p+a2p

2 + · · · ak−1p
k−1 and b0 +b1p+b2p

2 + · · · bk−1p
k−1

mod pk, for any k ≥ 2, where

ak−1 ≡
(a0 + a1p + · · · ak−2p

k−2)p − (a0 + a1p + · · · ak−2p
k−2)

pk−1 mod p . (30)

Also it satisfies the relation

(a0 + a1p + · · · ak−1p
k−1)n ≡ (b0 + b1p + · · · bk−1p

k−1) mod pk . (31)

In particular for k = 2, we have

a1 ≡
ap
0 − a0

p
mod p (32)

and
(a0 + a1p)n ≡ (b0 + b1p) mod p2 . (33)

Expanding the left hand side of (33) and using (29), we get

(an
0 )p + βn p + n (a0)n−1

p a1p ≡ b0 + b1p mod p2 . (34)

But
(an

0 )p ≡ b0 mod p . (35)

Simplifying (34) one gets

n
a1

a0
≡ b1

b0
− βn

b0
mod p . (36)



310 H.G. Gadiyar, KMS. Maini, and R. Padma

Solving for n in terms of βn gives

n ≡
(

b1 − βn

b0

)
/

(
a1

a0

)
mod p . (37)

One can get this equation also by expanding a
n(p−1)
0 mod p2 in the following two

ways: ((a0)n mod p2)p−1 mod p2 and ((a0)p−1 mod p2)n mod p2. This equation
is a linear congruence in two unknowns, namely, n and βn. So why the p-adic
attack fails in this case is clear. The culprit is the carry term βn. In anomalous
case, βn = 0. One can go back to (28) and expand the expression in two ways
to see that one again gets (37).

4 Analysis of the p-Adic Attack

In this section we take the analysis of the last section in two directions:
1. Study the structure of βn in (29).
2. Hensel lift (35) to infinite number of terms.
It will turn out that both approaches force us to look at an attack based on
group extensions. This, according to us, is the essence of the attack pioneered
by Smart, Semaev, Satoh and Araki.

4.1 Structure of βn

We show here that the study of βn leads us naturally to connections and group
extensions.

Recall that ([6],[7]) if A is a ring, then a map δ: A → A will be called a
p-derivation if it satisfies

δ(x + y) = δx + δy + Cp(x, y) , (38)

and
δ(xy) = xpδy + ypδx + pδxδy , (39)

where Cp(x, y) = (xp+yp−(x+y)p)
p and δx = (x−xp)

p . Note that in our notation a1

is −δ(a0) mod p. Rewriting (36) in this notation, we get

δ(an
0 ) ≡ δ(b0) + βn mod p . (40)

Note that in the parlance of differential geometry, βn is nothing but a connection
[8].

With the notation given in (29) we see that

(an+m
0 )p2 ≡ ((an

0 )p + βnp)((am
0 )p + βmp) mod p2 (41)

≡ (an
0 )p(am

0 )p + ((an
0 )pβm + (am

0 )pβn)p mod p2 , (42)

while the left hand side is (an+m
0 )p + βn+mp. Hence



Cryptography, Connections, Cocycles and Crystals 311

βn+m ≡ (an
0 )pβm + (am

0 )pβn +
1
p
{(an

0 )p(am
0 )p − (an+m

0 )p} mod p . (43)

Let us define
Δ(am

0 , an
0 ) ≡ 1

p
{ (an

0 )p(am
0 )p

(an+m
0 )p

− 1} mod p . (44)

Then

Δ(am
0 , an

0 ) ≡ βn+m

(an+m
0 )p

− βn

(an
0 )p

− βm

(am
0 )p

mod p . (45)

One can immediately see that Δ is a 2-cocycle and hence is a trivial factor
system. Recall [9] that if A and B are two commutative groups then any map
f : A × A → B satisfying the identity

f(y, z) − f(x + y, z) + f(x, y + z) − f(x, y) = 0, x, y, z ∈ A , (46)

is called a factor system on A with values in B. If g : A → B is any map, the
function δg defined by the formula

δg(x, y) = g(x + y) − g(x) − g(y) , (47)

is a factor system; such a system is called trivial. The group of classes of factor
systems modulo the trivial factor systems is denoted by H2(A, B). This leads
us to the natural question: Can the discrete logarithm problem be related to
group extensions? Recall [10] that a group extension (of A by B) is a short exact
sequence

0 → B → E → A → 1 , (48)

of groups in which B is an abelian group. It is well known that H2(A, B) is
isomorphic to the group of classes of central extensions of A by B. In our case,
A = (Z/pZ)∗ and B ∼= (Z/pZ,+). So we find that the correct way is to view
the p-adic attack as a problem in group extension.

For completeness of the discussion we add a further comment and refer the
reader to the literature for details. A concrete realization of the extension prob-
lem is found in the standard construction of Witt vectors ([11], [12]) of length
2. There when one lifts the action of Frobenius one gets a function ψ which has
all the desired properties:

ψ(x1 + x2) = ψ(x1) + ψ(x2) −
p−1∑
i=1

1
p

(p

i
)

xi
1 xp−i

2 , (49)

and
ψ(x1x2) = xp

1 ψ(x2) + xp
2 ψ(x1) + p ψ(x1) ψ(x2) . (50)

See [13] and the Appendix in [14]. In the next section we will find that we are led
to crystalline cohomology by a totally different analysis. It is known that one of
the ways of looking at crystalline cohomology is to view it as a group extension
problem [15].



312 H.G. Gadiyar, KMS. Maini, and R. Padma

4.2 Hensel Lift, Teichmüller Character and Crystalline
Cohomology

In Hensel lifting a0 and b0 as was done in Section 3.2, what we do actually is get-
ting the Teichmüller representatives mod pk [5] which is nothing but apk−1

0 mod pk.
Let T (a0) and T (b0) denote the Teichmüller representatives of a0 and b0 respec-
tively in Zp. If an

0 ≡ b0 mod p, then

T (a0)n = T (b0) , (51)

in Zp. Also,
T (a0)p−1 = 1 and T (b0)p−1 = 1 , (52)

in Zp. We know that the logarithm is defined for a p-adic integer x if ordp(x) ≥ 1
or in other words if x ∈ pZp. Iwasawa [5] defined the logarithm for any non-zero
p-adic integer x as 1

p−1 log(xp−1). Note that xp−1 ∈ 1 + pZp by Fermat’s little
theorem. Applying Iwasawa logarithm to (51), we get

n log T (a0) = log T (b0) . (53)

Unfortunately both log T (a0) and log T (b0) are zero due to (52). So we get no
information about n.

Teichmüller representatives are the (p−1)th roots of unity in Z∗
p and they lie

in the kernel of the Iwasawa logarithm. It is clear that the Iwasawa logarithm
corresponds to the real part of the p-adic logarithm. Hence we need a p-adic
analogue of the complex logarithm which is provided by crystalline cohomology.
One immediately notes that crystalline cohomology again deals with the exten-
sion of groups. See the essay by Günter Harder in [12] for a historical account
and references to the original literature. More recent surveys on Internet are
[16], [17].

So we are forced to one possible general attack based on p-adic methods
which is an attack relying on the extension of groups. Such an attack could be
extendable to elliptic curves also.

5 Some Implementation Issues

From the theoretical results we have got so far, we arrive at some weak keys
of the cryptosystems based on the discrete logarithm problem over prime fields.
By a weak key we mean that we can solve the corresponding discrete logarithm
problem in polynomial time.

If the carry βn in (37) is small, n can be found by trial and error. Few
examples using ridiculously small primes are given in Table 1. The correct value
of n is the one for which the columns b0 and an

0 mod p are equal. We denote
the correct value of n by

√
and the wrong value by ×. Note that βn = 0 if

an
0 < p. These are trivial weak keys while the examples we have provided are

nontrivial. Also note that a1 and b1 can be computed in polynomial time.



Cryptography, Connections, Cocycles and Crystals 313

Table 1

p a0 a1 b0 b1 β n an
0 mod p

11 2 10 7 3 0 7
√

7
103 5 85 63 67 0 77 × 43
103 5 85 63 67 1 82

√
63

103 5 85 58 4 0 28
√

58

Thus from the above table one immediately observes that (a0, b0) with small
βn is a weak key. Here the calculations were done modulo p2. One can naturally
extend this to higher powers of p which we discuss next.

Let
(a0 + a1p)n ≡ b0 + b1p + γn p2 mod p3 , (54)

and
(a0 + a1p + a2p

2)n ≡ b0 + b1p + b2p
2 + ηn p3 mod p4 . (55)

Using (54)and (55) in (31) for k = 3 and 4 respectively and simplifying, we
get

a2

a0
n ≡ b2

b0
− γn

b0
mod p , (56)

and a3

a0
n ≡ b3

b0
− ηn

b0
mod p . (57)

If γn (ηn) is small, then n can be found by trial and error. We furnish some
examples in Table 2 where we have only considered the cases γn = 0 and
ηn = 0. One can go to higher powers of p similarly.

Table 2

p a0 a1 a2 a3 b0 b1 b2 b3 n an
0 mod p

19 2 6 14 - 3 16 7 - 13 3
23 5 1 2 - 9 7 13 - 10 9
29 8 24 17 22 9 9 15 8 22 9
31 3 20 14 30 5 14 24 8 20 5
31 3 20 14 30 13 23 23 4 11 13

6 Conclusion

“Homological algebra is a tool used to prove nonconstructive existence theorems
in algebra (and in algebraic topology). It also provides obstructions to carrying
out various kinds of constructions; when the obstructions are zero, the construc-
tion is possible. Finally, it is detailed enough so that actual calculations may
be performed in important cases.” [10] It was a pleasant surprise to the authors
that a simple tool like the Hensel’s lemma led to such a deep structure. Thus the



314 H.G. Gadiyar, KMS. Maini, and R. Padma

discrete logarithm problem is brought into the fold of mainstream mathematical
methods. The point counting algorithms using Monsky-Washnitzer cohomology
[18] also seem to indicate that abstract mathematical tools may become common
place in cryptanalysis in the near future.

References

1. N. P. Smart: The discrete logarithm problem on elliptic curves of trace one. J.
Crypto. 12 (1999)193–196

2. I. A. Semaev: Evaluation of discrete logarithms on some elliptic curves. Math.
Comp. 67 (1998) 353–356

3. T. Satoh and K. Araki: Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves. Comm. Math. Univ. Sancti Pauli 47 (1998)
81–92

4. D. Catalano, P. Q. Nguyen and J. Stern: The hardness of Hensel lifting: The case
of RSA and discrete logarithm. ASIACRYPT 2002, Lecture Notes in Computer
Science, Vol. 2501 (2002) 299–310

5. Alain M. Robert: A Course in p-adic Analysis. Springer - Verlag (2000) New York
6. A. Buium: Differential characters of abelian varieties over p-adic fields. Invent.

Math. 122 (1995) 309–340
7. A. Buium: Arithmetic analogues of derivations. J. Algebra 198 (1997) 290-299
8. B. A. Dubrovin, A. T. Fomenko and S. P. Novikov: Modern Geometry - Methods

and Applications. Part I. The Geometry of the surfaces, Transformation Groups,
and Fields. Springer - Verlag (1984) New York

9. J. P. Serre: Algebraic Groups and Class Fields. Springer - Verlag (1988) New York
10. Charles A. Weibel: An Introduction to Homological Algebra. (1994) Cambridge

University Press
11. J. P. Serre: Local Fields. Springer - Verlag (1979) New York
12. Ernst Witt: Collected Papers. Springer - Verlag (1998) Berlin - Heidelberg
13. P. Deligne and L.Illusie: Relèvements modulo p2 et décomposition du complexe de

de Rham. Invent. Math. 89 (1987) 247–270
14. V. B. Mehta and V. Srinivas: Varieties in positive characteristic with trivial tangent

bundle. Compos. Math. 64, (1987) 191–212. (Appendix on Canonical Liftings by
M. V. Nori and V. Srinivas.)

15. B. Mazur and W. Messing: Universal Extensions and One Dimensional Crystalline
Cohomology. Lecture Notes in Mathematics, 370 (1974) Springer

16. Yves André: Period mappings and differential equations. From C to Cp. Tôhoku -
Hokkaidô lectures in Arithmetic Geometry. (With appendices by F. Kato and N.
Tsuzuki.) arXiv:math.NT/0203194v1 19 March 2002

17. Marc - Hubert Nicole: Cris is for Crystalline. (Reference unavailable. Downloaded
from Internet.)

18. Kiran S. Kedlaya: Counting points on hyperelliptic curves using Monsky-
Washnitzer cohomology. J. Ramanujan Math. Soc. 16 (2001) 323-338



EME∗: Extending EME to Handle
Arbitrary-Length Messages

with Associated Data

Shai Halevi

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
shaih@alum.mit.edu

Abstract. This work describes a mode of operation, EME∗, that turns
a regular block cipher into a length-preserving enciphering scheme for
messages of (almost) arbitrary length. Specifically, the resulting scheme
can handle any bit-length, not shorter than the block size of the under-
lying cipher, and it also handles associated data of arbitrary bit-length.
Such a scheme can either be used directly in applications that need en-
cryption but cannot afford length expansion, or serve as a convenient
building block for higher-level modes.

The mode EME∗ is a refinement of the EME mode of Halevi and
Rogaway, and it inherits the efficiency and parallelism from the original
EME.

1 Introductions

Adding secrecy protection to existing (legacy) protocols and applications raises
some unique problems. One of these problems is that existing protocols some-
times require that the encryption be “transparent”, and in particular preclude
length-expansion. One example is encryption of storage data “at the sector level”,
where both the higher-level operating system and the lower-level disk expect the
data to be stored in blocks of 512 bytes, and so any encryption method would
have to accept 512-byte plaintext and produce 512-byte ciphertext.

Clearly, insisting on a length-preserving (and hence deterministic) transfor-
mation has many drawbacks. Indeed, even the weakest common notion of security
for “general purpose encryption” (i.e., semantic security [6]) cannot be achieved
by deterministic encryption. Still, there may be cases where length-preservation
is a hard requirement (due to technical, economical or even political constrains),
and in such cases one may want to use some encryption scheme that gives
better protection than no encryption at all. The strongest notions of security
for a length-preserving transformation is “strong pseudo-random permutation”
(SPRP) as defined by Luby and Rackoff [12], and its extension to “tweakable
SPRP” by Liskov et al. [11]. A “tweak” is an additional input to the enciphering
and deciphering procedures that need not be kept secret. This report uses the
terms “tweak” and “associated data” pretty much interchangeably, except that
“associated data” hints that it can be of arbitrary length, whereas “tweak” is
sometimes thought of as a fixed-length quantity.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 315–327, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



316 S. Halevi

Motivated by the application for “sector level encryption”, some efficient
modes of operation that implement “tweakable SPRP” on large blocks were re-
cently described by Halevi and Rogaway [7, 8]. As “general purpose modes”,
however, these modes are somewhat limited, in that they can only be applied
to input messages whose size is a multiple of n, the block-size of the underly-
ing cipher. Also, the mode CMC from [7] is inherently sequential (and it was
only proven secure against attack model where all the messages are of the same
length), and the mode EME from [8] is limited to messages of at most n2 bits.
The current work is aimed at eliminating these limitations.

The mode EME∗, presented below, takes a standard cipher with n-bit blocks
and turns it into a tweakable enciphering scheme with message space M =
{0, 1}n+ (i.e., any string of at least n bits) and tweak space T = {0, 1}∗. The
key for EME∗ consists of one key of the underlying cipher and two additional
n-bit blocks. The mode EME∗ has similar structure to the mode EME from
[8]. Roughly, it consists of two layers of masked ECB encryption, with a layer
of “lightweight mixing” in between. As a consequence, EME∗ is highly paral-
lelizeable,1 and also quite work-efficient. Processing an m-block query with �
blocks of associated data takes at most � + 2m + �m/n block encryptions (or
decryptions).

1.1 Design Alternatives

There are a few different practical approaches for transforming a standard n-
bit block cipher into a variable-input-length cipher. As described above, the
approach that we use in this work is the Encrypt-mix-Decrypt approach that
was used in CMC and EME.

A different approach is based on the Luby-Rackoff construction [12] (aka
Feistel network). This approach was examined in the work of Petal et al. [17],
and was also adopted by the ABL mode of McGrew and Viega [13]. The Luby-
Rackoff construction involves splitting the m-bit input into two parts (say, of
lengths ml and mr bits), and using the underlying cipher to implement a two
pseudorandom functions: one from ml to mr bits and the other from mr to ml

bits. The pseudorandom functions can be built, for example, by first applying
CBC-MAC to the input to get an n-bit block, and then expand this block to the
output size using counter mode. This approach (in its simplest form) takes four
applications of these pseudorandom functions (two for each function), and each
of these applications takes time roughly equivalent to an encryption of the entire
input. Such straightforward implementation would therefore take roughly twice
the work of EME∗. One could instead use the modification of Naor and Reingold
[15], where the first and last application are replaces by universal hashing. How-
ever, as was discussed in the CMC paper [7], universal hashing with sufficiently

1 In EME∗, the longest execution path for any input consists of at most five block
encryption. If the input length is a multiple of the block length then the longest
path has only four encryptions. If in addition the input is shorter than n blocks then
the longest path has only three encryptions.



EME∗: Extending EME to Handle Arbitrary-Length Messages 317

small collision probability is quite hard to implement, and it is not clear to what
extent this improves the performance on common real-world platforms2.

A somewhat better solution would be to use a construction due to Naor and
Reingold [14], that involves one layer of encryption “sandwiched” between two lay-
ers of universal hashing. As with the previous approach, here too one runs into the
problemof implementinguniversal hashingwith small enough collisionprobability.
(And if the underlying block cipher is used to implement these hashing layers then
one gets three layers of encryption, which is about 50% more work than EME∗.)

1.2 What About Very Short Blocks?

The mode EME∗ can handle blocks of any bit-length but not less that the block
size of the underlying cipher. The underlying structure of EME∗, being based
on ECB encryption, does not lend itself to handling shorter blocks. In fact, in
my opinion there is no good solution today for handling arbitrary short blocks.
The solutions that I am aware of are described below. (The first three of those
were described in a paper of Black and Rogaway [3].)

– For blocks that are only slightly shorter than the block length of the under-
lying cipher (e.g., 127-bit blocks), one could use the following trick: First,
pad the plaintext to one block and use directly the underlying block cipher.
If the ciphertext does not fall in the right domain (e.g., you need a 127-bit
block but the ciphertext does not begin with zero), then encrypt it again.
Repeat as many times as needed to get the ciphertext in the right domain.
It can be shown that this procedure results in a well defined permutation.
The drawback is that when using this method to encrypt a block of size
2n−m, the number of applications of the underlying block cipher is 2m on
the average. (Here n is the block length of the underlying cipher.)

– For very short blocks (e.g., one byte) it is possible to pre-compute a pseudo-
random permutation and store it in a table. This approach, however, clearly
runs out of steam for blocks longer than two bytes, and it is extremely
wasteful of space even before that. (Also, it is not clear how to incorporate
a “tweak” into this approach.)

– Alternatively, one could apply the Luby-Rackoff construction to implement
the narrow-block cipher, using the underlying cipher for the pseudorandom
functions. This solution extends to handle messages of any length, but at a
price of a severely reduced security-parameter. For example, although 128-
bit blocks may enjoy “128 bits of security”, 127-bit blocks only enjoy “63
bits of security”. Even worse, 64-bit blocks have to make due with a pathetic
“32 bits of security”.

It is possible to use six or more rounds of the Luby-Rackoff construction
to make the security parameter a little less miserable (cf. Patarin’s work
[16]), but the price is an extremely slow mode for small blocks.

2 Another minor drawback of the Luby-Rackoff construction is that for inputs of length
under two blocks, the security parameter is less that the one offered by either EME∗

or the Naor-Reingold construction.



318 S. Halevi

– For blocks that are not too short (say, at least 64 bits), one can simply switch
to using a different block cipher. For example, one could use EME∗[AES]
to process blocks that are 128 bits or more, and use a separately keyed
EME∗[3DES] to handle blocks of length between 64 and 127 bits.

This solution, however, is quite expensive, as it mandates the implemen-
tation of two different ciphers. (Of course, one could use EME∗[3DES] also
to handle longer messages, but then the security parameter would be much
reduced.) Moreover this solution does not address blocks shorter than 64 bits.

– Another approach is to use a parameterizable cipher (e.g., RC5 [18]) as the
underlying block cipher. Parameterizable ciphers can be instantiated to han-
dle various block sizes, so in particular they can be used in their narrow-block
instantiation to handle the small blocks. However, to the best of my knowl-
edge there is a fairly small number of such ciphers, and they were never seri-
ously analyzed for small blocks. So it unlikely that they provide very good se-
curity, especially in the very small block sizes. Worse still, it is likely that us-
ing the same key for different block sizes would have disastrous consequences.

I view the problem of handling arbitrary small blocks as wide open. The two
plausible approaches for addressing it are either to design a mode of operation
with good security-performance tradeoff for small blocks, or to design an efficient
block cipher that can handle small blocks securely. I believe that a good cipher
is more likely to be possible than a good mode of operation (but perhaps this is
only because I know more about modes of operation than about block ciphers.)

Organization. Section 2 recalls some standard definitions (this section is taken
almost verbatim from [8]). Section 3 describes the EME∗ mode with a brief dis-
cussion of the extensions of EME∗ over EME. The security of EME∗ is stated in
Section 4. The proof, which is long and technical, can be found in the full version
of this report [9]. Some aspects of that proof are discussed in the appendix.

2 Preliminaries

A tweakable enciphering scheme is a function E: K×T ×M → M where M =⋃
i∈I{0, 1}i is the message space (for some nonempty index set I ⊆ N) and

K �= ∅ is the key space and T �= ∅ is the tweak space. We require that for every
K ∈ K and T ∈ T we have that E(K, T, ·) = ET

K(·) is a length-preserving
permutation on M. The inverse of an enciphering scheme E is the enciphering
scheme D = E−1 where X = DT

K(Y ) if and only if ET
K(X) = Y . A block cipher

is the special case of a tweakable enciphering scheme where the message space
is M = {0, 1}n (for some n ≥ 1) and the tweak space is T = {ε} (the empty
string). The number n is called the blocksize. By Perm(n) we mean the set of
all permutations on {0, 1}n. By PermT (M) we mean the set of all functions
π: T ×M → M where π(T, ·) is a length-preserving permutation.



EME∗: Extending EME to Handle Arbitrary-Length Messages 319

An adversary A is a (possibly probabilistic) algorithm with access to some
oracles. Oracles are written as superscripts. By convention, the running time of
an algorithm includes its description size. The notation A ⇒ 1 describes the
event that the adversary A outputs the bit one.

Security Measure. For a tweakable enciphering scheme E: K × T × M → M
we consider the advantage that the adversary A has in distinguishing E and its
inverse from a random tweakable permutation and its inverse: Adv±p̃rp

E (A) =

Pr
[
K

$←K : AEK(·,·) E−1
K (·,·) ⇒ 1

]
− Pr

[
π

$← PermT (M) : Aπ(·,·) π−1(·,·) ⇒ 1
]

The notation shows, in the brackets, an experiment to the left of the colon
and an event to the right of the colon. We are looking at the probability of the
indicated event after performing the specified experiment. By X

$←X we mean
to choose X at random from the finite set X . In writing ±p̃rp the tilde serves
as a reminder that the PRP is tweakable and the ± symbol is a reminder that
this is the “strong” (chosen plaintext/ciphertext attack) notion of security. For
a block cipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an
encipher query, never repeats a decipher query, never queries its deciphering
oracle with (T, C) if it got C in response to some (T, M) encipher query, and
never queries its enciphering oracle with (T, M) if it earlier got M in response to
some (T, C) decipher query. We call such queries pointless because the adversary
“knows” the answer that it should receive.

When R is a list of resources and Advxxx
Π (A) has been defined, we write

Advxxx
Π (R) for the maximal value of Advxxx

Π (A) over all adversaries A that use
resources at most R. Resources of interest are the running time t, the number
of oracle queries q, and the query complexity parameters σa

n and σd
n (where

n ≥ 1 is a number). The parameters σa
n, σd

n are the total number of n-bit blocks
in all the associated-data and data portions, respectively, in all queries that the
adversary makes. Namely, the query complexity parameters of any one call (T, P )
are σa

n = �|T |/n and σd
n = �|P |/n, and the query complexity parameters of

an attack are the respective sums of the query complexity parameters of all the
calls. The name of an argument (e.g., t, q, σa

n, σd
n) will be enough to make clear

what resource it refers to.

Finite Fields. We interchangeably view an n-bit string as: a string; a nonnegative
integer less than 2n (msb first); a formal polynomial over GF(2) (with the coeffi-
cient of xn−1 first and the free term last); and an abstract point in the finite field
GF(2n). To do addition on field points, one xors their string representations. To
do multiplication on field points, one must fix a degree-n irreducible polynomial.
We choose to use the lexicographically first primitive polynomial of minimum
weight. For n = 128 this is the polynomial x128+x7+x2+x+1. See [4] for a list of
the indicated polynomials. We note that with this choice of field-point represen-
tations, the point x = 0n−210 = 2 will always have order 2n−1 in the multiplica-
tive group of GF(2n), meaning that 2, 22, 23, . . . , 22n−1 are all distinct. Finally,



320 S. Halevi

we note that given L = Ln−1 · · ·L1L0 ∈ {0, 1}n it is easy to compute 2L. We
illustrate the procedure for n = 128, in which case 2L = L<<1 if firstbit(L) = 0,
and 2L = (L<<1) ⊕ Const87 if firstbit(L) = 1. Here Const87 = 012010413 and
firstbit(L) means Ln−1 and L<<1 means Ln−2Ln−3 · · ·L1L00.

3 Specification of EME∗ Mode

Consider a block cipher E: K×{0, 1}n → {0, 1}n. Then EME∗[E]: (K×{0, 1}2n)×
T ×M → M is an enciphering scheme with associated data, where K is the
same as the underlying cipher, T = {0, 1}0..n(2n−3), and M = {0, 1}n..n(2n−2).
In words, the key for EME∗[E] consists of one key K of the underlying block
cipher E and two n-bit blocks, L and R. EME∗[E] accepts messages of any bit
length grater than or equal to n (but no more than n(2n − 2)), and associated
data of arbitrary bit-length (but no more than n(2n−3)). Obviously, in practical
terms the upper limits are no limitation at all.

The scheme EME∗[E] follows the same general principles of the tweakable
scheme EME from [8]. Roughly, it consists of two layers of masked ECB encryp-
tion, with a layer of “lightweight mixing” in between. A complete specification
of the enciphering scheme EME∗[E] is given in Figure 1, and an illustration (for
a message of n+2 full blocks and one partial block) is provided in Figure 2. For
those familiar with EME, the differences between EME and EME∗ are as follows:
– Hashing the “tweak”. The original EME scheme requires that the “tweak

value” be an n-bit string, whereas here we allow associated data of any
length. For this purpose, we hash the associated data to an n-bit string. The
hash function need only be xor-universal, yet it is implemented using the
underlying block cipher in a PMAC-like mode [2].

– More than one mask. The EME scheme uses (multiples of) a single mask
value M in the “lightweight masking” layer. It was shown in [8], however,
that this masking technique with just one mask cannot be used for messages
longer than n2 bits.

Longer messages are handled in EME∗ using the approach that was pro-
posed in the appendix of [8]. The message is broken to chunks of at most n2

bits each, and a different mask value is used for every chunk. To handle the
last partial block (if any), yet another mask is computed and xor-ed into the
last partial plaintext block, thus getting the last partial ciphertext block.

We comment that it is possible to derive the two key blocks L, R from the
cipher key K, say by setting L = 2EK(0) and R = 3EK(0)3. This variant is not
proven in the current work, but I believe that such a proof is possible (although
no means trivial).

3 The maximum length of messages and associated input would have to be somewhat
reduced for this to work. But for n = 128 we can still prove security for mes-
sages and associated data as long as, say, 2120 blocks. (The upper bound is actually
min(log2 3, 2n − 1 − log2 3). With the representation of GF (2128) as above, we have
log2 3 ≈ 3.39 × 1038 ≈ 2128 − 2120. See [19].)



EME∗: Extending EME to Handle Arbitrary-Length Messages 321

function HK,R(T1 · · · T�−1, T�): // |T1| = · · · = |T�−1| = n, 0 < |T�| ≤ n

01 if T is empty return EK(R)

10 for i ∈ [1..� − 1] do TTT i ← EK(2iR ⊕ Ti) ⊕ 2iR

11 if |T�| = n then TTT � ← EK(2�R ⊕ T�) ⊕ 2�R

12 elseTTT � ← EK(2�+1R ⊕ (T�10..0)) ⊕ 2�+1R
13 return TTT1 ⊕ · · · ⊕ TTT�

Algorithm EK,L,R(T ; P1 · · · Pm)

// |P1| = · · · = |Pm−1| = n, 0 < |Pm| ≤ n

101 if |Pm| = n then lastFull ← m
102 else lastFull ← m − 1
103 PPPm ← Pm padded with 10..0

110 for i ← 1 to lastFull do
111 PP i ← 2i−1L ⊕ Pi

112 PPP i ← EK(PP i)

120 SP ← PPP2 ⊕ · · · ⊕ PPPm

121 MP1 ← PPP1 ⊕ SP ⊕ HK,R(T )
122 if |Pm| = n then MC 1 ← EK(MP1)
123 else MM ← EK(MP1)
124 MC 1 ← EK(MM )
125 Cm ← Pm ⊕ (MM truncated)
126 CCCm ← Cm padded with 10..0
127 M1 ← MP1 ⊕ MC 1

130 for i = 2 to lastFull do
131 j = �i/n	, k = (i − 1) mod n
132 if k = 0 then
133 MP j ← PPP i ⊕ M1

134 MC j ← EK(MP j)
135 Mj ← MP j ⊕ MC j

136 CCC i ← MC j ⊕ M1

137 else CCC i ← PPP i ⊕ 2kMj

140 SC ← CCC 2 ⊕ · · · ⊕ CCCm

141 CCC 1 ← MC 1 ⊕ SC ⊕ HK,R(T )
142 for i ← 1 to lastFull do
143 CC i ← EK(CCC i)
144 Ci ← CC i ⊕ 2i−1L

150 return C1 . . . Cm

Algorithm DK,L,R(T ; C1 · · · Cm)

// |C1| = · · · = |Cm−1| = n, 0 < |Cm| ≤ n

201 if |Cm| = n then lastFull ← m
202 else lastFull ← m − 1
203 CCCm ← Cm padded with 10..0

210 for i ← 1 to lastFull do
211 CC i ← 2i−1L ⊕ Ci

212 CCC i ← E−1
K (CC i)

220 SC ← CCC 2 ⊕ · · · ⊕ CCCm

221 MC 1 ← CCC 1 ⊕ SC ⊕ HK,R(T )
222 if |Cm| = n then MP1 ← E−1

K (MC 1)
223 else MM ← E−1

K (MC 1)
224 MP1 ← E−1

K (MM )
225 Pm ← Cm ⊕ (MM truncated)
226 PPPm ← Pm padded with 10..0
227 M1 ← MP1 ⊕ MC 1

230 for i = 2 to lastFull do
231 j = �i/n	, k = (i − 1) mod n
232 if k = 0 then
233 MC j ← CCC i ⊕ M1

234 MP j ← E−1
K (MC j)

235 Mj ← MP j ⊕ MC j

236 PPP i ← MP j ⊕ M1

237 else PPP i ← CCC i ⊕ 2kMj

240 SP ← PPP2 ⊕ · · · ⊕ PPPm

241 PPP1 ← MP1 ⊕ SP ⊕ HK,R(T )
242 for i ← 1 to lastFull do
243 PP i ← E−1

K (PPP i)
244 Pi ← PP i ⊕ 2i−1L

250 return P1 . . . Pm

Fig. 1. Enciphering and deciphering under E = EME∗[E], where E: K × {0, 1}n →
{0, 1}n is a block cipher. The associated data is T ∈ {0, 1}∗, the plaintext is P =
P1 · · · Pm and the ciphertext is C = C1 · · · Cm

4 Security of EME∗

The following theorem relates the advantage of an adversary in attacking EME∗[E]
to the advantage an adversary in attacking the block cipher E.



322 S. Halevi

Fig. 2. Enciphering under EME∗ a buffer with n + 2 full blocks and one partial
block. The boxes represent EK . We set the masks as SP = PPP2 ⊕ · · · ⊕ PPPn+3,
Mi = MP i ⊕ MC i, and SC = CCC 2 ⊕ · · · ⊕ CCCn+3

Theorem 1. [EME∗ security] Fix n ≥ 4 and q, σa
n, σd

n ∈ N. Any adver-
sary that attacks EME∗[Perm(n)], trying to distinguish it from a truly ran-
dom tweakable length-preserving permutation, using at most q queries totaling at
most σa

n blocks of associated data and σd
n blocks of data, has advantage at most

(σa
n + 2.25(σd

n + q))2/2n. Using the notations from Section 2, we have

Adv±p̃rp
EME∗[Perm(n)](q, σ

a
n, σd

n) ≤ (σa
n + 2.25(σd

n + q))2

2n
(1)

Corollary 1. Fix n ≥ 4 and t, q, σa
n, σd

n ∈ N and a block cipher E: K×{0, 1}n →
{0, 1}n. Then



EME∗: Extending EME to Handle Arbitrary-Length Messages 323

Adv±p̃rp
EME∗[E](t, q, σ

a
n, σd

n) ≤ (σa
n + 2.25(σd

n + q))2

2n

+ 2 Adv±prp
E

(
t′, σa

n + q + 2.25σd
n

)
where t′ = t + O(n(σa

n + σd
n)). �

Note that the theorem and corollary do not restrict messages to one particular
length: proven security is for a variable-input-length (VIL) cipher, not just fixed-
input-length (FIL) one. The proof of Theorem 1 is given in the full version of
this paper [9], and some aspects of it are discussed in Appendix A. Corollary 1
embodies the standard way to pass from the information-theoretic setting to the
complexity-theoretic one.

Acknowledgements. I thank John Viega for showing me his ABL mode of opera-
tion, and Eli Biham for a discussion about the state of block ciphers for very short
blocks. I also thank the anonymous Indocrypt referees for their useful comments.

References

1. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-
key constructions. In Advances in Cryptology – CRYPTO 2000, volume 1880 of
Lecture Notes in Computer Science, pages 197–215. Springer-Verlag, 2000.

2. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT ’02, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer-Verlag, 2002.

3. J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In The RSA
conference – Cryptographer’s track, RSA-CT’02, volume 2271 of Lecture Notes in
Computer Science, pages 114–130. Springer-Verlag, 2002.

4. S. Duplichan. A primitive polynomial search program. Web document.
Available at http://users2.ev1.net/∼sduplichan/primitivepolynomials/
primivitePolynomials.htm, 2003.

5. S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom
permutation. Journal of Cryptology, 10(3):151–162, 1997.

6. S. Goldwasser and S. Micali. “Probabilistic encryption”. J. of Computer and
System Sciences, 28, April 1984.

7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor,
Advances in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes in Computer
Science, pages 482–499. Springer-Verlag, 2003. Full version available on the ePrint
archive, http://eprint.iacr.org/2003/148/.

8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In The RSA con-
ference – Cryptographer’s track, RSA-CT’04, volume 2964 of Lecture Notes in
Computer Science, pages 292–304. Springer-Velrag, 2004. Full version available on
the ePrint archive, http://eprint.iacr.org/2003/147/.

9. S. Halevi. EME∗: extending EME to handle arbitrary-length messages with as-
sociated data. In Indocrypt 2004. Full version available on the ePrint archive,
http://eprint.iacr.org/2004/125/.



324 S. Halevi

10. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search.
Journal of Cryptology, 14(1):17–35, 2001. Earlier version in CRYPTO ’96.
www.cs.ucdavis.edu/∼rogaway.

11. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. In Advances in
Cryptology – CRYPTO ’02, volume 2442 of Lecture Notes in Computer Science,
pages 31–46. Springer-Verlag, 2002. www.cs.berkeley.edu/∼daw/.

12. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2), April 1988.

13. D. A. McGrew and J. Viega. ABL mode: security without data expansion. Private
communication, 2004.

14. M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript, avail-
able from www.wisdom.weizmann.ac.il/∼naor/.

15. M. Naor and O. Reingold. On the construction of pseudo-random permutations:
Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999. (Earlier version
in STOC ’97.) Available from www.wisdom.weizmann.ac.il/∼naor/.

16. J. Patarin. Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security. In Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 513–529. Springer-Verlag, 2003.

17. S. Patel, Z. Ramzan and G .Sundaram. Efficient Constructions of Variable-Input-
Length Block Ciphers. In Selected Areas in Cryptography – SAC 2004, volume
3xxx of Lecture Notes in Computer Science, pages yyy–zzz. Springer-Verlag, 2004.

18. R. L. Rivest. The RC5 encryption algorithm. In Fast Software Encryption
(FSE ’94), volume 1008 of Lecture Notes in Computer Science, pages 86–96.
Springer, 1994.

19. P. Rogaway. Efficient instantiations of tweakable block ciphers and
refinements to modes OCB and PMAC. Available on-line from
http://www.cs.ucdavis.edu/∼rogaway/papers/, 2004.

A Some Aspects of the Security-Proof

The proof of Theorem 1 is very similar to the security proof of EME [8]. We
begin by viewing an attack against EME∗ as a game between the attacker and
the mode itself, where the cipher is replaced by a truly random permutation π
and this permutation is chosen “on the fly” during this game. We give names to
all of the internal blocks that occur in the game, where an internal block is any
of the n-bit values PP i, PPP i, MP j , MC j , MM , CCC i, CC i that arise as the
game is played. For example, PPPs

i is the PPP i-block of the sth query of the
attacker.

The heart of the proof is to show that “accidental collisions” are unlikely.
An accidental collision is an equality between two internal blocks that is not
obviously guaranteed due to the structure of the mode. Specifically, an equality
between the ith blocks in two different encipher queries P s

i = P t
i implies that

we also have the equalities PPs
i = PP t

i and PPPs
i = PPP t

i and so these do not
count as collisions. (And likewise for decipher queries.) Most other collisions are
considered accidental collisions and we show that those rarely happen. Showing
that accidental collisions are rare is ultimately done by case analysis. For exam-
ple, in one case we show that with high probability PPs

i �= PP t
i′ ; in another case



EME∗: Extending EME to Handle Arbitrary-Length Messages 325

we show that with high probability PPPs
i �= MC t

j , etc. Before we can get to
the case analysis, however, we have to go through a game-substitution sequence
in which the original scenario of an interactive attack is simplified and the in-
teraction is removed. One aspect in this proof which is absent from the proof
of EME is an analysis of the hashing HK,R(T ), which is described below. The
other aspects are similar to the original proof (although we need to handle more
cases in the case analysis). The reader is refereed to the foll version [9] for these
details.

Abstracting the function HK,R: We somewhat simplify the analysis by replacing
the function HK,R by an abstract function h : {0, 1}∗ → {0, 1}n, chosen from a
pairwise independent family H. The properties of h that we use in the analysis
are:

(i) For a fixed T ∈ {0, 1}∗, h(T) is uniform in {0, 1}n when h is chosen at
random from H.
(ii) For fixed T �= T′ ∈ {0, 1}∗, h(T) ⊕ h(T′) is uniform in {0, 1}n when h

$←H.
(iii) The choice h

$←H is independent of all the other random choices in the
“attack game”.

We can justify these assumptions on h by replacing the computation of
EK(T ⊕ jR) ⊕ jR (with j a constant) in lines 10, 11, and 12 of Figure 1, by the
computation fj(T ) where for each j we have an independent random function
fj : {0, 1}n → {0, 1}n. It is known that replacing a masked random permutation
by a collection of random functions this way entails only a negligible difference
on the view of the adversary. Specifically, one could prove the following: Fix
an adversary with three oracles AE(·),D(·),F (·,·), and consider the two following
experiments.

– In the first experiment (Expr1), we choose at random a permutation π over
{0, 1}n and a string R ∈ {0, 1}n. Then for x, y, j ∈ {0, 1}n with j �= 0, an
oracle-query E(x) is answered by π(x), an oracle query D(y) is answered by
π−1(y), and an oracle query F (j, x) is answered by π(x ⊕ jR) ⊕ jR (where
the multiplication jR is over GF (2n)).

– In the second experiment (Expr2), we choose at random a permutation π
over {0, 1}n, and 2n functions {fj : {0, 1}n → {0, 1}n}j∈{0,1}n . Then for
x, y, j ∈ {0, 1}n, with j �= 0, the oracle-queries E(x) and D(y) are answered
as before by π(x) and π−1(y), respectively, but an oracle query F (j, x) is
answered by fj(x).

Lemma 1. Fix some n, qp, qf ∈ N. For any adversary AE(·),D(·),F (·,·) as above
that makes at most qp queries to E and D, and at most qf queries to F , it holds
that ∣∣∣∣ Pr

Expr1
[ AE,D,F ⇒ 1 ] − Pr

Expr2
[ AE,D,F ⇒ 1 ]

∣∣∣∣ ≤ qf (qf + 2qp)/2n
�

This lemma is pretty much folklore by now, although I could not find a ref-
erence where it is proven. A similar result was proven by by Even and Mansour [5]



326 S. Halevi

(but the masks there are completely independent, rather than “pairwise inde-
pendent”). A proof for a special case of this lemma can be found in [1–Lemma 4],
and that proof can easily be extended to prove Lemma 1 itself.

Using Lemma 1, we can replace the function HK,R from Figure 1 by the
following function h (that depends on the 2n random functions fj). In the code
below, the constants 2i are computed in the finite field GF (2n).

function h(T1 · · ·T�−1, T�): // |T1| = · · · = |T�−1| = n, 0 < |T�| ≤ n

01 if T is empty return f1(0)

10 for i ∈ [1..�− 1] do TTT i ← f2i(Ti)
11 if |T�| = n then TTT � ← f2�(T�)
12 elseTTT � ← f2�+1(T�10..0))
13 return TTT1 ⊕ · · · ⊕ TTT�

Going back to the analysis of EME∗, let Nbe denote the total number of block
encryptions that are used throughout the attack not counting the computation
of H, and we clearly have

Nbe < (2 +
1
n

)σd
n + 2q (2)

Then from Lemma 1 it follows that the statistical distance in the view of
the adversary due to the replacement of HK,R by h is bounded by σa

n(σa
n +

2Nbe)/2n. Once we made that replacement, it is clear that the choice of h is now
independent of all the other random choices in the attack, so we only need to
prove the properties (i) and (ii). This is done next:

Claim. When 2n functions {fj : {0, 1}n → {0, 1}n}j∈{0,1}n are chosen at random
and h is defined as above, it holds that:

(i) For fixed T ∈ {0, 1}0..n(2n−3), h(T ) is uniform in {0, 1}n.
(ii) For fixed T �= T ′ ∈ {0, 1}0..n(2n−3), h(T ) ⊕ h(T ′) is uniform in {0, 1}n.

Proof. Property (i) is obvious, since the output of h at any point T depend on
at least one application of one of the functions fj , and these are all random
functions. To prove Property (ii), fix some T �= T ′, and denote T = T1 . . . T� and
similarly T ′ = T ′

1 . . . T ′
�′ , where � = �|T |/n and �′ = �|T ′|/n. (The proof below

uses the fact that 2 is a primitive element in GF (2n) and �′ ≤ 2n − 3, so for any
i, i′ ≤ �′ + 1 if i �= i′ then also 2i �= 2i′

in GF (2n).)
If � = �′ then there must be at least one index i ≤ � such that Ti �= T ′

i . If Ti

and T ′
i are full blocks then

h(T ) ⊕ h(T ′) = something-independent-of-f2i ⊕ f2i(Ti) ⊕ f2i(T ′
i ),

which is uniform since f2i is a random function. If Ti, T
′
i are both partial blocks

(so i = �) then we get

h(T ) ⊕ h(T ′)=something-independent-of-f2�+1 ⊕ f2�+1(Ti10..0) ⊕ f2�+1(T ′
i10..0),



EME∗: Extending EME to Handle Arbitrary-Length Messages 327

which is again uniform since Ti �= T ′
i implies that also Ti10..0 �= T ′

i10..0 and f2�+1

is a random function. If Ti is a full block and T ′
i is partial, then we similarly get

h(T ) ⊕ h(T ′) = something-independent-of-f2�+1 ⊕ f2�+1(T ′
i10..0).

If � �= �′, then assume that �′ > �. If T ′
i is a partial block then as before we

get h(T ) ⊕ h(T ′) = something-independent-of-f2�′+1 ⊕ f2�′+1(T ′
i10..0). Similarly

if T ′
i is a full block and either �′ > �+1 or T� is a full block, then h(T ) ⊕ h(T ′) =

something-independent-of-f2�′ ⊕ f2�′ (T ′
i ). The last case is when �′ = � + 1 and

T ′
�′ is a full block and T� is a partial block. In this case h(T ′) includes the term

f2�(T ′
�) but h(T ) is independent of f2� , so again h(T ) ⊕ h(T ′) is uniform.



Impossibility of Construction of OWHF and
UOWHF from PGV Model Based on Block

Cipher Secure Against ACPCA

Donghoon Chang1, Wonil Lee1, Seokhie Hong1, Jaechul Sung2, Sangjin Lee1,
and Soohak Sung3

1 Center for Information and Security Technologies,
Korea University, Seoul, Korea

{dhchang, wonil, hsh, sangjin}@cist.korea.ac.kr
2 Department of Mathematics, University of Seoul, Korea

jcsung@uos.ac.kr
3 Applied Math. Department, Paichai University, Daejeon, Korea

sungsh@mail.paichai.ac.kr

Abstract. In 1993, Preneel, Govaerts and Vandewalle [11] considered
64 block cipher based hash functions (64 PGV-hash functions). In 2002,
Black, Rogaway and Shrimpton [3] proved that 20 of 64 PGV-hash func-
tions are collision resistant, assumed that a block cipher is a random
block cipher. In 2002, Hirose [4] defined ACPA(Adaptive Chosen Plain-
text Attack) model and ACPCA(Adaptive Chosen Plaintext/Ciphertext
Attack) model and he showed that, for every PGV-hash function, there
exist block ciphers secure against ACPA such that the PGV-hash func-
tion based on them is not a OWHF which has the properties of preimage
resistance and second-preimage resistance. Recently, Lee et al. [6] gener-
alized the definition of PGV-hash function into a hash family and showed
that 42 of 64 PGV-hash families are collision resistant. In this paper, we
show that, for every PGV-hash function, there exist block ciphers secure
against ACPCA such that the PGV-hash family based on them is not a
OWHF. We also show that, for every PGV-hash family, there exist block
ciphers secure against ACPCA such that the PGV-hash family based on
them is not a UOWHF.

1 Introduction

Simon [16] showed that there always exists an efficient adversary which finds
collisions in any hash function based on a block cipher if we assume only that
the block cipher is a pseudo-random permutation. So, all the proofs of collision
resistance of block cipher-based hash functions have been done in the black-box
model (instead of a general model such that a block cipher is pseudorandom)
in which a block cipher is treated as a random and independent permutation
for each key. In 2002, Black, Rogaway and Shrimpton [3] proved that 20 of 64
PGV-hash functions are collision resistant in the black-box model. Hirose [4]

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 328–342, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Impossibility of Construction of OWHF and UOWHF from PGV Model 329

pointed out that the black-box model is impractical in a strict sense and con-
sidered other model such as the adaptive chosen plaintext attack(ACPA) and
the adaptive chosen plaintext/ciphertext attack(ACPCA) model. He also showed
that, for every PGV-hash function (PGV-hash function is a special case of PGV-
hash family. See the section 2.), there exist block ciphers secure in ACPA model
such that the PGV-hash function based on them doesn’t have the property of
one-wayness(preimage resistance + second-preimage resistance). But, in case of
ACPCA model, he showed that 58 PGV-hash functions except with 6 cases are
not secure construction for one-wayness (5 cases are not preimage resistant and
53 cases are not second-premiage resistant) and remained 6 cases as open prob-
lems in the conclusion section. Recently, Lee et al. [6] generalized the definition
of PGV-hash function into a hash family and showed, using a proof technique
which is simpler than that of [3], 42 of 64 PGV-hash families are collision re-
sistant in the black-box model assuming that key length l is big. The result of
[6] also implies that 42 collision resistant PGV-hash families are UOWHFs. Lee
et al. do not use any mask key unlike [2, 5, 7, 8, 9, 10, 13, 14, 15] whose demerit is
that the key length needed increases according to the message length. I.e, Lee
et al.’ result firstly shows that it is possible to construct a UOWHF only using
a fixed length key in the black-box model.

Contribution of This Paper. This paper shows that there is no OWHF and
no UOWHF in 64 PGV-hash functions and 64 PGV-hash families respectively
if we assume only that the block cipher is secure against ACPCA. This means
that the secure block cipher in ACPCA model is not a sufficient condition for
a OWHF and a UOWHF constructed from PGV-hash function and PGV-hash
family, respectively. Therefore, we need more conditions for constructing OWHFs
and UOWHFs from 64 PGV model. But it is an open problem what conditions
are needed at least. And the result of this paper is not the simple extension of Hi-
rose’s proof and an independent work by four reasons. First, Hirose did not show
whether there exist block ciphers secure against ACPCA such that 6 PGV-hash
families based on them aren’t a OWHF. Second, a second-preimage resistant
hash function(a SPRHF) considered by Hirose is not related to a UOWHF. In
FSE 2004, Rogaway and Shrimpton [12] defined the 7 security notions of the
compression function and studied the relations between these 7 notions. Accord-
ing to these notions, a SPRHF considered by Hirose corresponds to the aSec and
a UOWHF corresponds to eSec and these two notions have no relation. Third,
results of [12] can not be used to show the relation between SPRHF considered
by Hirose and a UOWHF because [12] compared the security notions with using
a fixed compression function family but compression functions considered by Hi-
rose and Lee et al. are different. ( Hirose lets the length of the input message ‘n’.
On the other hand, Lee et al. let ‘n− l’.) Hirose also considered a hash function
but Lee et al. considered a hash function family. Fourth, Hirose showed that 53
of 64 PGV-hash functions are not SPRHFs in the ACPCA model.

Therefore, we can know that the study about OWHFs and UOWHFs from
64 PGV-hash function and 64 PGV-hash families in ACPCA model is necessary
and independent from Hirose’s work. In this paper, we improve the method of



330 D. Chang et al.

Hirose’s proof and show that, for every PGV-hash function and every PGV-hash
family, there exist block ciphers secure against ACPCA such that the PGV-hash
fuction and PGV-hash family based on them is not a OWHF and a UOWHF,
respectively.

The organization of this paper is as follows. In section 2, we define the nota-
tions. And then, in section 3, we show that there is no construction of UOWHF
from 64 PGV-hash families in the ACPCA model. In section 4, we show that
there is no construction of OWHF from 64 PGV-hash functions in the ACPCA
model. Finally, we conclude and suggest a future work.

2 Preliminaries

Basic Notations

1. A block cipher is a map E : {0, 1}n × {0, 1}n → {0, 1}n where, for each key
a ∈ {0, 1}n, the function Ea(·) = E(a, ·) is a permutation on {0, 1}n. If E
is a block cipher then E−1 is its inverse, where E−1

a (y) is the string x such
that Ea(x) = y.

2. A hash family is a H = {Hk}k∈{0,1}l , where Hk : ({0, 1}n−l)∗ → {0, 1}n.

General Definition Of PGV-Hash Family [6]. Let 0 ≤ l < n and E : {0, 1}n ×
{0, 1}n → {0, 1}n be a block cipher. If l = 0 let {0, 1}0 = {ε}, where ε is the
empty string. Using the block cipher E, we want to construct a compression
function family F = {fk}k∈{0,1}l , fk : {0, 1}n × {0, 1}n−l → {0, 1}n.

Let h0, v ∈ {0, 1}n be fixed values. We define the 64 ways to construct a
(block-cipher-based) compression function family F = {fk}k∈{0,1}l in the
following manner: for each k ∈ {0, 1}l,

fk(h, m) = Ea(b) ⊕ c,

where a, b, c ∈ {h, (m||k), h ⊕ (m||k), v}. Note that |h| = n and |m| = n − l.
Then we can define the PGV-hash family H = {Hk}k∈{0,1}l from the com-
pression function family F = {fk}k∈{0,1}l as follows: for each k ∈ {0, 1}l,
Hk : ({0, 1}n−l)∗ → {0, 1}n is defined by

function Hk(m1 · · ·mt)
for i ← 1 to t do hi ← fk(hi−1, mi)
return ht

Note that the key k of PGV-hash family is equal to the key of compression
function family and note that if l = 0 then F = {fk}k∈{0,1}0 = {f ε} is a
singleton set and this is corresponding to the original definition of PGV [11].

Second-Preimage Resistance of a PGV-hash function (l = 0 in case
of a PGV-hash family). We quantify second-preimage resistance of a (block-
cipher-based) hash function H. Then, the adversary A for second-preimage re-
sistance plays the following game called Spi.



Impossibility of Construction of OWHF and UOWHF from PGV Model 331

1. An M is given randomly.
2. A has to find M ′ such that M �= M ′ but H(M) = H(M ′).

Definition 1. (Second-Preimage Resistance of a PGV-hash function ‘H’) Let
H be a PGV-hash function, where H : ({0, 1}n)∗ → {0, 1}n. Then the advantage
of A with respect to (target) second-preimage resistance are the the following real
numbers.

AdvSpi
H (A) = Pr[M R← {0, 1}∗; M ′ ← A(M) :

M �= M ′ & H(M) = H(M ′)]

When the maximum running time of the adversary is t, the maximum ad-
vantage is defined as follow.

AdvSpi
H (t) = MaxA{AdvSpi

H (A)}

Target Collision Resistance Of Hash Family (0 < l < n) The notion UOWHF
is introduced by Naor and Yung [10]. Bellare and Rogaway used the target col-
lision resistance as the non-asymptotic version for the asymptotic property of
UOWHF [2]. We quantify target collision resistance of a (block-cipher-based)
hash family {Hk}k∈{0,1}l . Then, the adversary A = (Aguess,Afind(·, ·)) for tar-
get collision resistance plays the following game called TColl.
1. Aguess commits to an M .
2. A key k is chosen uniformly at random from {0, 1}l.
3. Afind(M, k) has to find M ′ such that M �= M ′ but Hk(M) = Hk(M ′).

Definition 2. (Target collision resistance of a PGV-hash family ‘H’) Let H =
{Hk}k∈{0,1}l be a PGV-hash family, where Hk : ({0, 1}n−l)∗ → {0, 1}n. Then the
advantage of A with respect to (target) collision resistance are the the following
real numbers.

AdvTColl
H (A) = Pr[M ← Aguess; k

R← {0, 1}l; M ′ ← Afind(M, k) :
M �= M ′ & Hk(M) = Hk(M ′)]

When the maximum running time of the adversary is t, the maximum ad-
vantage is defined as follow.

AdvTColl
H (t) = MaxA{AdvTColl

H (A)}

Security Notion of a Block Cipher Considered in This Paper. Find-then-Guess
security [1] is well known as the security notion of the symmetric encryption
schemes. In [4], the security of a block cipher in ACPA and ACPCA model
is considered. This security is similar to Find-then-Guess Security. Therefore,
we express the experiment in ACPA and ACPCA model into FtG-ACPA and
FtG-ACPCA. We imagine an adversary that runs in two stages. During the find
stage, the adversary is given access to oracles Ea(·), E−1

a (·) and oracle queries



332 D. Chang et al.

are q at most. He endeavors to come up with (x0, x1, r, s), whose encryp-
tions(r=1) or decryptions(r=-1) it wants to try to tell apart. It also retains some
state information s that it may want to preserve to help it later. In the guess
stage, it is given a random ciphertext(case r=1) or a random plaintext(case r=-
1) y for one of x0, x1, together with the state information s. The adversary
“wins” if it correctly identifies which one of x0, x1 goes with y. The block ci-
pher is “good” if “reasonable” adversaries cannot win significantly more than
half the time. In this paper we informally use the term “secure” instead of
“good”.

Definition 3. [FtG-ACPA, FtG-ACPCA] Let E be a block cipher. Let b ∈ {0, 1}
and r ∈ {1,−1} Let A be an adversary. Now, we consider the following experi-
ments:

Experiment ExpFtG−ACPA−b
E,A (q) Experiment ExpFtG−ACPCA−b

E,E−1,A (q)

a
R← {0, 1}n a

R← {0, 1}n

(x0, x1, s) ← AEa(·)(find) (x0, x1, r, s) ← AEa(·),Ea
−1(·)(find)

y ← Ea(xb) y ← Ea
r(xb)

b′ ← A(guess, y, s) b′ ← A(guess, r, y, s)
Return b′ Return b′

It is mandated that A in Experiment FtG-ACPA chooses x0, x1 which he
doesn’t ask in find stage and that A in Experiment FtG-ACPCA chooses x0, x1, r
such that he doesn’t ask Ea

r(x0) and Ea
r(x1) in find stage.

The advantage of the adversary A is defined as follow.

AdvFtG−ACPA
E,A (q) = |Pr[ExpFtG−ACPA−1

E,A (q) = 1]−Pr[ExpFtG−ACPA−0
E,A (q)=1]|

AdvFtG−ACPCA
E,E−1,A (q)= |Pr[ExpFtG−ACPCA−1

E,E−1,A (q)=1]−Pr[ExpFtG−ACPCA−0
E,E−1,A (q)=1]|

the maximum advantage is defined as follow.

AdvFtG−ACPA
E (q) = MaxA{AdvFtG−ACPA

E,A (q)}

AdvFtG−ACPCA
E,E−1 (q) = MaxA{AdvFtG−ACPCA

E,E−1,A (q)}

3 Constructions to Secure Block Cipher Against
ACPCA Such That PGV-Hash Families Based on
Them Are Not Target Collision Resistant

This section suggests constructions to secure block cipher against ACPCA which
is not target collision resistant in PGV-model. First, we suppose that E∗ is a
secure block cipher against ACPCA. Then, we construct E’s in case of [E-1]∼[E-
18] as follows. E∗ use a n− 1 bit key in [E-15,16,18] and n− 2 bit key in [E-17]
and n bit key in other cases.



Impossibility of Construction of OWHF and UOWHF from PGV Model 333

[E-1]If a[high n − l] = 0n−l, then Ea(x) = x,

else if a[low l] = 0l, then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)
[E-2]If a = 0n or a = h0, then Ea(x) = x,

else Ea(x) = E∗
a(x)

[E-3]If a[high n − l] = 0n−l, then Ea(x) = x ⊕ h0,

else if a[low l] = 0l, then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)

[E-4]If a[high n − l] = 0n−l, then Ea(x) = x ⊕ a,

else if a[low l] = 0l, then Ea(x) = x,
else Ea(x) = E∗

a(x)

[E-5]If a[high n − l] = 0n−l, then Ea(x) = x,
else if a[low l] = h0[low l], then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)
[E-6]If a = h0, then Ea(x) = x,

else if a[high n − l] = 0n−l, then Ea(x) = x,

else if a[low l] = 0l, then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)
[E-7]If a = h0, then Ea(x) = x ⊕ a,

else if a[low l] = 0l, then Ea(x) = x,
else if a[high n-l]=h0[high n-l], then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)
[E-8]If a = h0, then Ea(x) = x,

else if a[high n − l] = 0n−l, then Ea(x) = x ⊕ a,

else if a[low l] = 0l, then Ea(x) = x,
else Ea(x) = E∗

a(x)

[E-9]If a[high n − l] = 0n−l, then Ea(x) = x,

else if a[low l] = 0l, then Ea(x) = x,
else Ea(x) = E∗

a(x)

[E-10]If a[high n − l] = 0n−l, then Ea(x) = x ⊕ a,

else if a[low l] = 0l, then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)
[E-11]If a = h0, then Ea(x) = x ⊕ a,

else if a[high n − l] = 0n−l, then Ea(x) = x,

else if a[low l] = 0l, then Ea(x) = x ⊕ a,
else Ea(x) = E∗

a(x)

[E-12]If a[high n − l] = 0n−l, then Ea(x) = x,

otherwise Ea(x) =

⎧⎨
⎩

a if x = a

E∗
a(a) if x = E∗

a
−1(a)

E∗
a(x) otherwise

[E-13]If a[high n − l] = 0n−l, then Ea(x) = x ⊕ h0,

otherwise Ea(x) =

⎧⎨
⎩

a if x = a

E∗
a(a) if x = E∗

a
−1(a)

E∗
a(x) otherwise

[E-14]

Ea(x) =

⎧⎨
⎩

x if x = a or a ⊕ h0
E∗

a(E∗
a(x)) ifx = E∗

a
−1(a)orE∗

a
−1(a ⊕ h0)

E∗
a(x) otherwise

[E-15]If a = h0, then Ea(x) = x,
else Ea(x) = E∗

a[low n−1](x),

[E-16]

Ea(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if a[high 1] �= x[high 1]
E∗

a[low n−1](1||x[low n − 1])

if a[high 1] = x[high 1]
E∗

a[low n−1](0||x[low n − 1])

[E-17]If a[high 2th bit]=1, Ea(x) = E∗
a[low n−2](x),

If a[high 2th bit] = 0,

Ea(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if a[high 1] �= x[high 1]
E∗

a[low n−2](1||x[low n − 1])

if a[high 1] = x[high 1]
E∗

a[low n−2](0||x[low n − 1])

[E-18]

Ea(x) =

⎧⎨
⎩

E∗
a[low n−1](x) ⊕ 10n−1 if a[high 1] = 0

E∗
a[low n−1](x) if a[high 1] = 1

a is a n-bit key and x is any n-bit input. a[high n− l] means the leftmost n− l
bits of a and a[low l] means the rightmost l bits of a. 0n−l is an all zero-bit string
such that |0n−l|=n− l. Then, E’s in case of [E-1]∼[E-18] are secure in ACPCA
model if E∗ is secure in ACPCA model and n − l is big and l is big.

Theorem 1. For [E-1]∼[E-18], block ciphers E’s constructed with secure block
ciphers E∗’s against ACPCA are also secure against ACPCA.

Here, we show only a proof in case of [E-16]. For other cases, see the appendix
A. For [E-16],

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E∗,E∗−1 (q)

Proof. Using an adversary A making ACPCA for E, we construct an adversary
CA making ACPCA for E∗={e∗i}i∈N in [E-16] as follows.

� Adversary CA

CE∗
a(·),E∗

a
−1

A (find) : Choose w ∈ {0, 1} randomly. Then run AEa(·),Ea
−1

(find). CA
simulates A’s oracles Ea(·) and E−1

a (·) with CA’s oracles E∗
a(·) and E∗

a
−1(·). For each

A’s query (xi, ri), in case of ri=1, if w �= xi[high 1] then CA gives 1||xi[low n − 1] to
oracle E∗

a′(·), if w = xi[high 1] then CA gives 0||xi[low n − 1] to oracle E∗
a′(·). Then

CA gives the value yi obtained from oracle E∗
a′(·) to A. In case of ri=-1, CA gives xi to

oracle E∗
a′

−1(·) and obtains yi = E∗
a′

−1(xi) from oracle E∗
a′

−1(·). If yi[high 1] = 1, CA
gives w ⊕ 1||y[low n − 1] to A, if yi[high 1] = 0, CA gives w||y[low n − 1] to A. At last,
AEa(·),Ea

−1
(find) outputs (x0, x1, r). If r = 1, after CA checks whether w �= xt[high 1]



334 D. Chang et al.

Case PGV-Hash Family Block Cipher M M′
1 Exi

(xi) ⊕ v Arbitrary m1||m2 m′
1||m2

2 Ehi−1
(xi) ⊕ v E-15 m1||m2 m1 ⊕ 10n−l−1||m2

3 Ewi
(xi) ⊕ v E-1 h0[high n − l]||m2 h0[high n − l]||m′

2
4 Ev(xi) ⊕ v Arbitrary m1||m2 m′

1||m2
5 Exi

(xi) ⊕ xi Arbitrary m1||m2 m′
1||m2

6 Ehi−1
(xi) ⊕ xi E-2 m1||m2 m′

1||m′
2

7 Ewi
(xi) ⊕ xi E-12 h0[high n − l]||m2 h0[high n − l]||m′

2
8 Ev(xi) ⊕ xi Arbitrary m1||m2 m′

1||m2
9 Exi

(xi) ⊕ hi−1 Arbitrary m1||m2 m2||m1
10 Ehi−1

(xi) ⊕ hi−1 E-15 m1||m2 m1 ⊕ 10n−l−1||m2 ⊕ 10n−l−1

11 Ewi
(xi) ⊕ hi−1 E-3 h0[high n − l]||m2 h0[high n − l]||m′

2
12 Ev(xi) ⊕ hi−1 Arbitrary m1||m2 m2||m1
13 Exi

(xi) ⊕ wi Arbitrary m1||m2 m2||m1
14 Ehi−1

(xi) ⊕ wi E-2 m1||m2 m′
1||m′

2
15 Ewi

(xi) ⊕ wi E-13 h0[high n − l]||m2 h0[high n − l]||m′
2

16 Ev(xi) ⊕ wi Arbitrary m1||m2 m2||m1
17 Exi

(hi−1) ⊕ v E-15 m1||m2 m1 ⊕ 10n−l−1||m2
18 Ehi−1

(hi−1) ⊕ v Arbitrary m1||m2 m′
1||m′

2
19 Ewi

(hi−1) ⊕ v E-4 h0[high n − l]||m2 h0[high n − l]||m′
2

20 Ev(hi−1) ⊕ v Arbitrary m1||m2 m′
1||m′

2
21 Exi

(hi−1) ⊕ xi E-18 m1||m2 m1 ⊕ 10n−l−1||m2
22 Ehi−1

(hi−1) ⊕ xi E-2 m1||m1 m′
1||m′

1
23 Ewi

(hi−1) ⊕ xi E-5 h0[high n − l]||m2 h0[high n − l]||m′
2

24 Ev(hi−1) ⊕ xi E-2 m1||m2 m′
1||m1 ⊕ m2 ⊕ m′

1
25 Exi

(hi−1) ⊕ hi−1 E-15 m1||m2 m1 ⊕ 10n−l−1||m2
26 Ehi−1

(hi−1) ⊕ hi−1 Arbitrary m1||m2 m′
1||m′

2
27 Ewi

(hi−1) ⊕ hi−1 E-4 h0[high n − l]||m2 h0[high n − l]||m′
2

28 Ev(hi−1) ⊕ hi−1 Arbitrary m1||m2 m′
1||m′

2
29 Exi

(hi−1) ⊕ wi E-17 (11m1)||(10m2), |mi| = n − l − 2 (01m1)||(00m2), |mi| = n − l − 2
30 Ehi−1

(hi−1) ⊕ wi E-12 m1||m2 m′
1||m2

31 Ewi
(hi−1) ⊕ wi E-1 h0[high n − l]||m2 h0[high n − l]||m′

2
32 Ev(hi−1) ⊕ wi E-2 m1||m2 m′

1||m2
33 Exi

(wi) ⊕ v E-16 m1||m2 m1 ⊕ 10n−l−1||m2
34 Ehi−1

(wi) ⊕ v E-6 0||m2||m3 0||m′
2||m3

35 Ewi
(wi) ⊕ v E-5 h0[high n − l]||m2 h0[high n − l]||m′

2
36 Ev(wi) ⊕ v E-2 m1||m2 m′

1||m1 ⊕ m2 ⊕ m′
1

37 Exi
(wi) ⊕ xi E-13 0||m2 0||m′

2
38 Ehi−1

(wi) ⊕ xi E-2 m1||m2 m′
1||m′

2
39 Ewi

(wi) ⊕ xi E-13 h0[high n − l]||m2 h0[high n − l]||m′
2

40 Ev(wi) ⊕ xi E-2 m1||m2 m′
1||m′

2
41 Exi

(wi) ⊕ hi−1 E-16 m1||m2 m1 ⊕ 10n−l−1||m2
42 Ehi−1

(wi) ⊕ hi−1 E-7 h0[high n − l]||m2||m3 h0[high n − l]||m′
2||m3

43 Ewi
(wi) ⊕ hi−1 E-12 m1||m2 m′

1||m2
44 Ev(wi) ⊕ hi−1 E-2 m1||m2 m′

1||m2
45 Exi

(wi) ⊕ wi E-14 m1||m2 m′
1||m′

2
46 Ehi−1

(wi) ⊕ wi E-2 m1||m2 m′
1||m2

47 Ewi
(wi) ⊕ wi E-12 m1||m2 m′

1||m′
2

48 Ev(wi) ⊕ wi E-2 m1||m2 m′
1||m′

2
49 Exi

(v) ⊕ v Arbitrary m1||m2 m′
1||m2

50 Ehi−1
(v) ⊕ v Arbitrary m1||m2 m′

1||m′
2

51 Ewi
(v) ⊕ v E-4 h0[high n − l]||m2 h0[high n − l]||m′

2
52 Ev(v) ⊕ v Arbitrary m1||m2 m′

1||m′
2

53 Exi
(v) ⊕ xi Arbitrary m1||m2 m′

1||m2
54 Ehi−1

(v) ⊕ xi E-8 0||m2||m3 0||m′
2||m3

55 Ewi
(v) ⊕ xi E-9 h0[high n − l]||m2||m3 h0[high n − l]||m′

2||m3
56 Ev(v) ⊕ xi Arbitrary m1||m2 m′

1||m2
57 Exi

(v) ⊕ hi−1 Arbitrary m1||m2 m2||m1
58 Ehi−1

(v) ⊕ hi−1 Arbitrary m1||m2 m′
1||m′

2
59 Ewi

(v) ⊕ hi−1 E-10 h0[high n − l]||m2||m3 h0[high n − l]||m′
2||m3

60 Ev(v) ⊕ hi−1 Arbitrary m1||m2 m′
1||m′

2
61 Exi

(v) ⊕ wi Arbitrary m1||m2 m2||m1
62 Ehi−1

(v) ⊕ wi E-11 0||m2||m3 0||m′
2||m3

63 Ewi
(v) ⊕ wi E-1 h0[high n − l]||m2 h0[high n − l]||m′

2
64 Ev(v) ⊕ wi Arbitrary m1||m2 m2||m1



Impossibility of Construction of OWHF and UOWHF from PGV Model 335

�←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Table 1. This table shows that all the 64 PGV-hash families are not secure construction
for UOWHF. xi means mi||k. We write wi for xi ⊕ hi−1. Column 3 gives block ciphers
in Section 3. M is chosen by an adversary and then randomly given key k, find M ′ such
that Hk (M)=Hk (M ′). For example, in case 3, 31 and 63, M and M ′ are systematically
described at the proof of theorem 2

(t=0,1) for each x0, x1, CA gives (x0, x1, r) transformed by the previous same method
to oracle E∗

a′(·). If r = −1, CA gives (x0, x1, r) to oracle E∗
a′

−1(·).

CE∗
a(·),E∗

a
−1

A (guess) : CA obtains y = Ea
r(xb). In case of r = 1, CA gives y to A. In case

of r = −1, if y[high 1] = 1 then CA gives w ⊕ 1||y[low n− 1] to A, if y[high 1] = 0 then
CA gives w||y[low n − 1] to A. At last CA outputs b′ which A(guess, y, s) outputs.

Then,
AdvFtG−ACPCA

E,E−1,A (q) = AdvFtG−ACPCA
E∗,E∗−1,CA

(q),

Therefore, AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E∗,E∗−1 (q) �

Using E’s (in case of [E-1]∼[E-18]) constructed above, we can show that all 64
PGV-hash families are not target collision resistant. I.e., we can find the target
collisions for 64 PGV-hash families with probability 1.

Theorem 2. 64 PGV-hash families using block cipher E (which is constructed
above) are not secure with respect to target collision resistance. I.e., there exist
target collisions with probability 1 for every 64 PGV-hash families.

Proof. Here, we show only a proof for case 3, 31 and 63 among 64 cases. For
other cases, see the table 1.

[case 3,31,63] 1. Adversary Aguess commits to an M = h0[high n − l]||m2.
Here, h0[high n − l] is the msb n − l bits of initial value h0.

2. A key k ∈ {0, 1}n is chosen uniformly.
3. Afind(M, k) finds M ′ = h0[high n − l]||m′

2. Here, m′
2 is any

value such that m′
2 �= m2.

4. Hk(M) = Hk(M ′) with probability 1. �

4 Constructions to Secure Block Cipher Against ACPCA
Such That PGV-Hash Functions Based on Them Are
Not One-Way

Hirose [4] showed that 58 PGV-hash functions execpt 6 cases are not secure
construction for one-wayness (5 cases are not preimage resistant and 53 cases
are not second-premiage resistant) in ACPCA model. In this section, we show
that other 6 PGV-hash functions are not secure construction for second-premiage
resistance. I.e., all the 64 PGV-hash functions are not secure construction for
one-wayness.



336 D. Chang et al.

Table 2. This table shows that all the 64 PGV-hash functions (for other 58 cases,
Hirose [4] showed) are not secure construction for OWHF. We write wi for mi ⊕ hi−1.
Column 3 gives block ciphers in Section 3. M is given randomly and find M ′ such that
H(M)=H(M ′). For example, in case 25, M and M ′ are systematically described at the
proof of theorem 3

Case PGV-Hash Function Block Cipher M M′
7 Ewi

(mi) ⊕ mi E-14 m1|| · · · ||mt m′
1|| · · · ||m′

t
14 Ehi−1

(mi) ⊕ wi E-2 m1|| · · · ||mt m′
1|| · · · ||m′

t

25 Emi
(hi−1) ⊕ hi−1 E-15 m1|| · · · ||mt m′

1|| · · · ||m′
t, m′

i = mi ⊕ 10n−1

27 Ewi
(hi−1) ⊕ hi−1 E-15 m1|| · · · ||mt m′

1|| · · · ||m′
t, m′

i = mi ⊕ 10n−1

38 Ehi−1
(wi) ⊕ mi E-2 m1|| · · · ||mt m′

1|| · · · ||m′
t

45 Emi
(wi) ⊕ wi E-14 m1|| · · · ||mt m′

1|| · · · ||m′
t

Theorem 3. 64 PGV-hash functions are not secure constructions for one-
wayness in ACPCA model.

Proof. Hirose [4] already showed that 58 PGV-hash functions are not secure
constructions for one-wayness in ACPCA model. So, we consider only 6 cases.
Here, we show a proof for case 25 based on E in [E-15]. For other 5 cases, see
the table 2.

[case 25] 1. An M = m1|| · · · ||mt is given randomly.
2. A(M) chooses M ′ = m′

1|| · · · ||m′
t. Here, m′

i=mi ⊕ 10n−1

3. H(M) = H(M ′) with probability 1. �

5 Conclusion

In this paper, we have considered ACPCA model instead of the black-box model
and show the impossibility of secure construction of OWHF and UOWHF from
PGV-hash functions and PGV-hash families in ACPCA model. It is an open
problem whether there exists a model weaker than the black-box model such
that PGV-hash functions and PGV-hash families are a OWHF and a UOWHF
and a CRHF, assumed that a block cipher is secure against that model.

Acknowledgement

This work was supported (in part) by the Ministry of Information & Commu-
nications, Korea, under the Information Technology Research Center (ITRC)
Support Program. The second author was supported by the 21st Century COE
program ‘Reconstruction of Social Infrastructure Related to Information Science
and Electrical Engineering’ of Kyushu University, Japan.

References

1. M. Bellare, A. Desai, E. Jokipii and P. Rogaway, A Concrete Security Treatment
of Symmetric Encryption, Proc. the 38th IEEE FOCS, 1997.



Impossibility of Construction of OWHF and UOWHF from PGV Model 337

2. M. Bellare and P. Rogaway, Collision-resistant hashing: towards making UOWHFs
practical, Advances in Cryptology - CRYPTO’97, LNCS 1294, Springer-Verlag, pp.
470-484, 1997.

3. J. Black, P. Rogaway and T. Shrimpton, Black-box analysis of the block-
cipher-based hash function constructions from PGV, Advances in Cryptology -
CRYPTO’02, LNCS 2442, Springer-Verlag, pp. 320-335, 2002.

4. S. Hirose, Secure Block Ciphers Are Not Sufficient for One-Way Hash Functions
in the Preneel-Govaerts-Vandewalle Model, SAC’02, LNCS 2595, Springer-Verlag,
pp. 339-352, 2003.

5. W. Lee, D. Chang., S. Lee, S. Sung and M. Nandi, New Parallel Domain Extenders
for UOWHF, In Asiacrypt’03, LNCS 2894, Springer-Verlag, pp. 208-227, 2003.

6. W. Lee, M. Nandi, P. Sarkar, D. Chang, S. Lee and K. Sakurai, A Generalization of
PGV-Hash Functions and Security Analysis in Black-Box Model, In ACISP2004,
LNCS 3108, Springer-Verlag, pp. 212-223, 2004.

7. I. Mironov, Hash functions: from Merkle-Damgard to Shoup, In Eurocrypt’01,
LNCS 2045, Springer-Verlag, pp. 166-181, 2001.

8. M. Nandi, A New Tree based Domain Extension of UOWHF, Cryptology ePrint
Archieve, http://eprint.iacr.org/2003/142.

9. M. Nandi, Study of Domain Extention of UOWHF and its Optimaility, Cryptology
ePrint Archieve, http://eprint.iacr.org/2003/158.

10. M. Naor and M. Yung, Universal one-way hash functions and their cryptographic
applications, Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, ACM Press, pp. 33-43, 1989.

11. B. Preneel, R. Govaerts and J. Vandewalle, Hash functions based on block ciphers:A
synthetic approach, Advances in Cryptology - CRYPTO’93, LNCS 773, Springer-
Verlag, pp. 368-378, 1994.

12. P. Rogaway and T. Shrimpton, Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance, In FSE’04, LNCS 3017, Springer-Verlag, pp. 371-
388, 2004.

13. P. Sarkar, Construction of UOWHF: Tree Hashing Revisted, Cryptology ePrint
Archieve, http://eprint.iacr.org/2002/058.

14. P. Sarkar, Domain Extenders for UOWHF: A Generic Lower Bound on Key
Expansion and a Finite Binary Tree Algorithm , Cryptology ePrint Archieve,
http://eprint.iacr.org/2003/009.

15. V. Shoup, A composition theorem for universal one-way hash functions, In Euro-
crypt’00, LNCS 1807, Springer-Verlag, pp. 445-452, 2000.

16. D. Simon. Finding collisions on a one-way street: can secure hash functions be
based on general assumptions?, Advances in Cryptology - Eurocrypt’98, LNCS
1403, Springer-Verlag, pp. 334-345, 1998.

Appendix A : Proof of Theorem 1

1. Cases [E-1], [E-3], [E-4]∼[E-11], [E-2]

For [E-1],[E-3],[E-4]∼[E-11],

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E∗,E∗−1 (q) + (2l−n+1 + 21−l − 21−n)



338 D. Chang et al.

For [E-2],

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E∗,E∗−1 (q) + 22−n

Proof. � means the event that Ea(·) = E∗
a(·) for randomly given key a.

[E-1], [E-3], [E-4]∼[E-11]: Pr[�c]=2l−n + 2−l − 2−n

[E-2]: Pr[�c] = 21−n

Exp(b) = 1 means ExpFtG−ACPCA−b
E,E−1,A (q) = 1 in the following inequalities.

AdvFtG−ACPCA
E,E−1,A (q)=|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]|

=|Pr[Exp(1) = 1|�]Pr[�] + Pr[Exp(1) = 1|�c]Pr[�c]
− Pr[Exp(0) = 1|�]Pr[�] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]|
+ |Pr[Exp(1) = 1|�c]Pr[�c] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]| + Pr[�c] · · · (1)
≤|Exp(1) = 1] − Pr[Exp(1) = 1]| + 2 · Pr[�c] · · · (2)
=AdvFtG−ACPCA

E∗,E∗−1,A (q) +2 · Pr[�c]

(1)→(2) :
Pr[Exp(1) = 1] − Pr[�c]≤Pr[Exp(1) = 1|�]Pr[�]≤Pr[Exp(1) = 1]
Pr[Exp(0) = 1] − Pr[�c]≤Pr[Exp(0) = 1|�]Pr[�]≤Pr[Exp(0) = 1]

Above inequalities are checked easily. Here, let T=Pr[Exp(1) = 1|�]Pr[�],
T ′=Pr[Exp(0) = 1|�]Pr[�], ε=Pr[�c], x=Pr[Exp(1) = 1], y=Pr[Exp(0) = 1].
Then above inequalities are expressed as x − ε ≤ T ≤ x, y − ε ≤ T ′ ≤ y.
Therefore, (1) → (2) holds because |T − T ′| ≤ |x − y| + ε. �

2. Cases [E-12], [E-13]

For [E-12],[E-13],
AdvFtG−ACPCA

E,E−1 (q) ≤ (12 · q + 1) ·AdvFtG−ACPCA
E∗,E∗−1 (q) + (6 · q + 4) · 2l−n

Proof. � means the event that Ea(·) = E∗
a(·) for randomly given key a.

[E1-12], [E1-13]: Pr[�c] = 2l−n

- means the event that there is no query x of an adversary A among
maximum q queries such that x ∈ {a, E∗

a
−1(a), E∗

a(a)}. Exp(b) = 1 means
ExpFtG−ACPCA−b

E,E−1,A (q) = 1 in the following inequalities.

AdvFtG−ACPCA
E,E−1,A (q)=|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]|

=|Pr[Exp(1) = 1|�]Pr[�] + Pr[Exp(1) = 1|�c]Pr[�c]
− Pr[Exp(0) = 1|�]Pr[�] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]|
+ |Pr[Exp(1) = 1|�c]Pr[�c] − Pr[Exp(0) = 1|�c]Pr[�c]|



Impossibility of Construction of OWHF and UOWHF from PGV Model 339

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]| + Pr[�c]
=|Pr[Exp(1) = 1 ∧ �] − Pr[Exp(0) = 1 ∧ �]| + Pr[�c]
=|Pr[Exp(1) = 1 ∧ �|�]Pr[�] + Pr[Exp(1) = 1 ∧ �|�c]Pr[�c]

−Pr[Exp(0) = 1 ∧ �|�]Pr[�] − Pr[Exp(0) = 1 ∧ �|�c]Pr[�c]| + Pr[�c]
≤|Pr[Exp(1) = 1 ∧ �|�]Pr[�] − Pr[Exp(0) = 1 ∧ �|�]Pr[�]|

+|Pr[Exp(1) = 1 ∧ �|�c]Pr[�c] − Pr[Exp(0) = 1 ∧ �|�c]Pr[�c]| + Pr[�c]
≤|Pr[Exp(1) = 1 ∧ �|�]Pr[�] − Pr[Exp(0) = 1 ∧ �|�]Pr[�]| + Pr[�c] + Pr[�c]
≤|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]| + 2 · Pr[�c] + 2 · Pr[�c]
=AdvFtG−ACPCA

E∗,E∗−1,A (q) + 2 · Pr[�c] + 2 · Pr[�c] · · · (3)
≤AdvFtG−ACPCA

E∗,E∗−1,A (q)+2·(6·q·AdvFtG−ACPCA
E∗,E∗−1,CA

(q)+(3·q+1)·Pr[�c])+2·Pr[�c] · · · (4)
�

Claim ((3)→(4)) : Pr[�c] ≤ 6 · q · AdvFtG−ACPCA
E∗,E∗−1,CA

(q) + (3 · q + 1) · Pr[�c].

To prove this Claim, we construct an adversary CA making ACPCA for
E∗={e∗i}i∈N in [E-12] and [E-13] as follows.

� Adversary CA

CE∗
a(·),E∗

a
−1

A (find) : Choose t ∈ {0, 1, 2, · · · , q} and w ∈ {1, 2, 3} randomly. Then
run AEa(·),Ea

−1
(find). CA simulates A’s oracles Ea(·) and E−1

a (·) with CA’s ora-
cles E∗

a(·) and E∗
a

−1(·). For each A’s query (xi, ri), CA gives this query to oracles
E∗

a(·) and E∗
a

−1(·). If ri = 1, then CA obtains E∗
a(xi) from the oracle. If ri = −1,

then CA obtains E∗
a

−1(xi) from the oracle. Repeat this process for 1 ≤ i ≤ t− 1.
And then, in case w = 1, CA generates x0, x1 /∈ {xi|ri = 1, 1 ≤ i ≤ t − 1}
∪{E∗

a
−1(xj)|rj = −1, 1 ≤ j ≤ t − 1} and gives (x0, x1, 1) to CA’s oracle. CA

obtains y = E∗
a(xb) from the oracle. In case w = 2, CA runs AEa(·),Ea

−1
(find)

one more and obtains (xt, rt) from A. CA gives (xt, 1) to the oracle and obtains
T = E∗

a(xt) from the oracle. Then CA generates x0, x1 /∈ {xi|ri = 1, 1 ≤ i ≤ t−1}
∪{E∗

a
−1(xj)|rj = −1, 1 ≤ j ≤ t−1}∪{xt} and gives (x0, x1, 1) to CA’s oracle. CA

obtains y = E∗
a(xb) from the oracle. In case w = 3, CA runs AEa(·),Ea

−1
(find)

one more and obtains (xt, rt) from A. CA gives (xt,−1) to the oracle and obtains
T = E∗

a
−1(xt) from the oracle. Then CA generates x0, x1 /∈ {E∗

a(xi)|ri = 1, 1 ≤
i ≤ t− 1} ∪{xj |rj = −1, 1 ≤ j ≤ t− 1}∪{E∗

a(xt)} and gives (x0, x1,−1) to CA’s
oracle. CA obtains y = E∗

a
−1(xb) from the oracle.

CE∗
a(·),E∗

a
−1

A (guess) : In case w = 1, CA runs AEa(·),Ea
−1

(find) one more and ob-
tains (xt, rt) from A. CA assumes xt = a and CA calculates E∗

xt
(x0) and E∗

xt
(x1).

If E∗
xt

(xs) = y, then output b′ = s, otherwise output b′ = 0 or 1 randomly. In
case w = 2, CA assumes xt = E∗

a
−1(a) and calculates E∗

T (x0) and E∗
T (x1). If

E∗
T (xs) = y, then output b′ = s, otherwise output b′ = 0 or 1 randomly. In

case w = 3, CA assumes xt = E∗
a(a) and calculates E∗

T
−1(x0) and E∗

T
−1(x1). If

E∗
T

−1(xs) = y, then output b′ = s, otherwise output b′ = 0 or 1 randomly.

Then, we check the following inequalities easily.
1

3·q Pr[-c|�] + 1
2 (1 − 1

3·q Pr[-c|�]) ≤ Pr[ExpFtG−ACPCA−b
E∗,E∗−1,CA

(q) = b|�],
1
2 (1 − 1

3·q Pr[-c|�]) ≥ Pr[ExpFtG−ACPCA−b
E∗,E∗−1,CA

(q) = b ⊕ 1|�]



340 D. Chang et al.

Therefore,(Here, Exp∗(b) = c means ExpFtG−ACPCA−b
E∗,E∗−1,CA

(q) = c.)

1
3·q Pr[-c|�] ≤ |Pr[Exp∗(b) = b|�] − Pr[Exp∗(b) = b ⊕ 1|�]|

≤ 1
Pr[�]{|Pr[Exp∗(b) = b] − Pr[Exp∗(b) = b ⊕ 1]| + Pr[�c]}

= 2
Pr[�] |Pr[Exp∗(1) = 1] − Pr[Exp∗(0) = 1]| + Pr[�c]

Pr[�]

= 2
Pr[�] ·AdvFtG−ACPCA

E∗,E∗−1,CA
(q) + Pr[�c]

Pr[�] · · · (5)

And 1
3·q Pr[-c|�] ≥ 1

3·q·Pr[�] (Pr[-c] − Pr[�c]) · · · (6).

By (5) and (6), 1
3·q·Pr[�] (Pr[-c] − Pr[�c]) ≤ 2

Pr[�] · AdvFtG−ACPCA
E∗,E∗−1,CA

(q) +
Pr[�c]
Pr[�] .

Therefore, Pr[-c] ≤ 6 · q ·AdvFtG−ACPCA
E∗,E∗−1,CA

(q) + (3 · q + 1) · Pr[�c]. �

3. Case [E-14]

For [E-14],

AdvFtG−ACPCA
E,E−1 (q) ≤ (12 · q + 1) ·AdvFtG−ACPCA

E∗,E∗−1 (q)

Proof. In case [E-14], we only consider block cipher E∗ such that {x|(x =
a) ∨ (x = a ⊕ h0)} ∩ {x|(x = E∗

a
−1(a)) ∨ (x = E∗

a
−1(a ⊕ h0))} = φ. -

means the event that there is no query x of an adversary A among maximum
q queries such that x ∈ {x|(x = a) ∨ (x = a ⊕ h0)} ∪ {x|(x = E∗

a
−1(a)) ∨ (x =

E∗
a

−1(a⊕ h0))} ∪ {E∗
a(E∗

a(x))|(x = E∗
a

−1(a))∨ (x = E∗
a

−1(a⊕ h0))}. Exp(b) = 1
means ExpFtG−ACPCA−b

E,E−1,A (q) = 1 in the following inequalities.

AdvFtG−ACPCA
E,E−1,A (q)=|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]|

=|Pr[Exp(1) = 1|�]Pr[�] + Pr[Exp(1) = 1|�c]Pr[�c]
− Pr[Exp(0) = 1|�]Pr[�] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]|
+ |Pr[Exp(1) = 1|�c]Pr[�c] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]| + Pr[�c]
≤|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]| + 2 · Pr[�c]
=AdvFtG−ACPCA

E∗,E∗−1,A (q) + 2 · Pr[�c] · · · (7)
≤AdvFtG−ACPCA

E∗,E∗−1,A (q) + 2 · (6 · q · AdvFtG−ACPCA
E∗,E∗−1,CA

(q)) · · · (8) �

Claim ((7)→(8)) : Pr[-c] ≤ 6 · q ·AdvFtG−ACPCA
E∗,E∗−1,CA

(q).

To prove this Claim, we construct an adversary CA making ACPCA for
E∗={e∗i}i∈N in [E-14] as follows.

� Adversary CA

CE∗
a(·),E∗

a
−1

A (find) : Choose t ∈ {0, 1, 2, · · · , q} and w ∈ {1, 2, 3} randomly. Then
run AEa(·),Ea

−1
(find). CA simulates A’s oracles Ea(·) and E−1

a (·) with CA’s ora-
cles E∗

a(·) and E∗
a

−1(·). For each A’s query (xi, ri), CA gives this query to oracles
E∗

a(·) and E∗
a

−1(·). If ri = 1, then CA obtains E∗
a(xi) from the oracle. If ri = −1,



Impossibility of Construction of OWHF and UOWHF from PGV Model 341

then CA obtains E∗
a

−1(xi) from the oracle. Repeat this process for 1 ≤ i ≤ t− 1.
And then, in case w = 1, CA generates x0, x1 /∈ {xi|ri = 1, 1 ≤ i ≤ t − 1}
∪{E∗

a
−1(xj)|rj = −1, 1 ≤ j ≤ t − 1} and gives (x0, x1, 1) to CA’s oracle. CA

obtains y = E∗
a(xb) from the oracle. In case w = 2, CA runs AEa(·),Ea

−1
(find)

one more and obtains (xt, rt) from A. CA gives (xt, 1) to the oracle and obtains
T = E∗

a(xt) from the oracle. Then CA generates x0, x1 /∈ {xi|ri = 1, 1 ≤ i ≤ t−1}
∪{E∗

a
−1(xj)|rj = −1, 1 ≤ j ≤ t−1}∪{xt} and gives (x0, x1, 1) to CA’s oracle. CA

obtains y = E∗
a(xb) from the oracle. In case w = 3, CA runs AEa(·),Ea

−1
(find)

one more and obtains (xt, rt) from A. CA gives (xt,−1) to the oracle and obtains
T = E∗

a
−1(xt) from the oracle. Then CA generates x0, x1 /∈ {E∗

a(xi)|ri = 1, 1 ≤
i ≤ t− 1} ∪{xj |rj = −1, 1 ≤ j ≤ t− 1}∪{E∗

a(xt)} and gives (x0, x1,−1) to CA’s
oracle. CA obtains y = E∗

a
−1(xb) from the oracle.

CE∗
a(·),E∗

a
−1

A (guess) : In case w = 1, CA runs AEa(·),Ea
−1

(find) one more and
obtains (xt, rt) from A. CA assumes xt = a or xt = a ⊕ h0 and CA calculates
E∗

xt
(x0), E∗

xt
(x1), E∗

xt⊕h0
(x0) and E∗

xt⊕h0
(x1). If E∗

xt
(xs) = y or E∗

xt⊕h0
(xs) = y,

then output b′ = s, otherwise output b′ = 0 or 1 randomly. In case w = 2, CA as-
sumes xt = E∗

a
−1(a) or xt = E∗

a
−1(a ⊕ h0) and calculates E∗

T (x0), E∗
T (x1),

E∗
T⊕h0

(x0) and E∗
T⊕h0

(x1). If E∗
T (xs) = y or E∗

T⊕h0
(xs) = y, then output

b′ = s, otherwise output b′ = 0 or 1 randomly. In case w = 3, CA assumes
xt = E∗

a(a) or xt = E∗
a(a⊕h0) and calculates E∗

T
−1(x0), E∗

T
−1(x1), E∗

T⊕h0

−1(x0)
and E∗

T⊕h0

−1(x1). If E∗
T

−1(xs) = y or E∗
T⊕h0

−1(xs) = y, then output b′ = s,
otherwise output b′ = 0 or 1 randomly.

Then, we check the following inequalities easily.

1
3·q Pr[-c] + 1

2 (1 − 1
3·q Pr[-c]) ≤ Pr[ExpFtG−ACPCA−b

E∗,E∗−1,CA
(q) = b],

1
2 (1 − 1

3·q Pr[-c]) ≥ Pr[ExpFtG−ACPCA−b
E∗,E∗−1,CA

(q) = b ⊕ 1]

Therefore,(Here, Exp∗(b) = c means ExpFtG−ACPCA−b
E∗,E∗−1,CA

(q) = c.)

1
3·q Pr[-c] ≤ |Pr[Exp∗(b) = b] − Pr[Exp∗(b) = b ⊕ 1]|

= 2 · |Pr[Exp∗(1) = 1] − Pr[Exp∗(0) = 1]|
= 2 ·AdvFtG−ACPCA

E∗,E∗−1,CA
(q)

Therefore, Pr[-c] ≤ 6 · q ·AdvFtG−ACPCA
E∗,E∗−1,CA

(q). �

4. Case [E-15]

For [E-15],

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E,E−1 (q) + 21−n

Proof. It is easy to check. �



342 D. Chang et al.

5. Case [E-17]

For [E-17] (the input and output length of E∗ is n. The length of key of E∗ is
n − 2),

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E,E−1 (q)

Proof. - means the event a[high 2th bit] = 1 and -c means the event
a[high 2th bit] = 0. Exp(b) = 1 means ExpFtG−ACPCA−b

E,E−1,A (q) = 1 in the fol-
lowing inequalities.

AdvFtG−ACPCA
E,E−1,A (q)=|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]|

=|Pr[Exp(1) = 1|�]Pr[�] + Pr[Exp(1) = 1|�c]Pr[�c]
− Pr[Exp(0) = 1|�]Pr[�] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]|
+ |Pr[Exp(1) = 1|�c]Pr[�c] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤ 1
2 |Pr[Exp(1) = 1|�] − Pr[Exp(0) = 1|�]|

+ 1
2 |Pr[Exp(1) = 1|�c] − Pr[Exp(0) = 1|�c]|

Therefore,

AdvFtG−ACPCA
E,E−1 (q) ≤ 1

2AdvFtG−ACPCA
E,E−1 (q) + 1

2AdvFtG−ACPCA
E,E−1 (q) =

AdvFtG−ACPCA
E,E−1 (q) �

6. Case [E-18]

For [E-18] (the input and output length of E∗ is n. The length of key of E∗ is
n − 1),

AdvFtG−ACPCA
E,E−1 (q) ≤ AdvFtG−ACPCA

E,E−1 (q)

Proof. - means the event a[high 1th bit] = 1 and -c means the event
a[high 1th bit] = 0. Exp(b) = 1 means ExpFtG−ACPCA−b

E,E−1,A (q) = 1 in the fol-
lowing inequalities.

AdvFtG−ACPCA
E,E−1,A (q)=|Pr[Exp(1) = 1] − Pr[Exp(0) = 1]|

=|Pr[Exp(1) = 1|�]Pr[�] + Pr[Exp(1) = 1|�c]Pr[�c]
− Pr[Exp(0) = 1|�]Pr[�] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤|Pr[Exp(1) = 1|�]Pr[�] − Pr[Exp(0) = 1|�]Pr[�]|
+ |Pr[Exp(1) = 1|�c]Pr[�c] − Pr[Exp(0) = 1|�c]Pr[�c]|

≤ 1
2 |Pr[Exp(1) = 1|�] − Pr[Exp(0) = 1|�]|

+ 1
2 |Pr[Exp(1) = 1|�c] − Pr[Exp(0) = 1|�c]|

Therefore,
AdvFtG−ACPCA

E,E−1 (q) ≤ 1
2AdvFtG−ACPCA

E,E−1 (q) + 1
2AdvFtG−ACPCA

E,E−1 (q) =
AdvFtG−ACPCA

E,E−1 (q) �



The Security and Performance of the
Galois/Counter Mode (GCM) of Operation

David A. McGrew† and John Viega‡

† Cisco Systems, Inc.,
mcgrew@cisco.com
‡ Secure Software

viega@securesoftware.com

Abstract. The recently introduced Galois/Counter Mode (GCM) of op-
eration for block ciphers provides both encryption and message authenti-
cation, using universal hashing based on multiplication in a binary finite
field. We analyze its security and performance, and show that it is the
most efficient mode of operation for high speed packet networks, by using
a realistic model of a network crypto module and empirical data from
studies of Internet traffic in conjunction with software experiments and
hardware designs. GCM has several useful features: it can accept IVs of
arbitrary length, can act as a stand-alone message authentication code
(MAC), and can be used as an incremental MAC. We show that GCM is
secure in the standard model of concrete security, even when these fea-
tures are used. We also consider several of its important system-security
aspects.

1 Introduction

The Galois/Counter Mode (GCM) of operation for block ciphers was designed to
meet the need for an authenticated encryption mode that can efficiently achieve
speeds of 10 gigabits per second and higher in hardware, can perform well in
software, and is free of intellectual property restrictions. It was recently submit-
ted to several standards venues, including the NIST Modes of Operation process
[18], IEEE 802.1AE Link Security [21], where it is the mandatory-to-implement
cryptoalgorithm in the current draft standard, and IPsec [24]. In the following,
we consider its performance and security.

The counter mode of operation (CTR) has become the mode of choice for
high speed applications, because it can be efficiently pipelined in hardware imple-
mentations. However, it provides no message authentication. GCM incorporates
CTR and builds on it by adding a message authentication code (MAC) based on
universal hashing [25, 16]. It uses polynomial hashing in the finite field GF (2w),
the core operation of which is multiplication by a fixed field element. The binary
field multiplication can be implemented easily in hardware, and can be made
surprisingly efficient in software via table-driven methods. Additionally, GCM
can be used as a stand-alone MAC, and can be used as an incremental MAC [3].

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 343–355, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



344 D.A. McGrew and J. Viega

This paper is structured as follows. In Section 1.1 we review existing work
on authenticated encryption with associated data (AEAD) methods [19]. In Sec-
tion 2 we briefly review the GCM definition. In Section 3 we analyze and de-
scribe its performance in hardware are software, and compare it to other AEAD
modes of operation. In Section 4, we review our analysis of GCM in the concrete
model; this paper is an extended abstract, and proofs of our results are provided
in the full version. In Section 5 we consider several important system-security
aspects.

1.1 Overview of Authenticated Encryption Modes

Recently, many authenticated encryption modes have been proposed, because
of the efficiency and usability benefits of the combined approach. The first such
mode was Jutla’s IAPM (Integrity-Aware Parallelizable) mode [13]. The better
known OCB (Offset Code Book) mode [20] is a refinement of IAPM. Both of
these modes are parallelizable, making them suitable for high-speed hardware
implementations (though they cannot take complete advantage of pipelining; see
Section 3). Independently, Gligor and Donescu proposed several authenticated
encryption modes [11]. All of the above modes are covered by patents, which
has motivated some other work in this space. CCM [26] uses a single key and
combines CTR mode with CBC-MAC to produce an authenticated encryption
scheme. However, CCM is not suited to high-speed implementations, because
CBC-MAC is neither pipelinable nor parallelizable. EAX [8] is a patent-free
mode similar to CCM, combining CTR with the OMAC [12] variant of CBC-
MAC. OMAC cannot be pipelined or parallelized, so neither can EAX. However,
EAX solves some minor issues unique to CCM: it is not on-line, meaning that
the message length must be known before one can start processing the message,
and there are cases in which it does not preserve word alignment. CWC mode
[15] is both patent-free and fully parallelizable; it combines CTR with a MAC
based on a universal hash function over GF (2127−1). Due to its use of an integer
multiply operation, CWC is relatively expensive to implement in hardware.

One useful feature of many authenticated encryption schemes is the ability
to authenticate associated data that is not part of the message, such as packet
headers. IAPM and OCB are the only two modes we have discussed that have
no facilities for this. Another interesting feature, introduced by EAX, is the
ability to accept arbitrary-length IVs (most modes use IVs no longer than the
cipher block width). This facility increases the usability of the mode, but has
the disadvantage of requiring additional processing - particularly in hardware,
where a pipeline stall caused by IV processing can significantly impact through-
put. GCM supports arbitrary sized IVs, but is optimized for the 12-byte case.
As with most modes, GCM uses a single key, supports additional authenticated
data, preserves data alignment in all cases, and is on-line.

GCM’s design draws from several sources. It uses CTR for encryption, and
uses a polynomial hash, like CWC, but with a relatively inexpensive binary field.
Its architecture follows that of the Universal Security Transform [17], which
enables it to be efficiently pipelined.



The Security and Performance of the GCM of Operation 345

2 GCM Definition

We briefly review the definition of GCM, closely following its specification [18],
but considering a block cipher with a width of w ≥ 64 bits, instead of focusing
on the 128-bit wide Advanced Encryption Standard (AES) [23]. We assume that
w is even. The two main functions that GCM uses are block cipher encryption
and multiplication over the field GF (2w); it defines a particular field, but its
details are irrelevant to our analysis. The block cipher encryption of the value
X ∈ {0, 1}w with the key K is denoted as E(K, X). The multiplication of two
elements X, Y ∈ GF (2w) is denoted as X · Y , and the addition of X and Y
is denoted as X ⊕ Y . The function len(S) takes a bit string S with a length
between zero and 2w/2 − 1, inclusive, and returns a w/2-bit string containing
the nonnegative integer describing the number of bits in its argument, with the
least significant bit on the right. The expression 0l denotes a string of l zero bits,
and A‖B denotes the concatenation of two bit strings A and B. The function
MSBt(S) takes a bit string S and returns the bit string containing only the
leftmost t bits of S, and the symbol {} denotes the bit string with zero length.

The authenticated encryption operation takes as inputs a secret key K, ini-
tialization vector IV , a plaintext P , and additional authenticated data A, and
gives as its outputs a ciphertext C and an authentication tag T . These values
are bit strings with lengths given as follows:

0 ≤ len(P ) ≤ (232 − 2)w

0 ≤ len(A) ≤ 2w/2

0 < len(IV ) ≤ 2w/2 (1)
len(C) = len(P )
len(T ) = t ≤ w,

where the parameter t is fixed for each instance of the key. The secret key has
a length appropriate to the block cipher, and is only used as an input to that
cipher. For each fixed value of K, each value of the IV must be distinct, but those
values need not have equal lengths. The authenticated decryption operation has
five inputs: K, IV, C, A, and T , as defined above. It has only one output, either
the plaintext value P or the special symbol FAIL that indicates that its inputs
are not authentic.

During the encryption and decryption processes, the bit strings P , C, and
A are broken up into w-bit blocks. We let n and u denote the unique pair of
positive integers such that the total number of bits in the plaintext is (n−1)w+u,
where 1 ≤ u ≤ w, when len(P ) > 0; otherwise n = u = 0. The plaintext consists
of a sequence of n bit strings, in which the bit length of the last bit string is
u, and the bit length of the other bit strings is w. The sequence is denoted
P1, P2, . . . , Pn−1, P

∗
n , and the bit strings are called data blocks, although the

last bit string, P ∗
n , may not be a complete block. Similarly, the ciphertext is

denoted as C1, C2, . . . , Cn−1, C
∗
n, where the number of bits in the final block C∗

n

is u. The additional authenticated data A is denoted as A1, A2, . . . , Am−1, A
∗
m,



346 D.A. McGrew and J. Viega

where the last bit string A∗
m may be a partial block of length v, and m and v

denote the unique pair of positive integers such that the total number of bits in
A is (m − 1)w + v and 1 ≤ v ≤ w, when len(A) > 0; otherwise m = v = 0. The
authenticated encryption operation is defined by the following equations:

H = E(K, 0w)

Y0 =

{
IV ‖0311 if len(IV ) = w − 32
GHASH(H, {}, IV ) otherwise.

Yi = incr(Yi−1) for i = 1, . . . , n (2)
Ci = Pi ⊕ E(K, Yi) for i = 1, . . . , n− 1
C∗

n = P ∗
n ⊕ MSBu(E(K, Yn))

T = MSBt(GHASH(H, A, C) ⊕ E(K, Y0))

Successive counter values are generated using the function incr(), which treats
the rightmost 32 bits of its argument as a nonnegative integer with the least
significant bit on the right, and increments this value modulo 232. More formally,
the value of incr(F‖I) is F‖(I + 1 mod 232). The function GHASH is defined
by GHASH(H, A, C) = Xm+n+1, where the inputs A and C are formatted as
described above, and the variables Xi for i = 0, . . . , m + n + 1 are defined as

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i = 0
(Xi−1 ⊕ Ai) · H for i = 1, . . . , m− 1
(Xm−1 ⊕ (A∗

m‖0w−v)) · H for i = m

(Xi−1 ⊕ Ci−m) · H for i = m + 1, . . . , m + n − 1
(Xm+n−1 ⊕ (C∗

n‖0w−u)) · H for i = m + n

(Xm+n ⊕ (len(A)‖len(C))) · H for i = m + n + 1.

(3)

3 Performance

We considered the performance of various modes of operation of the AES-128
block cipher in both hardware and software. We use a simple model of a network
crypto module in order to analyze the performance of different AEAD modes
under realistic conditions. The module consists of a device that accepts a con-
tinuous stream unprotected data packets on one interface and then outputs the
stream of encrypted and authenticated packets out another interface. We assume
that the key is present in the module, and that the mode and data encapsulation
are fixed, in order to focus on the data processing performance. We assume that
the module contains a clock which runs at a fixed rate. In general, the number of
clock cycles C(s) required to process a packet with s bytes varies as a function
of s. We assume that the packet sizes are distributed probabilistically, where the
probability of having size s is P[S = s]. The expected number of clocks per byte
C of the module is C =

∑
s C(s)f(s), where



The Security and Performance of the GCM of Operation 347

f(s) =
P[S = s]∑
r rP[S = r]

(4)

is the expected fraction of bytes that are carried in packets of size s. The function
f(s) is important because it can be empirically observed. Studies of Internet
traffic reveal a predominance of small packets, with peaks in the distribution of
packet sizes at 44, 552, 576, and 1500 bytes, and very few packets with larger
sizes [9], reflecting the nature of the TCP/IP protocol family. About half of the
data on the Internet is carried in packets of 576 bytes or less, and most of the
remainder is carried in packets of about 1500 bytes. We defined the Internet
Performance Index (IPI) as the expected number of bits processed per clock
cycle when the packet distribution has the values f(1500) = .6, f(576) = .2,
f(552) = .15, and f(44) = .05, using data from [9]. This index is a useful
indicator of the performance of a crypto module that protects IP traffic using
e.g. the Encapsulating Security Payload (ESP) [14] in tunnel mode, the protocol
which underlies most Virtual Private Networks.

3.1 Hardware

A typical high-speed AES-128 implementation consists of a pipeline of ten units,
each of which implements a single AES round. At each clock cycle, data moves
from one unit to the next, and 128 bits enter the pipeline and the same num-
ber leave the pipeline as output. In the following, we describe and analyze the
best GCM, CWC, and OCB implementations that use a single instance of this
AES pipeline. We disregard the other modes, since they use cipher block chain-
ing and thus cannot be implemented in this manner. We require that packets be
processed sequentially, rather than concurrently, because the complexity and cir-
cuit cost of the concurrent approach makes sequential processing more desirable
in practice. In our performance analysis we determine the value of C(s) for each
mode and tabulate the results, and also compare the circuit costs for the modes.
Data from multiple packets may be in the module simultaneously. To account
for this fact, we measure C(s) by counting the number of cycles between the
time when the last data from one protected packet leaves the module and when
the initial data from the next protected packet leaves the module. Our hardware
implementation model is not detailed, but it very effectively reveals the effects
of pipeline stalls on performance; a stall occurs when a circuit is not generating
outputs for some number of clock cycles.

GCM can easily take advantage of the AES pipeline (Figure 1, top), as long
as a 96-bit IV is used (as is recommended for high-speed implementations). We
use a finite-field multiplier over GF (2w) that executes in a single clock cycle.
An important property of the mode is that the counter Y0 that is used to en-
crypt the GHASH output can immediately follow the other counters through
the AES pipeline, so that after the plaintext is encrypted, only one additional
clock is needed to compute the authentication tag. Thus GCM can achieve
C(s) = �s/16 + 1 by having the data from each packet immediately follow
that of the previous packet through the pipeline. CWC is similar but requires
an additional AES encryption to process the authentication tag. This causes a



348 D.A. McGrew and J. Viega

pipeline stall of 10 clock cycles during which the tag passes through the AES
pipeline; thus for CWC, C(s) = �s/16 + 11.

In OCB (Figure 1, bottom), the AES pipline is used in three distinct ways: to
encrypt the IV, to encrypt the plaintext, and to compute the authentication tag.
The pipeline stalls for ten clock cycles while the IV is being encrypted. After that
computation, the stall continues for another ten clock cycles, until the plaintext
that is being encrypted appears at the output of the pipeline as ciphertext. Af-
ter all of the plaintext has been encrypted, the ‘checksum’ value is encrypted;
this operation requires only a single clock cycle, because the data from the IV-
encryption of the next packet can follow the data from the checksum-encryption
through the pipeline. Thus OCB can achieve COCB = �s/16 + 21. In Table 1,

incrIV

P

×H
A

C

T

G

IV

P

C

T

L

CKSM

L’

Fig. 1. Pipelined high-speed implementations of AES-128 GCM (top) and AES-128
OCB (bottom). During each clock cycle, 128 bits of data move across each arrow.
Some details have been omitted for clarity

we compare the GCM, CWC, and OCB implementations described above. Var-
ious data sizes are included, along with the Internet Performance Index, and
throughput is shown in bits per clock cycle. GCM excels the other modes in
every category, especially at shorter lengths, because it keeps its pipeline full. In
a crypto module that can process 128 bits per clock cycle, an ten-cycle pipeline
stall has a considerable opportunity cost: 160 bytes could be encrypted during
that time. GCM performance on the IPI is over twice that of CWC and over
three times that of OCB. The circuit cost of GCM is higher than that of OCB
because of its finite-field multiplier, but GCM is still the most economical mode



The Security and Performance of the GCM of Operation 349

for high-speed operation. Even in the unlikely case that this multiplier required
a circuit as large as the entire AES pipeline, a single GCM instance would have
higher throughput on Internet data than three OCB implementations, while hav-
ing less total circuit area. The cost of a single-clock GF (2128)-multiplier has been
estimated at 30% of the cost of the AES-128 pipeline; a detailed analysis of this
cost is beyond the scope of this paper. The circuit cost of CWC is significantly
higher than that of GCM because it uses an integer multiplier rather than a
binary-field multiplier.

Table 1. Hardware performance in bits per clock cycle, with three significant digits,
for a variety of packet sizes and the Internet Performance Index (IPI)

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 IPI
GCM 64.0 71.1 91.4 93.9 102 114 120 124 124 126 127 128 77.7
CWC 10.7 13.1 23.7 25.6 34.1 53.9 75.9 97.0 98.0 109 115 125 35.3
OCB 5.82 7.19 13.6 14.8 20.5 35.3 55.4 79.6 80.8 96.4 105 123 22.8

3.2 Software

We tested software implementations of GCM, EAX, CCM, CWC, and OCB,
each instantiated with the AES-128 cipher [23]. We also included CBC with
HMAC-SHA1 to represent common current practice. We used the best available
implementation of each mode, modified to use the fastest available AES imple-
mentation. All experiments took place on a 1Ghz Motorola G4 CPU using the
GNU C compiler version 3.3 with full optimization. In this enviornment, AES-
128 itself ran at 25 cycles per byte1. Qualitatively similar results were found
on an Intel P4 [10], though CWC performed better on that CPU2. We tested
GCM with both of the GHASH implementation strategies described in its spec-
ification, using 256 byte and 4Kb tables with Shoup’s method [22] and 64Kb
with the straightforward method. Table 2 shows our results. GCM has the best
performance for the Internet Performance Index and on packets up to 576 bytes,
while OCB has the best performance on larger packets. This result is easy to
understand: OCB uses one more AES encryption per packet, while GCM does
a GF (2w)-multiply operation per block that OCB does not. The point at which
their performance is equal reflects the number of multiplies that can be done in
the time taken for a single AES encryption.

3.3 Other Applications

GCM can be used in an authentication-only mode, in which the data to be
authenticated is included in A and the plaintext has zero length. In this mode

1 Faster implementations have been reported for some CPUs, but are not publicly
available. The table-driven GHASH algorithm, which uses the same basic operations
as AES, may be able to benefit from similar implementation techniques.

2 Gladman’s Intel implementations used Bernstein’s floating-point multiplication tech-
niques [6], which provide significant advantages on some processors.



350 D.A. McGrew and J. Viega

Table 2. Software performance in bits per kilocycle (or equivalently, megabits per sec-
ond on a 1GHz processor) to three significant digits, on various packet sizes, and the
Internet Performance Index (IPI), for various AES-128 modes of operation. GCM256,
GCM4K, and GCM64K refer to GCM with 256, 4K, and 64K byte table sizes, respec-
tively. The highest entry in each column is highlighted

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 IPI
GCM64K 136 167 227 253 223 263 267 273 273 266 266 258 268
GCM4K 116 140 190 207 192 213 229 237 233 239 247 240 240
GCM256 88.4 107 148 160 177 162 171 183 184 181 183 182 182
OCB 89.5 85.7 140 150 185 225 255 261 265 273 275 282 260
CWC 45.7 51.9 73.4 75.5 88.1 104 116 127 126 131 124 135 121
EAX 46.0 44.9 73.4 80.0 102 129 148 157 160 165 167 174 156
CCM 91.3 88.9 123 133 142 171 163 168 168 174 172 175 168
CBC-HMAC 6.3 8.0 15.2 16.6 23.4 39.0 64.5 96.0 97.0 117 129 156 88.6

(called GMAC), GCM has even more compelling advantages over most other
modes because it avoids calling the block cipher once per block of data. (CWC
is the only other mode with this property.) For instance, GMAC in our software
test environment can process 1500-byte packets in 10.2 cycles per byte, whereas
PMAC, a stand-alone MAC based on OCB [7], requires 27.6 cycles per byte.

The Secure Real-time Transport Protocol (SRTP) encrypts and authenticates
real-time traffic, such as conversational voice, at the transport layer [1]. Typical
plaintext sizes for this traffic include 20 bytes for the G.729 encoding, and 80
bytes for the G.721 encoding; GCM’s performance on short packets makes it
ideal for this application.

4 Security

The security of GCM stands on a single cryptographic conjecture: the block
cipher E is assumed to be a secure pseudorandom permutation (PRP). To para-
phrase Occam, we do not multiply conjectures beyond necessity. This require-
ment is met when E cannot be distinguished from a random permutation by
an adversary that can choose its inputs and view its outputs. To formalize this
idea, we use standard definitions from concrete security analysis, following [4].
The permutation oracle has the same interface as does the block cipher E with
a fixed key. It takes as input a plaintext in {0, 1}w and returns a ciphertext in
{0, 1}w. We consider the experiment in which the adversary is given access to a
permutation oracle and is challenged to determine whether it is the block cipher
E with a randomly selected key (we denote this event as BE), or a random per-
mutation (which we denote as Bc

E). Each of these cases occurs with probability
of 1/2. During the experiment, the adversary makes queries to the oracle and
receives its responses. Afterwards, the adversary returns a bit that indicates its
guess as to the content of the oracle. We denote as D the event that it guesses
that BE occurred, and denote as Dc the guess that Bc

E occured.



The Security and Performance of the GCM of Operation 351

We define the distinguishing advantage AE as the adversary’s true positive
probability less her false positive probability, that is,

AE = P[D | BE]−P[D | Bc
E]. (5)

Here we use the conventional notation that P[X ] denotes the probability that
the event X occurs, and P[X | Y] = P[X ∩ Y]/P[Y] denotes the probability that
X occurs, given that the event Y has occured. We also use X ∩ Y to denote the
event in which both events X and Y occur, and use X c to denote the comple-
ment of X , that is, the event that X does not occur. We make the simplifying
assumption that AE > 0, because an adversary that is consistently wrong can
turn itself into one that is consistently right by just inverting its output. Thus
the value AE ranges between 0 and 1, inclusive.

Our model for the security of an AEAD system follows Rogaway [19]. The
authenticated encryption oracle models the GCM authenticated encryption op-
eration. It takes as input the bit strings IV, A, and P and returns the bit strings
C and T , whose lengths obey the restrictions of Equations 1. The authenticated
decryption oracle accepts inputs of the form (IV, A, C, T ) and returns as its out-
puts either the special symbol FAIL or the plaintext P , where all of the bit
strings are as defined above. We let the adversary choose the IVs, but assume
that she is nonce-respecting and will not submit the same IV value to the same
oracle multiple times (though she is free to submit a value to both oracles). We
allow the adversary to interleave queries to these oracles. For our definition of
confidentiality, we use the indistinguishability of ciphertext from random under a
chosen plaintext attack and indistinguishability of plaintext from random under
a chosen ciphertext attack. This strong definition has been shown to be equiva-
lent to several other definitions [2]. Under these assumptions, GCM encryption
is secure if an adversary presented with these oracles cannot tell if they contain
GCM with a randomly selected key ( we denote this event as BGCM) or if C
and T are a random function of the other inputs (which we denote as Bc

GCM).
Each of these cases occurs with probability 1/2. Because GCM is not a generic
composition of a cipher and a MAC, we cannot use the results of Bellare and
Namprempre [5]. Most importantly, the use of the same secret value H for both
hashing the IV and for computing the authentication tag provides the adversary
a potential attack vector against confidentiality. For this reason, we need to give
adversary access to the authenticated decryption oracle.

GCM uses E as a pseudorandom function (PRF). In our analysis, we make
use of the well-known result on the use of a PRP as a PRF [4]. Our defini-
tion of PRF security considers the experiment in which we are given access to
the function oracle, and are challenged to determine whether it contains a true
random function or a PRF. That oracle has the same interface as does the per-
mutation oracle; unlike that oracle, the function oracle may not be invertible.
We use the convention that BPRF denotes the PRF case and Bc

PRF denotes
the random function case. The advantage of a PRF-distinguisher is given by
APRF = P[D | BPRF] − P[D | Bc

PRF]. The distinguishing advantage against a
PRF is similar to that against a PRP, and has similar properties. The following
Lemma bounds APRF in terms of AE .



352 D.A. McGrew and J. Viega

Lemma 1 (A PRP can be a Good PRF). The advantage APRF of an
adversary in distinguishing a w-bit PRP E from a random function is bounded
by APRF ≤ AE + q(q − 1)2−w−1, where AE is the adversary’s advantage in
distinguishing E from a random permutation, and the value q is the number of
queries to the function oracle.

Theorem 1 (GCM Encryption Is Secure). If there is an adversary that
can distinguish GCM encryption from a random function with advantage AGCM,
when the output of that function is limited to q queries to the authenticated en-
cryption and decryption oracles, where the total number of plaintext bits processed
is lP and where len(C) + len(A) ≤ l and len(IV ) ≤ lIV for each query, then that
adversary can distinguish E from a random permutation with advantage AE,
where

AE ≥ AGCM − (lP/w + 2q)22−w−1

− q((lP/w + 2q)�lIV/w + 121−w + �l/w + 12−t). (6)

This result is similar to that for counter mode, with a term that is quadratic
in lP. It also has a term that is linear in both lP and qlIV, which is due to the
fact that collisions in the counter values are more likely when the lengths of the
IVs that are hashed becomes greater. This term is dominant when qlIV > lP.
The implication is that when long IVs are used, fewer queries should be made
before a key is changed. However, in most cases lIV will be no greater than l,
and thus the accommodation of variable length IVs comes at negligible security
cost.

The authentication tag size t affects the security of GCM encryption, but its
effect is relatively weak. The term containing 2−t in the bound on AE does not
dominate that value as long as t is greater than about w− lg (q�l/w + �lIV/w).

4.1 Authentication

We use the standard model for the security of a MAC in the presence of a
chosen-message attack, in which an adversary is given access to a tag generation
oracle and a message/tag verification oracle. The adversary can pass messages to
the tag generation oracle and construct any message/tag pairs that it likes and
send these to the verification oracle. Queries to the oracles can be interleaved
by the adversary, if desired. The forgery advantage FGCM is the probability that
the adversary can get the verification oracle to accept a message/tag pair other
than one generated by the tag generation oracle, after making q queries to the
tag-generation oracle and the verification oracle.

Theorem 2 (GCM Authentication Is Secure). An adversary with forgery
advantage FGCM against GCM, when q, lP, l and lIV are as defined in Theorem 1,
has a distinguishing advantage AE against the pseudorandom permutation E
used in GCM of at least FGCM− (lP/w+2q)22−w−1−q((lP/w+2q+1)�lIV/w+
121−w + �l/w + 12−t).



The Security and Performance of the GCM of Operation 353

Like most authentication modes, the forgery advantage has a term that is
quadratic in the amount of data that is authenticated. This term is dominant
whenever many short messages are processed, as is typical for network crypto
modules. When very long messages are processed, the term proportional to l
will dominate. This term is characteristic of MACs that are based on universal
hashing.

4.2 AES GCM Security

To tie our analysis to current practice, we apply it to the AES GCM specification
for IPsec [24], for which lIV = 96 and t = 96. Any of the AES key lengths (of
128, 192, and 256 bits) can be used; for each variant, the block width w = 128.
We use the typical Internet maximum packet size of 1500 bytes (l ≤ 12000). The
security of AES-N -GCM (for N=128, 192, or 256) is captured in the following
corollary.

Corollary 1. If there are no attacks against AES-N that can distinguish it from
a random permutation with advantage greater than AAES-N , and no more than
q packets are processed, then

– there are no distinguishing attacks against AES-N -GCM that work with dis-
tinguishing advantage greater than AAES-N + q22−116 − q2−89.4, and

– there are no forgery attacks against AES-N -GCM that work with forgery
advantage greater than AAES-N + q22−116 − q2−89.4 − q2−128.

In these equations, the key size appears implicitly in the value of AAES-N . To
provide a concrete example, these results show that, if AES is indistinguishable
from a random permutation, and fewer than 248 packets are protected, then the
attacker’s advantage is no more than 2−18.

5 Other Security Aspects

We next consider system-security aspects. Having shown GCM secure when used
properly, we consider what can go wrong. One often overlooked aspect of mode
security is the consequence of IV misuse. It is well known that reusing a key/IV
pair in CTR results in a loss of confidentiality for the messages that used the
common IV value. Since GCM is built on top of CTR, it shares this property.
However, the reuse of an IV in the GCM authenticated encryption operation
(e.g. on the sender’s side) causes even worse problems. It allows the attacker
to solve for the underlying GHASH key H, making subsequent forgeries trivial
and also enabling the attacker to choose IVs that will cause colliding counters.
However, the reuse of an IV in the authenticated decryption operation (on the
receiver’s side) does not cause this problem. If an attacker convinces a receiver
to decrypt multiple messages with the same IV, she still cannot exploit this
situation to glean information about H efficiently. Fortunately, it is often com-
paratively easy for a sender to protect against IV reuse, for example, by using



354 D.A. McGrew and J. Viega

a simple message counter as an IV. Additionally, GCM’s ability to accept an
arbitrary-length IVs makes it easier to ensure all IVs are unique, by including
any possible distinguishing information, no matter how verbose. Interestingly,
CWC avoids some of these issues by using the underlying block cipher to en-
crypt the output of its universal hash function. But this aspect of its design
is responsible for causing the pipeline stalls that significantly degrade CWC’s
performance.

It is possible that H = E(K, 0w) = 0, and in this case, GHASH(H, A, C) =
0w for all values of A and C. If E behaves as a random permutation, then
the expected number of keys for which H = 0w is the fraction 2−w times the
number of keys. This fact does not degrade the effectiveness of the message
authentication; it is implicitly dealt with in the proof of security. When H = 0w,
the authentication tags will not be predictable; that case is no easier to detect
than any other value of the key. However, that value causes all IVs to hash to the
same value (if 96-bit IVs are not used). For this reason, some users may want to
avoid using that key, e.g. by using the convention that H is set to a fixed value
whenever the zero value is detected at key setup time. Of course, that key is so
unlikely to arise in practice that its effect on the bounds in the security proofs
are negligible, and it is equally reasonable not to bother to check for it.

References

1. M. Baugher , D. McGrew, M. Naslund, E. Carrara, K. Norrman. “The Secure
Real-time Transport Protocol,” IETF RFC 3711, March 2004.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A concrete security treatment of
symmetric encryption,” In Proceedings of the 38th FOCS, IEEE Computer Society
Press, 1997.

3. M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography: the case
of hashing and signing”, CRYPTO ’94, LNCS, Springer-Verlag, Aug. 1994.

4. M. Bellare, J. Kilian, P. Rogaway, “The Security of the Cipher Block Chaining
Message Authentication Code,” J. Comput. Syst. Sci. 61(3). pg. 362-399 (2000).

5. M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm,” ASIACRYPT ’00,
Springer-Verlag, LNCS, 2000.

6. D. Bernstein. Floating-point arithmetic and message authentication, Manuscript,
2000. Available online at http://cr.yp.to/papers.html#hash127.

7. J. Black and P. Rogaway, “A Block-Cipher Mode of Operation for Parallelizable
Message Authentication,” EUROCRYPT ’02, LNCS, Springer-Verlag, 2002.

8. M. Bellare, P. Rogaway, and D. Wagner, “A conventional authenticated-encryption
mode”, Submission to NIST Modes of Operation process, 2003.

9. K. Claffy, G. Miller, K. Thompson, “The nature of the beast: recent traffic mea-
surements from an Internet backbone,” INET ’98, ISOC, 1998.

10. B. Gladman, “AES and Combined Encryption/Authentication Modes,” Web Page,
http://fp.gladman.plus.com/AES/index.htm, February, 2004.

11. V. Gligor and P. Donescu, “Fast encryption and authentication: XCBC encryption
and XECB authentication modes,” Proceedings of the Fast Software Encryption
Workshop - FSE ’01. Springer-Verlag, 2001.



The Security and Performance of the GCM of Operation 355

12. T. Iwata, K. Kurosawa, “OMAC: One-Key CBC MAC,” Submission to NIST
Modes of Operation Process, 2002.

13. C. Jutla, “Encryption modes with almost free message integrity,” Advanced in
Cryptology - EUROCRYPT ’01, Springer-Verlag, 2001.

14. S. Kent, R. Atkinson, “IP Encapsulating Security Payload (ESP),” IETF Request
For Comments (RFC) 2406, November 1998.

15. T. Kohno, J. Viega, and D. Whiting, “The CWC-AES Dual-use Mode,” Submission
to NIST Modes of Operation Process, 2003.

16. H. Krawczyk, “LFSR-based hashing and authentication,” In Y. Desmedt, editor,
CRYPTO ’94, LNCS, Springer-Verlag, Aug. 1994.

17. D. McGrew. “The Universal Security Transform,” IETF Internet Draft, Work in
Progress. Oct. 2002.

18. D. McGrew and J. Viega. “The Galois/Counter Mode of Operation (GCM),” Sub-
mission to NIST Modes of Operation Process, January, 2004.

19. P. Rogaway. “Authenticated encryption with associated data,” In Proceedings of
the 9th CCS, Nov. 2002.

20. P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: a block-cipher mode of
operation for efficient authenticated encryption,” ACM CCS, 2001.

21. A. Romanow, Ed. “Media Access Control (MAC) Security”, IEEE 802.1AE, Draft
Standard, July, 2004.

22. V. Shoup, “On Fast and Provably Secure Message Authentication Based on Uni-
versal Hashing,” CRYPTO ’96, LNCS, Springer-Verlag, 1996.

23. U.S. National Institute of Standards and Technology. The Advanced Encryption
Standard. Federal Information Processing Standard (FIPS) 197, 2002.

24. J. Viega and D. McGrew, “The Use of Galois/Counter Mode (GCM) in IPsec
ESP,” IETF Internet Draft, Work in Progress, April, 2004.

25. M. Wegman and L. Carter, “New hash functions and their use in authentication
and set equality,” Journal of Computer and System Sciences, 22:265279, 1981.

26. D. Whiting, N. Ferguson, and R. Housley, “Counter with CBC-MAC (CCM),”
Submission to NIST Modes of Operation Process, 2002.



Revisiting Fully Distributed
Proxy Signature Schemes�

Javier Herranz and Germán Sáez

Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya
C. Jordi Girona, 1-3, Mòdul C3, Campus Nord, 08034-Barcelona, Spain

{jherranz, german}@ma4.upc.es

Abstract. In a proxy signature scheme, a potential signer delegates
his capabilities to a proxy signer, who can sign documents on behalf of
him. The recipient of the signature verifies both identities: that of the
delegator and that of the proxy signer. There are many proposals of
proxy signature schemes, but security of them has not been considered
in a formal way until the appearance of [2, 8].

If the entities which take part in a proxy signature scheme are formed
by sets of participants, then we refer to it as a fully distributed proxy
signature scheme [4].

In this work, we extend the security definitions introduced in [2] to
the scenario of fully distributed proxy signature schemes, and we propose
a specific scheme which is secure in this new model.

1 Introduction

Digital signature schemes provide authenticity, integrity and non-repudiation to
digital communications. Sometimes, however, a user must sign messages during
a certain period of time in which he is not able to do it. For example, if this user
is in holidays or has technical problems with its computer.

Proxy signature schemes were introduced in [9] and give a solution to this
problem. An original user delegates his signing capabilities to a different user,
the proxy signer. In this delegation, some aspects such as the dates of validity
or the kind of messages that the proxy will be able to sign on behalf of the
original signer should be stated. Later, the proxy signer can sign messages which
conform to the delegation, on behalf of the original user. The recipient of the
signature must verify at the same time the delegation of the original signer and
the authenticity of the proxy signer.

A trivial solution to this problem is the following: the original signer uses his
secret key to sign a delegation message (containing the terms of the delegations,
his public key, the proxy signer’s public key, etc.), and sends the message and the
signature to the proxy signer. Later, when the proxy signer must sign a message

� This work was partially supported by Spanish Ministerio de Ciencia y Tecnoloǵıa
under project TIC 2003-00866.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 356–370, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Revisiting Fully Distributed Proxy Signature Schemes 357

on behalf of the original one, he uses his secret key to compute a standard
signature on this message. The final proxy signature includes the delegation
message with his signature, the specific message and the signature computed
by the proxy signer. Of course, the goal when designing more elaborated proxy
signature schemes is to improve the efficiency of this trivial solution, for example
by shortening the length of the final proxy signature.

If the participants of the system are not individual users, but distributed enti-
ties, then we must consider fully distributed proxy signature schemes (introduced
in [4]). The original entity is formed by a set of members, and if an authorized
subset of them cooperate, then they can delegate the signing power of the whole
entity to the proxy entity. Later, if some authorized subset of members of the
proxy entity cooperate, then they can compute a proxy signature of a message
on behalf of the original entity. Such schemes can be useful, for example, when
the participants in the system are important companies, or a central office of a
bank and the branch offices, etc. In these cases, it is usually undesirable that the
power to perform such important tasks (signing, or delegating rights) is held by
a unique person or machine.

Almost all the proxy signature schemes (either individual or distributed) that
have been proposed until now lack a formal proof of security. This fact has led
to many attacks on some of these schemes. Furthermore, this lack of formalism
is not in compliance with the current techniques of public key cryptography,
where the security of the protocols is formally proved (this is known as provable
security). That is, both the capabilities and the goals of an adversary who tries
to attack the cryptographic scheme must be clearly stated. Then, the security
of the scheme should be proved by showing that a successful attack against it
could be used as a part of another attack which would solve a computationally
hard problem (discrete logarithm, integer factorization, etc.).

The first step in order to formalize individual proxy signature schemes has
been taken in [2]. There, a formal model of security for this kind of schemes is
given, along with some schemes which can be proved secure according to this
model. Their model is valid for schemes with one level of delegation. In order
to support chains of several levels of delegation, another formalization of the
security of proxy signatures has been given in [8].

In this work, we concentrate on distributed proxy schemes with one level of
delegation; we extend the results in [2], by giving a formal model of security for
fully distributed proxy signature schemes. Then, we explain a distributed version
of one of the schemes which are proposed and proved secure in [2]. We prove
that this new scheme is secure in the security model for fully distributed proxy
signature schemes.

Organization of the Paper. In Section 2, we review some aspects of proxy sig-
nature schemes, including a specific scheme proposed in [2], as well as some
distributed protocols that we will use later. In Section 3, we formally define
what a fully distributed signature scheme is, and we give the natural security
model for these schemes, derived from the model given in [2]. In Section 4, we



358 J. Herranz and G. Sáez

propose a new fully distributed proxy signature scheme (its security is proven
in the Appendix). The work ends with some comments and conclusions in
Section 5.

2 Preliminaries

The mathematical framework of the specific protocols that we are going to ex-
plain is the following. There are two large prime numbers p and q such that
q|p−1. We consider an element g ∈ Z∗

p whose order is exactly q. We additionally
need two hash functions H1 and H2 which map arbitrarily long strings of bits
into Zq.

2.1 Proxy Signatures

Since its introduction by Mambo et al. [9], proxy signature schemes have been
developed in many papers (for example [5, 7, 6]). Most of the proposed schemes
are based on discrete-logarithm type signature schemes, such as Schnorr’s [11]. In
this signature scheme, each signer has a secret key x ∈ Z∗

q and the corresponding
public key y = gx mod p. To sign a message M , this signer chooses a random
value k ∈ Z∗

q and then he computes the values r = gk mod p and s = k +
xH1(M, r) mod q. The signature of the message M is the pair (r, s), and its
correctness can be verified by checking the equation gs = ryH1(M,r) mod p. We
use the notation (r, s) = Sch Sig(M, sk, H1) to refer to an execution of this
signature scheme for message M , with secret key sk and hash function H1.

Schnorr’s signature scheme has been shown [10] to achieve the highest level of
security for signature schemes, which is existential unforgeability under chosen
message attacks. However, all the proposals of proxy signature schemes have
lacked a formal security analysis. These schemes have been considered secure
just until some attack against them has appeared (see [6, 14]).

The situation has changed since the appearance of a paper by Boldyreva et
al. [2]. There, formal definitions on proxy signature schemes and their security
are given; in the rest of this work, we follow the notation of [2].

Let Sig = (G,K,S,V) be a standard signature scheme. That is, G is the
parameter-generator, which takes as input a security parameter and outputs
some global parameters of the scheme (in our scenario, the prime numbers p and
q, etc.). The key-generator K takes as input the global parameters and outputs a
secret-public key pair (sk, pk). The signing algorithm S takes as input a message
and the secret key, and outputs a signature σ. And the verification algorithm
V takes as input a message, a signature and a public key, and returns 1 (if the
signature is valid) or 0 (if not).

A proxy signature scheme Pro Sig = (G,K,S,V, (D,P),PS,PV, ID) re-
quires the presence of at least two users (user i delegates its signing capability
to user j). The algorithms G, K, S and V are the same as explained above. The
rest of protocols work as follows:

• (D,P) is a pair of (possibly interactive) algorithms, where user i delegates
his signing capabilities to user j (proxy). The algorithm D takes as input the



Revisiting Fully Distributed Proxy Signature Schemes 359

public keys pki and pkj and the secret key ski of the delegator. The algorithm
P takes as input the public keys pki and pkj and the secret key skj of the proxy
signer. As a result of this interaction, the proxy signer (user j) obtains a proxy
secret key skpij that he will use to sign messages on behalf of user i.

• The protocol PS is the proxy signing algorithm, which takes as input a
proxy secret key skp and a message M , and outputs a proxy signature pσ. This
proxy signature includes the public key of user j, the proxy signer.

• The protocol PV verifies the correctness of a proxy signature. It takes as
input a message, a proxy signature and the public key of the original signer, and
outputs 1 or 0.

• The proxy identification algorithm ID takes as input a valid proxy signature
and outputs the identity of the proxy signer.

In order to analyze the security of such a proxy signature scheme, we must
consider the most powerful attack against it; this adversary will try to forge a
signature involving some honest user (say user 1). In order to do it, the adversary
is allowed to corrupt all the users in a system except user 1; then, the adversary
can request this user 1 to execute the different protocols of the scheme as many
times as he wants, interacting with the corrupted users. Finally, the adversary
tries to forge a new valid proxy signature computed by user 1 on behalf of a
corrupted user, or by a corrupted user j on behalf of user 1 (provided user 1 has
not been requested to delegate in user j, during the attack). A proxy signature
scheme is secure if the probability of success of such an adversary is negligible.

This security model provided in [2] supports one level of delegation. A more
complete formalization of the security of proxy signature schemes, given in [8],
supports chains of more than one level of delegation. However, for simplicity, we
will concentrate on the one-level model.

Triple Schnorr Proxy Signature Scheme. In [2], the authors explain some
specific schemes which are proved to be secure according their security model.
Now we explain one of these schemes, the triple Schnorr proxy signature scheme.
We will refer to this scheme as T Sch Pro Sig = (GTS ,KTS ,STS ,VTS ,
(DTS ,PTS), PSTS , PVTS , IDTS).

• The algorithms (GTS ,KTS ,STS ,VTS) are those of the standard Schnorr’s
signature scheme: GTS generates the primes p and q, the element g and the hash
functions H1 and H2. The algorithm KTS generates secret key x and public key
y = gx mod p. The standard signing algorithm STS outputs a signature (r, s)
on a message M . And VTS verifies the correctness of the signatures. The main
difference is that in order to sign a message M in a standard way, a user Ui must
prepend a 1 to the message, and so apply (r, s) = Sch Sig(1||M , xi , H1).

• The algorithms (DTS ,PTS) are as follows. If a user Ui (with keys xi and
yi) wants to delegate to a user Uj (with keys xj and yj), he creates a mes-
sage ω which contains the information related to the delegation (identities of
the original and proxy signers, dates of validity, which messages are allowed
to be signed, etc.). Then user Ui computes the Schnorr signature (ri, si) =
Sch Sig(0||yi||yj ||ω , xi , H1). User Uj verifies this signature and then com-



360 J. Herranz and G. Sáez

putes his proxy secret key as skpij = (yi||yj ||ω , ri , dij), where dij = si +
xjH1(0||yi||yj ||ω , ri) mod q. Note that the public key related to this secret key
dij is gdij = ri(yiyj)H1(0||yi||yj ||ω , ri) mod p.

• To compute a proxy signature on a message M , on behalf of user Ui,
user Uj employs his proxy secret key dij and hash function H2 to compute
the Schnorr signature (r, s) = Sch Sig(0||M ||yi||yj ||ω||ri , dij , H2). The final
proxy signature is pσ = (ω, ri, yj , (r, s)).

• To verify the correctness of a proxy signature pσ = (ω, ri, yj , (r, s)) on
a message M , where the original signer has public key yi, the recipient must
check the following equation (Schnorr verification with public key gdij and hash
function H2):

gs = r
[
ri(yiyj)H1(0||yi||yj ||ω , ri)

]H2(0||M ||yi||yj ||ω||ri , r)
mod p .

• The proxy identification algorithm takes as input a proxy signature pσ =
(ω, ri, yj , (r, s)) and returns the identity which corresponds to the public key yj .

Theorem 1. If the discrete logarithm problem is hard, then the proxy signature
scheme T Sch Pro Sig is secure in the random oracle model.

See [2] for the security model and the proof of this theorem.

2.2 Joint Generation of Discrete Logarithm Keys

In distributed public key cryptography, the secret tasks (decrypting or signing)
are not performed by single users, but by entities formed by many users. Let E =
{P (1), P (2), . . . , P (n)} be a distributed entity formed by n participants. There is
an access structure Γ ⊂ 2E , which is formed by those subsets of participants
which are authorized to perform the secret task. The access structure must be
monotone increasing; that is, if A1 ∈ Γ is authorized, and A1 ⊂ A2 ⊂ E, then
A2 must be authorized, too.

The most usual strategy in distributed cryptography is to use secret sharing
schemes (introduced in [1, 12]) to share the secret keys among the members of
the entity. Some of these schemes do not need the presence of any trusted party
(or dealer), and all the protocol can be performed by the members themselves.
Linear secret sharing schemes, where the secret can be recovered as a linear
combination of the shares from an authorized subset, are the most appropriate
for being used as a component of distributed cryptographic protocols.

These distributed protocols must be secure in front of an attack of an adver-
sary who corrupts a non-authorized subset of members of the entity. By corrup-
tion we mean that the adversary can see all the secret information of these users,
and can control their behavior. The protocols are said to be robust if the dishon-
est members are always detected, and this fact does not avoid that the protocols
finish in the correct way. In order to achieve robustness, verifiable secret sharing
schemes are used.

A particular case of this kind of protocols is the joint generation of discrete
logarithm keys. Each participant P (�) ∈ E obtains a secret value x(�) ∈ Zq. These



Revisiting Fully Distributed Proxy Signature Schemes 361

values {x(�)}P (�)∈E form a sharing of the secret key x ∈ Zq, according to some
linear secret sharing scheme realizing the access structure Γ . The corresponding
public key y = gx mod p is made public, along with other values (commitments)
which ensure the robustness of the protocol. We refer to an execution of this
protocol as

(y, {x(�)}P (�)∈E) = Jo DL KG(E, Γ ) .

The details of this protocol can be found in [3] for the threshold case (that
is, the access structure is Γ = {A ⊂ E : |A| ≥ t}, for some threshold t) and in
[4] for the case of general access structures.

Fact 1. The protocol Jo DL KG is simulatable.

This means that, given an adversary who corrupts a non-authorized subset
B of members, there exists an algorithm SIM1 which takes as input a public
key y ∈ 〈g〉 and outputs values which are indistinguishable from those that the
adversary would see in a real execution of the protocol Jo DL KG which would
give y as the resulting public key. Mainly, the algorithm SIM1 must simulate all
the information which is made public in the protocol, and the secret information
of the dishonest members in B.

2.3 Distributed Schnorr Signature Protocol

In a distributed signature scheme, a set E of users share the secret key of a stan-
dard signature scheme. If an authorized subset of members collaborate, they can
produce a valid signature on a message. The recipient can verify the correctness
of this signature, but cannot know if it has been generated in a standard or a
distributed way.

These schemes are said to be unforgeable if an adversary who corrupts a non-
authorized subset of members is not able to obtain a valid message-signature
pair, even if the protocol is previously executed for other messages that the
adversary adaptively chooses. The signing protocol is robust if the dishonest
participants are detected and furthermore the output of the protocol is always
a valid signature.

In the case of Schnorr’s signature scheme, the threshold version was pro-
posed in [13], and the version for general access structures was proposed in [4].
We consider the more general case with any access structure Γ . The scheme
starts with the joint key generation, that is, an execution of (y, {x(�)}P (�)∈E) =
Jo DL KG(E, Γ ), and then a protocol to jointly sign a message. We refer to an
execution of this last protocol as:

(r, s) = Dist Sch Sig(E, Γ, M, {x(�)}P (�)∈E , H1) ,

meaning that participants of entity E use their secret shares {x(�)}P (�)∈E of the
secret key x (which have been distributed using a linear secret sharing scheme
which realizes the access structure Γ ), to jointly compute a standard Schnorr
signature (r, s) of message M with hash function H1. This implies that gs =
ryH1(M,r) mod p.



362 J. Herranz and G. Sáez

Fact 2. The protocol Dist Sch Sig is simulatable.

This fact means that, given an adversary who corrupts a non-authorized
subset B /∈ Γ of participants, there is an algorithm SIM2 which runs as fol-
lows: it takes as input (M, r, s), where (r, s) is a valid Schnorr signature for
message M , along with all the information obtained by the adversary in the
execution of the corresponding (y, {x(�)}P (�)∈E) = Jo DL KG(E, Γ ). The out-
put values are indistinguishable from those (public and secret information of
the corrupted members) that the adversary would see in a real execution of the
protocol Dist Sch Sig(E, Γ, M, {x(�)}P (�)∈E , H).

3 Fully Distributed Proxy Signature Schemes

In addition to individual proxy signature schemes, some distributed (usually
threshold) proxy signature schemes have been proposed in the last years [15, 5].
In such schemes, a original signer delegates his capabilities to a proxy distributed
entity. Members of an authorized subset of this entity can then jointly sign a
message on behalf of the original signer. If the original signer is a distributed
entity, too, then the proxy signature scheme is fully distributed [4].

As it has happened in the case of individual proxy signature schemes, no
formal treatment of the security of distributed (and fully distributed) proxy
signature schemes has been given until now. Some of the attacks which have been
found against individual schemes are also applicable in the distributed versions
of these schemes. For example, the attack explained in [6] against the individual
proxy signature scheme in [7] can be also extended to an attack against the fully
distributed proxy signature scheme in [4].

In this section, we formally define a fully distributed proxy signature scheme
and the security requirements that such a scheme must satisfy. In some way,
we extend the work done in [2] to the distributed scenario. Now there will be
distributed entities Ei = {P (1)

i , . . . , P
(ni)
i } and Ej = {P (1)

j , . . . , P
(nj)
j } with their

corresponding (monotone increasing) access structures Γi ⊂ 2Ei and Γj ⊂ 2Ej .
An authorized subset in Γi can delegate the signing capabilities of entity Ei

to entity Ej . Then, an authorized subset in Γj can compute a proxy signature
of entity Ej on behalf of entity Ei. Let us formalize the definition of all these
protocols.

Let Dist Sig = (G,JKG,DS,V) be a distributed signature scheme. That is:

• The parameter-generator G takes as input a security parameter k and out-
puts some global (and public) parameters of the scheme (prime numbers, gener-
ators of the mathematical groups, etc.).

• The joint key generation protocol JKG is interactively performed by the
members of each distributed entity Ei. It takes as input the global parameters
and outputs a public key pki. Furthermore, each participant P

(�)
i ∈ Ei obtains

a secret share sk
(�)
i of the secret key ski which matches with pki.



Revisiting Fully Distributed Proxy Signature Schemes 363

• The distributed signing algorithm DS takes as input a message and the
secret shares of an authorized subset of members of the entity, and outputs a
standard signature σ.

• The verification algorithm V takes as input a message, a signature and a
public key, and returns 1 if the signature is valid, or 0 otherwise.

But a fully distributed proxy signature scheme Dist Pro Sig = (G,JKG,DS,
V, (DD,DP),DPS,PV, ID) requires also the following extra algorithms:

• (DD,DP) is a pair of (possibly interactive) algorithms. Entity Ei delegates
its signing capabilities to entity Ej (proxy entity). The algorithm DD takes as
input the public keys pki and pkj and the shares of the secret key ski corre-
sponding to some authorized subset of entity Ei. The algorithm DP takes as
input the public keys pki and pkj and the shares {sk(�)

j }
P

(�)
j ∈Ej

of the secret

key of the proxy entity. As a result, each member P
(�)
j ∈ Ej of the proxy entity

obtains a share skp
(�)
ij of the new proxy secret key skpij .

• The protocol DPS is the distributed proxy signing algorithm, which takes
as input a message M and the shares of the proxy secret key skpij from some
authorized subset of Ej , and outputs a proxy signature pσ. This proxy signature
includes the public key pkj of the proxy entity Ej .

• The protocol PV verifies the correctness of a proxy signature. It takes as
input a message, a proxy signature and the public key of the delegator entity,
and outputs 1 or 0.

• The proxy identification algorithm ID takes as input a valid proxy signature
and outputs the identity of the proxy entity which has computed the signature.

3.1 Security Requirements

Intuitively, we want an adversary not to be able to forge a proxy or standard
signature, even if he corrupts a non-authorized subset of each distributed entity
which takes part in the system. In order to formally model this situation, we
must consider a distributed entity E1 and an adversary DA who corrupts a non-
authorized subset B1 ⊂ E1, B1 /∈ Γ1. The goal of the adversary is to forge a new
proxy or standard signature realized by entity E1 or on behalf of E1.

Let Dist Pro Sig = (G,JKG,DS,V, (DD,DP),DPS,PV, ID) be a fully
distributed proxy signature scheme. We are going to consider an attack (or ex-
periment) D ExpDA

Dist Pro Sig(k) performed by the adversary DA against the
scheme Dist Pro Sig under security parameter k.

The experiment starts with the generation of the global parameters. Adver-
sary DA chooses the subset B1 ⊂ E1, such that B1 /∈ Γ1, that he corrupts. Then
the joint key generation protocol JKG is executed by the members of E1 (here
DA obtains the public key pk1, all the information made public during the exe-
cution of the protocol, and the secret key shares {sk(b)

1 }
P

(b)
1 ∈B1

of the corrupted
participants).

The adversary initializes a counter m = 1, an empty set Prox = ∅ and an
empty array Array

(1)
skp.



364 J. Herranz and G. Sáez

What can DA do? During the experiment, the adversary DA is allowed to
execute

1. DA registers Ei. DA can create and register a new distributed entity Ei,
for i = m + 1. The adversary controls the behavior of all the members of
this entity. These members run the protocol JKG which produces a public
key pki and shares of the corresponding secret key ski. A new empty array
Array

(i)
skp is created. The counter is incremented, m := m + 1.

2. E1 delegates in Ei. DA can interact with the whole entity E1 running the
protocolDD(pk1, pki, {sk(�)

1 }
P

(�)
1 ∈E1

), andhimself playing the role of entityEi,

for some i ∈ {2, 3, . . . , m}, running the protocol DP(pk1, pki, {sk(�)
i }

P
(�)
i ∈Ei

).
The set Prox increases to Prox∪ {pki} (this set contains the public keys of
the entities in which entity E1 delegates during the experiment).

3. Ei delegates in E1. DA can interact with entity E1 running the protocol
DP(pki, pk1, {sk(�)

1 }
P

(�)
1 ∈E1

), and himself playing the role of entity Ei, for

some i ∈ {2, 3, . . . , m}, running the protocol DD(pki, pk1, {sk(�)
i }

P
(�)
i ∈Ei

).

As a result, each participant P
(�)
1 of entity E1 will obtain a share skp

(�)
i1 of

the new proxy secret key. Note that the adversary knows the shares of the
corrupted players in B1. The whole set of shares SKPi1 = {skp

(�)
i1 }P

(�)
i ∈Ei

is stored in the first available position of Array
(i)
skp. This array will therefore

contain all the secret proxy keys corresponding to delegations of entity Ei

into entity E1. Obviously, the adversary has not full access to these arrays
(he only knows the shares of the corrupted players in B1).

4. E1 delegates in E1. DA can request that entity E1 run the delegation
protocol with itself. The adversary will see all the public information and the
private information held by the corrupted players. As in Action 3, the shares
of the resulting secret proxy key, SKP11, are stored in the first available
position of Array

(1)
skp.

5. Standard distributed signature by E1. DA can ask the members of E1
for executing the protocol DS for signing the message M that he chooses.
He obtains all public information and private information of the dishonest
players (in B1).

6. Distributed proxy signature by E1 on behalf of Ei. DA can request
that members of E1 use the shares of some of the proxy secret keys obtained
from a delegation of entity Ei (Action 3), and which are stored in some
position of Array

(i)
skp, to execute the protocol DPS with a message M that

he chooses. Again, he obtains the signature, all the broadcast information
and the private information of the corrupted players.

When is DA successful? Once the adversary has done these actions as many
times as he wants, he eventually outputs a forgery of a standard signature (M, σ)
or of a proxy signature (M, pσ, pk).



Revisiting Fully Distributed Proxy Signature Schemes 365

• If (M, σ) satisfies V(M, σ, pk1) = 1, and M was not queried by DA to be
signed as a standard distributed signature by entity E1 (action 5), then the
output of the experiment is 1 (successful forgery of a standard signature by
entity E1).

• If (M, pσ, pk) satisfies pk = pki for some i ∈ {1, 2, . . . , m}, and PV(M, pσ, pki) =
1, and ID(pσ) = pk1, and message M was not queried to be signed by E1
on behalf of Ei (action 6), then the output of the experiment is 1 (successful
forgery of a proxy signature by entity E1 on behalf of some entity Ei).

• If (M, pσ, pk) satisfies pk = pk1, and PV(M, pσ, pk1) = 1, and ID(pσ) /∈
Prox∪{pk1}, then the output of the experiment is 1 (successful forgery of a
proxy signature by some entity Ei �= E1, which was not designated by entity
E1 during the experiment, on behalf of entity E1).

Otherwise, the output of the experiment D ExpDA
Dist Pro Sig(k) is 0. We de-

fine the probability of success of the adversary DA as the probability that the
output of the experiment is 1. That is:

SuccDA
Dist Pro Sig(k) = Pr

[
D ExpDA

Dist Pro Sig(k) = 1
]

.

Definition 1. We say that a fully distributed proxy signature scheme
Dist Pro Sig is secure if, for all polynomial time adversary DA, we have that
SuccDA

Dist Pro Sig(k) is negligible in the security parameter k.

We recall that a function f(k) is negligible in k if for all polynomial p(), there
exists kp ∈ N such that f(k) ≤ 1

p(k) , for all k ≥ kp.
This security model for fully distributed proxy signature schemes is the nat-

ural extension of the security model defined in [2] for individual proxy signature
schemes (there, the adversary attacks a user; here, the adversary attacks an
entity where he has corrupted some of its members).

4 A New Scheme

We now explain the natural way of fully distributing the triple Schnorr proxy
signature scheme given in [2]. We follow the notation introduced in Section
3. We denote the fully distributed triple Schnorr proxy signature scheme by
T Sch Dist Pro Sig = (GTS ,JKGTS ,DSTS ,VTS , (DDTS ,DPTS),DPSTS ,
PVTS , IDTS). The different protocols work as follows:

• The parameter generator GTS takes as input a security parameter k and
outputs the prime numbers p and q such that q|p − 1, an element g with order
q in Z∗

p, and two hash functions H1, H2 : {0, 1}∗ → Zq.
• The key generator KTS for an entity Ei with access structure Γi consists

of running the protocol (yi, {x(�)
i }

P
(�)
i ∈Ei

) = Jo DL KG(Ei, Γi) for joint gener-
ating a public key and shares of the matching secret key (see Section 2.2).

• The distributed signature protocol DSTS applied to a message M consists of
prepending a 1 to the message and executing the protocol of joint computation



366 J. Herranz and G. Sáez

of a Schnorr signature (r, s) = Dist Sch Sig(Ei, Γi, 1||M , {x(�)
i }

P
(�)
i ∈Ei

, H1)
(see Section 2.3).

• The verification protocol VTS verifies that (r, s) is a valid Schnorr signature
for message 1||M .

• The protocols (DDTS ,DPTS) are as follows. If an entity Ei (with keys xi

and yi, where xi is shared) wants to delegate to an entity Ej (with keys xj and
yj , where xj is shared), members of entity Ei create a message ω which contains
the information related to the delegation. Then members of Ei jointly compute
the Schnorr signature

(ri, si) = Dist Sch Sig(Ei, Γi, 0||yi||yj ||ω , {x(�)
i }

P
(�)
i ∈Ei

, H1) .

Each member P
(�)
j of entity Ej verifies this signature and then computes his

share of the proxy secret key as skp
(�)
ij = (yi||yj ||ω , ri , d

(�)
ij ), where

d
(�)
ij = si + x

(�)
j H1(0||yi||yj ||ω , ri) mod q .

Note that the secret matching with the shares {d(�)
ij }P

(�)
j ∈Ej

is the proxy

secret key dij = si + xjH1(0||yi||yj ||ω , ri) mod q; and the public key related to
this secret key dij is gdij = ri(yiyj)H1(0||yi||yj ||ω , ri) mod p.

• The protocol DPSTS works as follows: to jointly compute a proxy signature
on a message M , on behalf of entity Ei, members of the entity Ej employ their
shares of the proxy secret key dij and the hash function H2 to compute the
Schnorr signature

(r, s) = Dist Sch Sig(Ej , Γj , 0||M ||yi||yj ||ω||ri , {d(�)
ij }P

(�)
j ∈Ej

, H2) .

The final proxy signature is pσ = (ω, ri, yj , (r, s)).
• To verify (protocol PVTS) the correctness of a proxy signature pσ =

(ω, ri, yj , (r, s)) on a message M , where the original signer entity has public key
yi, the recipient must check the following equation (Schnorr verification with
public key gdij and hash function H2):

gs = r
[
ri(yiyj)H1(0||yi||yj ||ω , ri)

]H2(0||M ||yi||yj ||ω||ri , r)
mod p .

• The proxy identification algorithm IDTS takes as input a proxy signature
pσ = (ω, ri, yj , (r, s)) and returns the entity whose public key is yj .

4.1 Length of the Signatures

Let us consider the trivial solution to the proxy signature problem that we
mentioned in the Introduction. A distributed proxy signature on a message M
computed by an entity Ej on behalf of an entity Ei would consist in a tuple(
ω, (ri, si), M, (r, s)

)
, where ω is the delegation message, (ri, si) is the Schnorr’s

signature on ω computed by members of Ei in a distributed way, and (r, s) is the



Revisiting Fully Distributed Proxy Signature Schemes 367

Schnorr’s signature on message M computed by members of Ej in a distributed
way.

On the other hand, if we consider the proxy signatures which result from the
scheme described in this section, they have the form pσ =

(
ω, ri, M, (r, s)

)
. Note

that we have erased the term yj corresponding to the public key of the proxy
signer, because this information can be included in ω or in M . We can see that
these signatures are shorter than in the trivial solution, because the term si from
the Schnorr’s signature on ω is not needed at all. Therefore, our solution is more
efficient than the trivial one.

4.2 Security Analysis

The following theorem asserts that this fully distributed proxy signature scheme
is secure in the model introduced in Section 3.1. We prove this fact by reduction
to the security of the individual triple Schnorr scheme in the security model for
individual proxy signatures (see Section 2.1).

Theorem 2. If the discrete logarithm problem is hard, then the fully distributed
proxy signature scheme T Sch Dist Pro Sig is secure in the random oracle
model.

Proof. Let us assume there exists an adversary DA against this fully distributed
proxy signature scheme such that its success probabilitySuccDA

T Sch Dist Pro Sig(k)
is non-negligible. We can then construct an adversary A and an experiment
ExpA

T Sch Pro Sig(k) against the individual scheme T Sch Pro Sig, following
the definition and notation of [2], as follows:

The public parameters (p, q, g, H1, H2) are generated, along with a public
and secret key pair (x1, y1) for user U1, where y1 = gx1 mod p. A counter m is
initialized to 1, an empty set Prox and an empty array Array

(1)
skp are created.

The value y1 is given to the adversary A.
Now A executes SIM1 (see Fact 1) with input y1 and the information re-

lated to the adversary DA (entity E1, access structure Γ1, set B1 of corrupted
players...). Therefore A obtains values which are indistinguishable from those
that DA would have seen in a real execution of KTS = Jo DL KG which would
have produced y1 as the resulting public key.

Then, A requests DA to run the experiment D ExpDA
T Sch Dist Pro Sig(k).

For that, A must provide DA with the information obtained from SIM1 in
the previous step, and also simulate the real environment of DA during the
experiment D ExpDA

T Sch Dist Pro Sig(k), replying all its queries and actions:

1. If DA wants to register a new entity Ei, where i = m+1, then A registers a
new user Ui (he is allowed to do so, see the security model in [2]), obtaining
a pair (xi, yi). Then A executes SIM1 with input yi and gives the outputs to
DA. The counter is incremented, m := m+1, and an empty array Array

(i)
skp

is created.
2. When DA requires entity E1 to delegate to entity Ei (with delegation mes-

sage ω), then A requires user U1 to delegate to user Ui. Therefore, A obtains



368 J. Herranz and G. Sáez

a valid Schnorr signature, under public key y1 and hash function H1, of the
message 0||y1||yi||ω. Then A executes SIM2 (see Fact 2) with input this pair
message-signature and the information obtained in the first execution (with
input y1) of SIM1. The output of SIM2 perfectly simulates the view of DA
during these queries. The set Prox increases to Prox ∪ {pki}.

3. When DA requires some entity Ei to delegate to entity E1, then A requires
user Ui to delegate to user U1. If the delegation message is ω, then A obtains
a valid Schnorr signature (ri, si), under public key yi and hash function H1,
of the message 0||yi||y1||ω. Now A executes SIM2 for this pair message-
signature. Furthermore, for all corrupted player P

(b)
1 ∈ B1 ⊂ E1, A computes

the corresponding share

d
(b)
i1 = si + x

(b)
1 H1(0||yi||y1||ω , ri) mod q

of the new proxy secret key, where x
(b)
1 are the shares of the secret key of

entity E1, obtained in the first execution of SIM1. In this way, A simulates
in a perfect way the view of DA for these queries. The first available position
of Array

(i)
skp is filled with these shares d

(b)
i1 and other random shares for the

non-corrupted players (since DA has not full access to these arrays, it is
not important what is put in the places corresponding to the non-corrupted
players).

4. When DA requires entity E1 to delegate to itself, A requires user U1 to desig-
nate himself. If the delegation message is ω, then A obtains a valid Schnorr
signature (r1, s1), under public key y1 and hash function H1, of message
0||y1||y1||ω. Then A executes SIM2 for this pair message-signature. Again,
for all corrupted players P

(b)
1 ∈ B1 ⊂ E1, A computes the corresponding

share
d
(b)
11 = s1 + x

(b)
1 H1(0||y1||y1||ω , r1) mod q

of the new proxy secret key. These values and the output of SIM2 perfectly
simulate the view of DA during these queries. The next available position of
Array

(1)
skp is filled with the computed shares for the corrupted players in B1

and with random numbers for the non-corrupted players.
5. When DA requires E1 to compute a distributed Schnorr signature on a

message M , A queries user U1 to compute a Schnorr signature on message
M (the same message and the same public key). The resulting signature and
the message are given as inputs to SIM2. The outputs simulate the view of
DA during the execution of the distributed Schnorr signature protocol.

6. If DA requires entity E1 to compute a proxy signature of message M on
behalf of entity Ei (which has previously delegated to Ei by publishing a
signature (ri, si) on a delegation message ω), then A requires user U1 to
compute a proxy signature of message M on behalf of user Ui (who, of
course, has previously delegated to U1 by publishing exactly the signature
(ri, si) on the delegation message ω). The result is a valid Schnorr signature
(r, s), of message 0||M ||yi||y1||ω||ri, under hash function H2 and public key

ri(yiy1)H1(0||yi||y1||ω , ri) .



Revisiting Fully Distributed Proxy Signature Schemes 369

Then A can execute SIM2 with input this message-signature pair, along with
other information which A had obtained when Ei performed the considered
delegation on E1 (for example, the shares d

(�)
i1 of the corresponding secret

proxy key). The output of SIM2 simulates the view of DA in this phase of
the experiment.

By assumption, and since A perfectly simulates the environment of DA, one
of the following facts happens with non-negligible probability:

• DA outputs (M, (r, s)) satisfying VTS(M, (r, s), y1) = 1, such that M was
not queried by DA to be signed as a standard distributed signature by entity
E1 (action 5). Therefore, A did not query user U1 to sign message M in the
standard way, either, and so the output of the experiment ExpA

T Sch Pro Sig(k),
performed by A, would be 1 (successful forgery of a standard signature).

• DA outputs a forgery of a proxy signature by entity E1, on behalf of entity
Ei, of a message that was not queried by DA to be signed by E1 on behalf of Ei

during the experiment. Therefore, A obtains a forgery of a proxy signature by
U1, on behalf of Ui, of a message that A did not query user U1 to sign on behalf
of Ui. That is, the output of ExpA

T Sch Pro Sig(k) would be again 1.
• DA outputs a forgery of a proxy signature by some entity Ei �= E1 (which

was not designated by entity E1 at any time during the experiment) on behalf
of entity E1. Analogously, user Ui was never designated by user U1 during the
experiment performed by A, but A obtains a valid proxy signature by user Ui �=
U1 on behalf of user U1. Thus, the output of ExpA

T Sch Pro Sig(k) would be 1.

Summing up, we have SuccA
T Sch Pro Sig(k) ≥ SuccDA

T Sch Dist Pro Sig(k).
But we are assuming that SuccDA

T Sch Dist Pro Sig(k) is non-negligible. So we
could conclude that SuccA

T Sch Pro Sig(k) is also non-negligible, which contra-
dicts Theorem 1. Therefore, we prove that there can not exist an adversary DA
with non-negligible probability of successfully attacking the scheme T Sch Dist
Pro Sig, and so this scheme is provably secure (in the random oracle model, as
it is the individual triple Schnorr scheme). This completes the proof. ��

5 Conclusion
In this work we have taken one more step in the formalization of proxy signature
schemes, by giving a security model for fully distributed proxy signature schemes.
This new model is the natural extension of the security model introduced in [2]
for individual proxy signature schemes with one level of delegation.

Furthermore, we present a fully distributed proxy signature scheme which is
proved to be secure in the new model. The scheme is the distributed version of
a individual scheme proposed in [2].

There are a lot of proxy signature schemes (individual or distributed) in the
literature whose security has not been formally proved yet. We think that the two
above-mentioned models, the one in [2] for individual proxy signature schemes
and the one in this work for distributed schemes, along with the model in [8] for
schemes with several levels of delegation, should be considered from now on, in
order to prove the security of both existing and future schemes.



370 J. Herranz and G. Sáez

References

1. G.R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS’79, pp. 313–
317 (1979).

2. A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signa-
ture schemes for delegation of signing rights. Manuscript available at
http://eprint.iacr.org/2003/096/

3. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. Proceedings of Eurocrypt’99, LNCS
1592, pp. 295–310 (1999).

4. J. Herranz and G. Sáez. Verifiable secret sharing for general access structures,
with application to fully distributed proxy signatures. Proceedings of Financial
Cryptography Conference 2003, LNCS 2742, pp. 286–302 (2003).

5. S. Kim, S. Park and D. Won. Proxy signatures, revisited. Proceedings of ICISC’97,
pp. 223–232 (1997).

6. J.Y. Lee, J.H. Cheon and S. Kim. An analysis of proxy signatures: is a secure
channel necessary? Proceedings of CT-RSA Conference 2003, LNCS 2612, pp.
68–79 (2003).

7. B. Lee, H. Kim and K. Kim. Strong proxy signature and its applications. Proceed-
ings of SCIS’01, Vol. 2/2, pp. 603–608 (2001).

8. T. Malkin, S. Obana and M. Yung. The hierarchy of key evolving signatures and
a characterization of proxy signatures. Proceedings of Eurocrypt’04, LNCS 3027,
Springer-Verlag, pp. 306-322 (2004).

9. M. Mambo, K. Usuda and E. Okamoto. Proxy signatures: delegation of the power
to sign messages. IEICE Transactions Fundamentals, Vol. E79-A, No. 9, pp. 1338–
1353 (1996).

10. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, Vol. 13, Num. 3, pp. 361–396 (2000).

11. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
Vol. 4, pp. 161–174 (1991).

12. A. Shamir. How to share a secret. Communications of the ACM, No. 22, pp. 612–
613 (1979).

13. D.R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a
(t, n) threshold scheme for implicit certificates. Proceedings of ACISP’01, LNCS
2119, Springer-Verlag, pp. 417–434, (2001).

14. H.M. Sun and B.T. Hsieh. On the security of some proxy signature schemes.
Manuscript available at http://eprint.iacr.org/2003/068/ (2003).

15. K. Zhang. Threshold proxy signature scheme. Proceedings of the 1997 Information
Security Workshop, Japan, pp. 191–197 (1997).



New ID-Based Threshold Signature Scheme
from Bilinear Pairings�

Xiaofeng Chen1, Fangguo Zhang1, Divyan M. Konidala2, and Kwangjo Kim2

1 School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510275, P.R. China

{isschxf, isdzhfg}@zsu.edu.cn
2 International Research center for Information Security (IRIS),

Information and Communications University(ICU),
103-6 Munji-dong, Yusong-ku, Taejon, 305-714 Korea

{divyan, kkj}@icu.ac.kr

Abstract. ID-based public key systems allow the user to use his/her
identity as the public key, which can simplify key management proce-
dure compared with CA-based public key systems. However, there is an
inherent disadvantage in such systems: the problem of private key escrow,
i.e., the “trusted” Private Key Generator (PKG) can easily imperson-
ate any user at any time without being detected. Although the problem
of escrowing the private key may be reduced by distributing the trust
onto multiple centers, it will decrease the efficiency of the systems. Chen
et al. first proposed a novel ID-based signature scheme without trusted
PKG from bilinear pairings [10], i.e., there is only one PKG who is not
assumed to be honest in their scheme. However, the signature scheme
cannot be extended to a threshold one. In this paper we propose another
ID-based signature scheme without trusted PKG from bilinear pairings.
Moreover, we propose an ID-based threshold signature scheme without
trusted PKG, which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity
rather than the master key of PKG is shared.

Keywords: ID-based threshold signature, Bilinear pairings, Key es-
crow.

1 Introduction

The idea of threshold cryptography is to distribute the secret information (i.e.,
a secret key) and computation (i.e., decryption or signature generation) among
multi parties in order to prevent a single point of failure or abuse. For example,
let Alice be the president of a committee, she shared her power of signing (or de-
crypting) among a number of servers in such a way that only more than a certain

� This work was supported by a grant No.R12-2003-004-01004-0 from the Ministry
of Science and Technology, Korea and the National Natural Science Foundation of
China (No. 60403007).

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 371–383, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



372 X. Chen et al.

number of secret shares can be used to sign a message or decrypt a ciphertext on
behalf of her. There are plenty of research on threshold cryptographic schemes
under CA-based public key setting [6, 13, 21, 24].

In 1984, Shamir [22] introduced the concept of ID-based systems, which sim-
plifies key management procedure of CA-based PKI. The idea of ID-based sys-
tems is that the identity information of the user I acts as his/her public key
P, and a trusted third party, called Private Key Generator (PKG), calculates
the private key for the user. ID-based systems can be a good alternative for
CA-based systems from the viewpoint of efficiency and convenience.

The bilinear pairings, namely the Weil pairing and the Tate pairing of al-
gebraic curves, are important tools for research on algebraic geometry. The
use of them in cryptography goes back to the results of Menezes-Okamoto-
Vanstone [19] and Frey-Rück [11]. However, their works were to attack ellip-
tic curve or hyperelliptic curve cryptosystems (i.e., using pairings to transform
the ECDLP or HCDLP into a discrete logarithm problem in the multiplicative
group of a finite field). During the last couple of years, the bilinear pairings
have initiated some completely new fields in cryptography, making it possible
to realize cryptographic primitives that were previously unknown or impracti-
cal [4, 5]. More precisely, they are important tools for construction of ID-based
cryptographic schemes [3, 4, 9, 17, 20, 23, 25].

However, there are some drawbacks in ID-based systems [9, 14, 17]. The most
criticism against ID-based systems is that PKG knows the private key of all users,
so he is able to impersonate any user to sign a document or decrypt an encrypted
message. It implies that the PKG must be trusted unconditionally otherwise the
systems will soon be collapsed. However, it would be difficult to assume the
existence of a trusted party in an ad hoc network, where the communication
parties are changing frequently.

Boneh and Franklin [4] proposed that the threat from escrowing the private
key could be reduced by using “distributed PKGs”. On the other hand, they
briefly mentioned that each PKG of the “distributed PKGs” can act as a de-
cryption (similarly, a signature generation) server. However, it is a disadvantage
in Boneh and Franklin’s scheme for the PKG to be involved in the particular
applications, which is opposed to the Shamir’s original proposal that the service
of the PKG is limited to issue private keys. The original purpose of “distributed
PKGs” is to prevent a single dishonest PKG possessing the users’ private key,
rather than to distribute a user’s private key. Libert and Quisquater [18] pro-
posed a somewhat different method where one PKG plays a role as a dealer.
However, the PKGs in such schemes are still involved in particular applications.

Until very recently, Baek and Zheng [1] suggested a new approach for ID-
based threshold decryption in which the private key associated with an identity
rather than the master key of PKG is shared. Moreover, they [2] first proposed
an ID-based threshold signature scheme without distributed PKGs. However,
it still suffers the problem of private key escrow as the traditional ID-based
systems. Though the scheme [2] can incorporate the distributed PKGs techniques
to solve the key escrow problem, we argue that using distributed PKGs will



New ID-Based Threshold Signature Scheme from Bilinear Pairings 373

increase the communication and computation cost of the systems. To the best
of our knowledge, there seems no ID-based threshold signature scheme without
distributed PKGs which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity rather
than the master key of PKG is shared.

Recently, a novel ID-based signature without the trusted PKG from bilin-
ear pairings [10] is proposed. There is only one PKG who is not assumed to
be trusted in the systems, which combines the advantages of both CA-based
systems (no key escrow) and ID-based systems (no certificate) while removing
their disadvantages. However, it seems difficult to extend the signature scheme
to a threshold one. In this paper we propose another ID-based signature scheme
without the trusted PKG from bilinear pairings. Moreover, we extend it to an
ID-based threshold signature scheme without distributed PKGs which overcomes
the problem of key escrow. Meanwhile, we adopt the approach that the private
key associated with an identity rather than the master key of PKG is shared in
the proposed scheme.

The rest of the paper is organized as follows: Some preliminaries are given in
Section 2. Our new ID-based signature scheme from bilinear pairings is given in
Section 3. The proposed ID-based threshold signature scheme is given in Section
4 and the analysis of our scheme is given in Section 5. Finally, concluding remarks
will be made in Section 6.

2 Preliminaries

In this Section, we will briefly describe the basic definition and properties of bi-
linear pairings and gap Diffie-Hellman group. We also introduce ID-based public
key setting and a knowledge proof for the equality of two discrete logarithm from
bilinear pairings.

2.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. Let a and b be elements
of Z∗

q . We assume that the discrete logarithm problem (DLP) in both G1 and
G2 is hard. A bilinear pairing is a map e : G1 × G1 → G2 with the following
properties:

1. Bilinear: e(aP, bQ) = e(P, Q)ab;
2. Non-degenerate: There exists P, Q ∈ G1 such that e(P, Q) �= 1;
3. Computable: For all P, Q ∈ G1, there is an efficient algorithm to compute

e(P, Q).

2.2 Gap Diffie-Hellman Group

Let G1 be a cyclic additive group generated by P with the prime order q. Assume
that the inversion and multiplication in G1 can be computed efficiently. We
introduce the following problems in G1.



374 X. Chen et al.

1. Discrete Logarithm Problem (DLP): Given two elements P and Q, to find
an integer n ∈ Z∗

q , such that Q = nP whenever such an integer exists.
2. Computation Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈

Z∗
q , to compute abP.

3. Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈
Z∗

q , to decide whether c ≡ ab mod q.

We call G1 a gap Diffie-Hellman group if DDHP can be solved in polyno-
mial time but there is no polynomial time algorithm to solve CDHP with non-
negligible probability. Such group can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings. For more details, see [4, 7, 12, 17].

In the following we always define G1 be a gap Diffie-Hellman group of prime
order q, G2 be a cyclic multiplicative group of the same order q and a bilinear
pairing e : G1 × G1 → G2.

2.3 ID-Based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such
as name, address and email etc., rather than an arbitrary string to be used his
public key. The private key of the user is calculated by PKG and sent to the
user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as
follows:
– Setup: PKG chooses a random number s ∈ Z∗

q and set Ppub = sP. Define
a cryptographic hash function H2 : {0, 1}∗ → G1. The center publishes
system parameters params = {G1, G2, e, q, P, Ppub, H2}, and keep s as the
master-key, which is known only himself.

– Extract: A user submits his/her identity information ID to PKG. PKG
computes the user’s public key as QID = H2(ID), and returns SID = sQID

to the user as his/her private key.

2.4 ID-Based Knowledge Proof for the Equality of Two Discrete
Logarithm from Bilinear Pairings

A prover with possession a secret number β ∈ Zq wants to show that logg u =
logh v while without exposing β, where u = gβ , v = hβ . Chaum and Pedersen [8]
first proposed an interactive protocol to solve this problem. Motivated by this
idea, Baek and Zheng [1, 2] construct a new ID-based knowledge proof for the
equality of two discrete logarithm from bilinear pairings.

Define g = e(P, QID), u = e(Ppub, QID), h = e(L, QID) and v = e(L, SID),
where P and L are independent points of G1. The following protocol presents a
knowledge proof of that logg u = logh v. An interesting property of this proof is
that even the prover does not know the discrete logarithm logg u = logh v (just
be convinced that it equals to the master-key s of the PKG), which is different
from the previous protocols. With the notation of [5], < g, h, u, v > is called a
Diffie-Hellman tuple.



New ID-Based Threshold Signature Scheme from Bilinear Pairings 375

– The prover randomly chooses an element Q in G1 and computes a = e(P, Q),
b = e(L, Q). The prover sends (a, b) to the verifier.

– The verifier randomly chooses an integer c ∈ Zq and sends c to the prover.
– The prover computes S = Q + cSID and sends S to the verifier.
– The verifier checks whether e(P, S) = auc and e(L, S) = bvc. If both the

equations hold, returns “accept”; else, returns “reject”.

As claimed in [1, 2], the above protocol can be easily converted a non-interactive
knowledge proof:

– The prover randomly chooses an element Q in G1 and computes a = e(P, Q),
b = e(L, Q).

– Let c = H(a, b, h, v), the prover computes S = Q + cSID and sends (a, b, S)
to the verifier.

– The verifier computes c = H(a, b, g, h) and checks whether e(P, S) = auc

and e(L, S) = bvc. If both the equations hold, returns “accept”; else, returns
“reject”.1

3 New ID-Based Signature Scheme Without Trusted
PKG

In this section, we first present our new ID-based key setting from bilinear pair-
ings, and then propose a concrete signature scheme without the trusted PKG to
solve the problem of key escrow, i.e., we do not use the distributed PKGs in our
system and the single PKG is assumed no longer to be a trusted party.

Define three cryptographic hash functions H1 : {0, 1}∗ × G1 → G1, H2 :
{0, 1}∗ → G1 and H3 : G2

4 → Zq.

3.1 New ID-Based Public Key Setting from Bilinear Pairings

[Setup]

PKG chooses a random s ∈ Z∗
q and sets Ppub = sP . The public parameters

of the system are params = {G1, G2, e, q, P, Ppub, H1, H2, H3}. PKG keeps s se-
cretly as the master-key.

[Extract]
A user submits his (or her) identity information ID and authenticates himself

(or herself) to PKG. The user then randomly chooses an integer r ∈ Z∗
q as his

long-term private key and sends rP to PKG. PKG computes SID = sQID =
sH1(ID||t, rP ) and sends it to the user via a secure channel, where t is the life
span of r. The user’s private key pair are SID and r and the public key is ID.

The user should update his key pair after period of t. For the sake of sim-
plicity, we do not discuss this problem here.

1 The prover also can send (c, S) to the verifier. The verifier computes a′ = e(P, S)/uc,
b′ = e(L, S)/vc and c′ = H(a′, b′, h, v). If c = c′, the verifier accepts the proof; else
reject the proof. Therefore, the length of proof is decreased.



376 X. Chen et al.

3.2 New ID-Based Signature Scheme from Bilinear Pairings

Chen et al. [10] have proposed an ID-based signature scheme without the trusted
PKG based on Cha and Cheon’s signature scheme [7]. But it is unsuitable for
designing threshold signature scheme. Here we propose a new ID-based signature
scheme without the trusted PKG and then extend it to a threshold scheme.

[Signing]
Suppose that the message to be signed is m and the signer’s identity is ID.

– The signer computes T = rH2(m).
– The signer computes v = e(H2(m), SID).
– Let g = e(P, QID), u = e(Ppub, QID) and h = e(H2(m), QID), the signer

proves that (g, h, u, v) is a Diffie-Hellman tuple by using a non-interactive
knowledge proof for the equality of two discrete logarithm. Let the proof
be (a = e(P, Q), b = e(H2(m), Q), S = Q + cSID), where Q is a randomly
chosen element in G1 and c = H3(a, b, h, v).

Then (T, v, rP ) and the corresponding proof (a, b, S) is the signature of the
message of m.

[Verification]
The verifier computes QID = H1(ID||t, rP ), h = e(H2(m), QID), u = e(Ppub,

QID), c = H1(a, b, h, v). He accepts the signature if the following equations hold:

e(T, P ) = e(H2(m), rP )

e(P, S) = auc, e(H2(m), S) = bvc

3.3 Security Analysis of Our Scheme

Theorem 1. The proposed ID-based signature scheme reaches Girault’s trusted
level 3.

Proof. Suppose PKG wants to impersonate an honest user whose identity infor-
mation is ID. He can do as follows:

– PKG randomly chooses r′ ∈ Z∗
q and computes SID′ = sH1(ID||t, r′P ).

– He then performs the above signing protocol for the message m.
– Output (T ′, v′, r′P, a′, b′, S′).

Because e(T ′, P ) = e(H2(m), r′P ), e(P, S′) = a′u′c, and e(H2(m), S′) =
b′v′c, where u′ = e(Ppub, Q

′
ID), c = H3(a′, b′, e(H2(m), Q′

ID), v′), and Q′
ID =

H1(ID||t, r′P ), PKG successfully forged a “valid” signature of the target user
for the message m.

However, the user can provide a proof to convince that the signature is
forged by PKG, which is similar to CA-based systems.2 He first sends rP to

2 In the CA-based systems, CA also can forge a user’s certificate and impersonate the
user to communicate with others. However, the user can accuse the dishonest CA
because there exist his two different “valid” certificates issued by the same CA.



New ID-Based Threshold Signature Scheme from Bilinear Pairings 377

the arbiter, and then provides a “knowledge proof” that he knows SID =
sH1(ID||t, rP ) : the arbiter randomly chooses a secret integer a ∈ Zq and sends
aP to the user; the user then computes e(SID, aP ). If the equation e(SID, aP ) =
e(H1(ID||t, rP ), Ppub)a holds, i.e., identity ID corresponds to rP and r′P for a
same period t, the arbiter deduces that PKG is dishonest because the master-key
s is only known to him.

Therefore, our scheme reaches Girault’s trusted lever 3 [16], i.e., the author-
ity does not know the private key of the users, and it can be proven that the
authority generates false witness if he does so. ��

Theorem 2. In the random oracle, our signature scheme is existentially un-
forgeable against adaptively chosen message and ID attacks under the assumption
of CDHP in G1 is intractable.

Proof. In our scheme, the partial signature T is the “real” signature of the user
for the message. The knowledge proof (a, b, S) and v can be used to convince
the verifier that rP correspondences to ID for the period t. We consider the
following two kinds of adversaries:

Case 1: Active Adversary
Since PKG is not a trusted party, we consider that an active adversary can
collude with PKG. For a randomly chosen target user whose identity is ID.
The adversary can know the target user’s long-term public key rP and partial
private key SID from PKG. So, it is trivial for the adversary to generate v and
the proof (a, b, S) for any message. If he can compute the corresponding V for a
message m, he can successfully forge a signature of the user for the message m.
We consider the following game:

Suppose the adversary can query to H2 adaptively at most k times. Suppose
the i-th input of query is mi and he gets the corresponding signature Ti, here
1 ≤ i ≤ k. Finally, he outputs a new pair (m, T ). We say that the adversary
wins the game if m is not queried and e(T, P ) = e(H2(m), rP ).

If there exists an algorithm A0 for an adaptively chosen message attack to
our scheme with a non-negligible probability, we can construct an algorithm A1
as follows:

– choose an integer u ∈ {1, 2, · · · , k}. Define Sign(H2(mi)) = Ti.
– For i = 1, 2, · · · , k, A1 responds to A0’s queries to H2 and Sign, while for

i = u, A1 replaces mu with m.
– A0 outputs (mout, Vout).
– If mout = m and the signature T is valid, A1 outputs (m, T ). Otherwise,

outputs Fail.

Note that u is randomly chosen, A0 knows nothing from the queries result.
Also, since H2 is a random oracle, the probability that the output of A0 is valid
without query of H2(m) is negligible. Let H2(m) = eP , we obtain T = reP from
P , rP and eP , i.e., we solved CDHP in G1.

Actually, V can be regarded as the short signature of the message m and
(P, rP, H2(m), T ) is a valid Diffie-Hellman tuple. We know that the probability



378 X. Chen et al.

of the adversary can successfully forge a valid signature is negligible. For more
details, see reference [5].

Case 2: Passive Adversary
A passive adversary cannot collude with the PKG. In this case, for a tar-
get user whose identity is ID, the adversary cannot know the information of
SID = sH1(ID||t, rP )(i.e., a “certificate” in CBE scheme [15]) from PKG. In
the following we will prove that his success probability of forgery of a valid
signature is negligible, which is similar to Cha-Cheon’s proof [7].

As we mentioned above, an identity ID only corresponds to one unique rP
for a period of time t, so (ID, rP ) can be extracted at most once. Define qH1 is
the maximum number of queries to H1. If there exists an algorithm A0 for an
adaptively chosen message and ID attack to our scheme with a non-negligible
probability, we can construct an algorithm A1 as follows:

– choose an integer u ∈ {1, 2, · · · , qH1}. Define (IDi, riP ) the i-th input of
query H2.

– A1 responds to A0’s queries to H1, H2, H3, Extract, and Signing, while
for i = u, A1 replaces IDu, ruP with ID, rP .

– A0 outputs (IDout, routP, m, T, v, a, b, S).
– If IDout = ID and the signature is valid, A1 outputs (ID, rP, m, T, v, a, b, S).

Otherwise, outputs Fail.

Note that u is randomly chosen, A0 knows nothing from the queries result.
Also, since H1, H2 and H3 are random oracles, the probability that the output
of A0 is valid without query of H1(ID||t, rP ) is negligible. So, A1 can be used
for an adaptively chosen message and given ID attack to our scheme with a non-
negligible probability. We then use A1 to construct an algorithm A2 to solve
CDHP in G1:

– Given P, sP, lP and let Ppub = sP . Choose integers xi ∈ Zq and let (IDi, riP )
the i-th input of query H. Define

H(IDi||t, riP ) =
{

lP, if IDi = ID
xiP, otherwise

– A2 responds to A1’s queries to H1, H2, H3, Extract, and Signing.
– If A1 outputs a valid message-signature pair (ID, rP, m, T, v, a, b, S), A2 then

replays with the same random tape but a different choice of H3, for example
H

′
3. A2 outputs two valid message-signature pairs (ID, rP, m, T, v, a, b, S)

and (ID, rP, m, T, v, a, b, S′).

Note that S = Q+cSID and S′ = Q+c′SID, we have SID = (c−c′)−1(S−S′).
Therefore, we can obtain SID = slP from P , sP and lP , i.e., we solved CDHP
in G1. ��



New ID-Based Threshold Signature Scheme from Bilinear Pairings 379

4 ID-Based Threshold Signature Scheme Without
Trusted PKG from Bilinear Pairings

Although the scheme [2] can incorporate the distributed PKGs, we argue that
it will decrease the efficiency of the scheme to solve the key escrow problem by
using distributed PKGs. In the following, based on the approach that the private
key associated with an identity rather than the master key of PKG is shared,
we propose an ID-based threshold signature scheme without distributed PKGs
which overcomes the key escrow problem.

Private Key Distribution: The public key setting is the same as above. Sup-
pose the private key of the user with identity ID is r and SID. He distributes
his private key to n servers as follows:

– Chooses ai ∈R Zq and Ri ∈R G1 for 1 ≤ i ≤ t − 1.
– Let

h(x) = r + a1x + a2x
2 + · · ·+ at−1x

t−1

H(x) = SID + xR1 + x2R2 + · · ·+ xt−1Rt−1

Computes the distributed private key h(i) = ri, H(i) = Si and the cor-
responding verification key li = riP , ui = e(P, Si) and then sends them
to server Γi for 1 ≤ i ≤ n. Note that h(x) =

∑
j∈Φ cΦ

xjrj and H(x) =∑
j∈Φ cΦ

xjSj , where cΦ
xj =

∏
l∈Φ,l =j

x−l
j−l , Φ ⊂ {1, 2, · · · , n} be a set and

|Φ| ≥ t.
– The server Γi verifies the validity of li, ui and publishes them while keeps

ri, Si secret.

Signing: Each of {Γj}j∈Φ performs the following to jointly create a signature
for a message m.

– Computes and broadcasts Tj = rjH2(m).
– Computes and broadcasts vj = e(H2(m), Sj).
– Computes and broadcasts aj = e(P, Qj), bj = e(H2(m), Qj), where Qj is a

randomly chosen element in G1.
– Computes a =

∏
j∈Φ a

cΦ
0j

j , b =
∏

j∈Φ b
cΦ
0j

j , v =
∏

j∈Φ v
cΦ
0j

j .
– Broadcasts Wj = Qj + cSj , where c = H(a, b, h, v) and h = e(H2(m), QID).
– Each server i ∈ Φ checks whether e(Tj , P ) = e(H2(m), lj), e(P, Wj) = aju

c
j

and e(H2(m), Wj) = bjv
c
j for j ∈ Φ and j �= i. If the equations fails for some

j, then broadcasts Complaint against server j.
– If all the servers are honest, computes T =

∑
j∈Φ cΦ

0jTj , S =
∑

j∈Φ cΦ
0jWj .

Then (T, v, rP ) and the corresponding proof (a, b, S) is the signature of the
message of m.

Verification: The verifier first computes Q = H2(ID, rP ), h = e(H2(m), QID),
u = e(Ppub, QID), c = H1(a, b, h, v). He accepts the signature if the following
equations hold:

e(T, P ) = e(H2(m), rP )

e(P, S) = auc, e(H2(m), S) = bvc



380 X. Chen et al.

5 Analysis of Our Threshold Signature Scheme

5.1 Correctness

Note that
T =

∑
j∈Φ

cΦ
0jTj =

∑
j∈Φ

cΦ
0jrjH2(m) = rH2(m)

S =
∑
j∈Φ

cΦ
0jWj =

∑
j∈Φ

cΦ
0j(Qj + cSj)

Therefore, we have
e(T, P ) = e(H2(m), rP )

e(P, S) = e(P,
∑
j∈Φ

cΦ
0j(Qj + cSj)) = e(P,

∑
j∈Φ

cΦ
0jQj + c

∑
j∈Φ

cΦ
0jSj)

= e(P,
∑
j∈Φ

cΦ
0jQj)e(P, SID)c = auc

and

e(H2(m), S) = e(H2(m),
∑
j∈Φ

cΦ
0j(Qj + cSj)) = e(H2(m),

∑
j∈Φ

cΦ
0jQj + c

∑
j∈Φ

cΦ
0jSj)

= e(H2(m),
∑
j∈Φ

cΦ
0jQj)e(H2(m), SID)c = bvc

5.2 Robustness

Theorem 3. The proposed ID-based threshold signature scheme is robust, i.e.,
the scheme outputs correctly even in the presence of a malicious adversary that
makes the corrupted servers deviate from the normal execution.

Proof. The robustness of “Private Key Distribution” is trivial for each servers
can validate his private key share using the published verification key share.

In the “Signing” protocol, if all the following equations hold, the server Γj

is sure not to be corrupted by a malicious adversary: e(Tj , P ) = e(H2(m), lj),
e(P, Wj) = aju

c
j and e(H(m), Wj) = bjv

c
j . ��

5.3 Security

Motivated by Gennaro et al ’s idea for proving the security of the threshold DSS
signature scheme, Baek and Zheng [2] defined “Simulatability” of the ID-based
threshold signature and proved the relationship between the security of ID-based
threshold signature and that of ID-based signature.

Definition 1. An ID-based threshold signature scheme is said to be simulatable
if the following conditions hold.



New ID-Based Threshold Signature Scheme from Bilinear Pairings 381

1. “Private Key Distribution” is simulatable: Given the system parameters params
and the identity ID, there exists a simulator which can simulate the view of the
adversary on an execution of “Private Key Distribution”.
2. “Signing” is simulatable: Given the system parameters params the identity
ID, the message m, the corresponding signature σ, t− 1 private key shares and
the corresponding verification key shares, there is a simulator which can simulate
the view of the adversary on an execution of “ Signing”.
Theorem 4. If an ID-based threshold signature scheme is simulatable and the
ID-based signature is secure in the sense of unforgeability, then the ID-based
threshold signature scheme is also secure in the sense of unforgeability.

Therefore, we only need to prove our ID-based threshold signature scheme is
simulatable.

Lemma 1. The proposed ID-based threshold signature scheme is simulatable.

Proof. (sketch) Without loss of generality, we assume that the servers corrupted
by the adversary are Γi, where 1 ≤ i ≤ t − 1. Firstly we prove “Private Key
Distribution” is simulatable. Given the system parameters params and the iden-

tity ID, the adversary computes u = e(Ppub, QID). Note that u =
∏t

j=1 u
cΦ
0j

i ,
so the adversary can compute u(t) and the simulated value u(t) is correct and
identically to the Γt as the real execution of the “Private Key Distribution”.
Similarly, the simulated value rtP can be generated correctly.

Then we prove “Signing” is simulatable. Given the system parameters params
the identity ID, the message m, the corresponding signature σ = (T, v, rP, a, b, S),
t − 1 private key shares (ri, Si) and the corresponding verification key shares
(riP, e(P, Si)). The adversary computes Ti = riH2(m). Let H(x) be a poly-
nomial like function of degree t − 1 such that H(0) = T and H(i) = Ti for
1 ≤ i ≤ t − 1. The adversary can compute and broadcast T (i) = H(i) for
t ≤ i ≤ n. Similarly, the adversary computes and broadcasts vi, ai, bi, Wi for
t ≤ i ≤ n. ��
With Theorem 2, Theorem 4 and Lemma 1, we can prove the following:

Theorem 5. The proposed ID-based threshold signature scheme is secure in the
sense of unforgeability.

6 Concluding Remarks

In this paper, we propose a new ID-based signature scheme without trusted
PKG. In our scheme, there is only one PKG who is not assumed to be trusted.
We argue that the proposed scheme combines the advantages of both ID-based
systems and CA-based systems. We then extend it to be an ID-based threshold
signature scheme, which simultaneously overcomes the problem of key escrow
and adopts the approach that the private key associated with an identity rather
than the master key of PKG is shared. Our scheme is superior to those schemes
with distributed PKGs in terms of both the communication and computation
complexity.



382 X. Chen et al.

Acknowledgement

The authors are grateful to Joonsang Baek for his valuable suggestions and
comments to this paper.

References

1. J. Baek and Y. Zheng, Identity-based threshold decryption, PKC 2004, LNCS 2947,
pp.248-261, Springer-Verlag, 2004.

2. J. Baek and Y. Zheng, Identity-based threshold signature scheme from the bilinear
pairings, IAS’04 track of ITCC’04, pp.124-128, IEEE Computer Society, 2004.

3. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott, Efficient algorithms for
pairings-based cryptosystems, Advances in Cryptology-Crypto 2002, LNCS 2442,
pp.354-368, Springer-Verlag, 2002.

4. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairings, Ad-
vances in Cryptology-Crypto 2001, LNCS 2139, pp.213-229, Springer-Verlag, 2001.

5. D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairings,
Advances in Cryptology-Asiacrypt 2001, LNCS 2248, pp.514-532, Springer-Verlag,
2001.

6. M. Cerccedo, M. Matsumoto and H. Imai, Efficient and secure multiparty fenera-
tion of digital signatrues based on discrete logarithms, IEEE Trans. Fundamentals.,
Vol. E76-A, pp.532-545, 1993.

7. J.C. Cha and J.H. Cheon, An identity-based signature from gap Diffie-Hellman
groups, PKC 2003, LNCS 2567, pp.18-30, Springer-Verlag, 2003.

8. D. Chaum and T.P. Pedersen, Wallet databases with observers, Advances in
Cryptology-Crypto 1992, LNCS 740, pp.89-105, Springer-Verlag, 1993.

9. L. Chen and C. Kudla, Identity based authenticated key agreement from pairingss,
Cryptology ePrint Archive, Report 2002/184.

10. X. Chen, F. Zhang, K. Kim, A new ID-based group signature scheme from bilinear
pairings, Cryptology ePrint Archive, Report 2003/116.

11. G.Frey and H. Rück, A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves, Mathematics of Computation, Vol.62, pp.865-
874, 1994.

12. S.D. Galbraith, K. Harrison, and D. Soldera, Implementing the Tate pairings,
ANTS 2002, LNCS 2369, pp.324-337, Springer-Verlag, 2002.

13. R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin, Robust threshold DSS signa-
tures, Advances in Cryptology-Eurocrypt 1996, LNCS 1070, pp.354-371, Springer-
Verlag, 1996.

14. C. Gentry and A. Siverberg, Hierarchical ID-based cryptography, Advances in
Cryptology-Asiacrypt 2002, LNCS 2501, pp.548-566, Springer-Verlag, 2002.

15. C. Gentry, Certificate-based encryption and the certificate revocation problem, Ad-
vances in Cryptology-Eurocrypt 2003, LNCS 2656, pp.272-293, Springer-Verlag,
2003.

16. M. Girault, Self-certified public keys, Advances in Cryptology-Eurocrypt 1991,
LNCS 547, pp.490-497, Springer-Verlag, 1991.

17. F. Hess, Efficient identity based signature schemes based on pairings, SAC 2002,
LNCS 2595, Springer-Verlag, pp.310-324, 2002.

18. B. Libert and J. Quisquater, Efficient revocation and threshold pairing based cryp-
tosystems, PODC 2003, ACM Press, pp.163-171, 2003.



New ID-Based Threshold Signature Scheme from Bilinear Pairings 383

19. A. Menezes, T. Okamoto and S. Vanstone, Reducing elliptic curve logarithms to log-
arithms in a finite field, IEEE Transaction on Information Theory, Vol.39, pp.1639-
1646, 1993.

20. K.G. Paterson, ID-based signatures from pairingss on elliptic curves, Electron.
Lett., Vol.38, No.18, pp.1025-1026, 2002.

21. A. Shamir, How to share a secret, Communications of the ACM, Vol.22, pp.612-
613, 1979.

22. A. Shamir, Identity-based cryptosystems and signature schemes, Advances in
Cryptology-Crypto 1984, LNCS 196, pp.47-53, Springer-Verlag, 1984.

23. N.P. Smart, An identity based authenticated key agreement protocol based on the
Weil pairings, Electron. Lett., Vol.38, No.13, pp.630-632, 2002.

24. D. Stinson and R. Strobl, Provably secure distributed Schnorr signatures and a
(t,n) threshold scheme for implicit certificate, ACISP 2001, LNCS 2119, pp.417-
434, Springer-Verlag, 2001.

25. F. Zhang and K. Kim, ID-based blind signature and ring signature from pairings,
Advances in Cryptology-Asiacrypt 2002, LNCS 2501, pp.533-547, Springer-Verlag,
2002.



Separable Linkable Threshold Ring Signatures

Patrick P. Tsang1, Victor K. Wei1, Tony K. Chan1, Man Ho Au1,
Joseph K. Liu1, and Duncan S. Wong2

1 Department of Information Engineering,
The Chinese University of Hong Kong,

Shatin, Hong Kong
{pktsang3, kwwei, klchan3, mhau3, ksliu9}@ie.cuhk.edu.hk

2 Department of Computer Science,
The City University of Hong Kong,

Hong Kong
duncan@cityu.edu.hk

Abstract. A ring signature scheme is a group signature scheme with
no group manager to setup a group or revoke a signer. A linkable ring
signature, introduced by Liu, et al. [20], additionally allows anyone to
determine if two ring signatures are signed by the same group member
(a.k.a. they are linked). In this paper, we present the first separable link-
able ring signature scheme, which also supports an efficient thresholding
option. We also present the security model and reduce the security of our
scheme to well-known hardness assumptions. In particular, we introduce
the security notions of accusatory linkability and non-slanderability to
linkable ring signatures. Our scheme supports “event-oriented” linking.
Applications to such linking criterion is discussed.

1 Introduction

Ring Signatures. A ring signature scheme [22] is a group signature scheme [10, 2]
with no group manager to setup a group or revoke a signer’s identity. Formation
of a group is spontaneous in a way that diversion group members can be totally
unaware of being conscripted to the group. It allows members to anonymously
sign messages on behalf of their group. Applications include leaking secrets [22]
and anonymous identification/authentication for ad hoc groups [6, 13].
Threshold Ring Signatures. Threshold cryptography [12] allows n parties to
share the ability to perform a cryptographic operation (e.g., creating a digital
signature). Any d parties can perform the operation jointly, whereas it is infea-
sible for at most d− 1 to do so. In a (d, n)-threshold ring signature scheme, the
generation of a ring signature for a group of n members requires the involvement
of at least d members/signers, and yet the signature reveals nothing about the
identities of the signers. Schemes in the literature include [6, 19, 24].
Linkable Ring Signatures. The notion of linkable ring signatures was introduced
by Liu, et al. [20]. They are ring signatures, but with added linkability: such
signatures allow anyone to determine if two signatures are signed by the same

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 384–398, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Separable Linkable Threshold Ring Signatures 385

group member (in which case the two signatures are said to be “linked”). If a
user signs only once on behalf of a group, the user still enjoys anonymity similar
to that in conventional ring signature schemes. If the user signs multiple times,
anyone can tell that these signatures have been generated by the same group
member. Applications include leaking sequences of secrets and e-voting [20].
Linkable Threshold Ring Signatures. In [20], a (d, n)-threshold extension to its
original linkable ring signature scheme is constructed by concatenating d linkable
ring signatures. We note that the construction, though simple and trivial, is not
efficient. In particular, the space and time complexities are both O(dn). We give
in this paper a construction with time and space complexities both being O(n).
Separability. In [8], Camenisch, et. al. diversified the concept of separability
of cryptographic protocols into perfect separability, strong separability and weak
separability when describing the users’ ability to choose their own cryptographic
primitive and system parameters. Separability is of particular importance for
ring signature schemes as there is no group manager to coordinate the choice
of signature primitive and system parameters for each user. For instance, a ring
signature scheme that is only weak separable is not practical at all as it is unlikely
to have all group members using the same primitive, system parameters and
security parameters. The RSA implementation of [22, 1, 19, 24, 20] are strongly
separable while the DL implementation of [1, 19, 20] are only weakly separable.
Event-Oriented Linkability. In [20], one can tell if two ring signatures are linked
or not if and only if they are signed on behalf of the same group of members.
We call this “group-oriented” linkability. We present a new linking criterion that
we call “event-oriented” linkability in which one can tell if two signatures are
linked if and only if they are signed for the same event, despite the fact that they
may be signed on behalf of different groups. Event-oriented linkable ring signa-
tures are comparatively more flexible in application. E.g., group settings keep
changing frequently in ad-hoc group and most of the ring signatures are signed
on behalf of different groups, thus render group-oriented linkability virtually
useless. Consider another scenario: The CEOs of a company vote for business
decisions. Using linkable ring signatures, they can vote anonymously by ring-
signing their votes. However, as the group is fixed throughout the polls, votes
among polls can be linked by anybody and information can be derived which
means anonymity is in jeopardy. This can be prevented when an event-oriented
scheme is used.

1.1 Contributions

Our main contributions include:

– We give the first separable linkable ring signature. It also the first linkable
ring signature of the CDS-type ([11]).

– We present a security model for linkable threshold ring signature, and reduce
the security of our scheme to well-known hard problem assumptions.

– Our scheme supports bandwidth-efficient threshold signing. The signature
size in [20] is O(dn) while ours is O(n), where n is the number of users



386 P.P. Tsang et al.

and d is the threshold. However, our scheme is interactive: insiders interact
collaboratively to generate the signature.

– We introduce new security notions to linkable ring signatures: (1) Non-
accusatory linkability only detects the presence of two “linked” signatures,
while accusatory linkability additionally outputs the identity of the suspected
“double-signer”. (2) Strong non-slanderability means no coalition can gener-
ate signatures accusatorily linked to a victim, while weak non-slanderability
means that certain coalition may be able to generate signatures accusatorily
linked to a victim, but the victim has means to vindicate himself.

– We present a new linking criterion that is “event-oriented”. Under such
linkability, one can tell if two signatures are linked if and only if they are
signed for the same event, despite the fact that they may be signed on behalf
of different groups.

1.2 Organization

The paper is organized as follows: In Sec. 2, we give some preliminaries. In
Sec. 3, we describe the building blocks used in our construction. Then we define
our separable linkable threshold signatures in Sec. 4. A construction and its
security analysis are presented in Sec. 5. We conclude in Sec. 6.

2 Preliminaries

2.1 Notations and Mathematical Assumptions

Definition 1. A function f(λ) is negligible if for all polynomials p(λ), f(λ) <
1/p(λ) holds for all sufficiently large λ. A function is non-negligible if it is not
negligible.

Definition 2 (Strong RSA Assumption [7, 15, 16]). Given a safe prime
product N , and z ∈ QR(N), it is infeasible to find u ∈ Z∗

N and e > 1 such that
ue = z(modN), in time polynomial in the size of N .

Definition 3 (Decisional Diffie-Hellman (DDH) over QR(N) Assump-
tion). Given a generator g of a cyclic group QR(N), where N is a composite
of two primes, the distribution ensembles (gx, gy, gz) and (gx, gy, gxy), where
x, y, z ∈R [1, ord(g)], are computationally indistinguishable by all PPT algorithm
in time polynomial in the size of N .

2.2 Honest-Verifier Zero-Knowledge (HVZK) Proof of Knowledge
Protocols (PoKs)

Every HVZK proof can be turned into a signature scheme by setting the challenge
to the hash value of the commitment together with the message to be signed [14].
Such a scheme is proven secure by [21] against existential forgery under adap-
tively chosen message attack [17] in the random oracle model [4]. Following [9],
we call these signature schemes “signatures based on proofs of knowledge”, SPK
for short. Note that there always exists a corresponding HVZK PoK protocol for
every SPK.



Separable Linkable Threshold Ring Signatures 387

3 Basic Building Blocks

In this section, we describe some three-move interactive HVZK PoK protocols
that we will use as basic building blocks for our event-oriented linkable thresh-
old ring signature scheme. These protocols all work in finite cyclic groups of
quadratic residues modulo safe prime products. For each i = 1, . . . , n, let Ni be
a safe-prime product and define the group Gi

.= QR(Ni) such that its order is of
length �i − 2 for some �i ∈ N. Also let gi, hi be generators of Gi such that their
relative discrete logarithms are not known.

Let 1 < ε ∈ R be a parameter and let H : {0, 1}∗ → Zq be a strong collision-
resistant hash function, where q is a κ-bit prime for some security parameter
κ ∈ N. Define N .= {1, . . . , n} and Γi

.= {−2�iq, . . . , (2�iq)ε}.

3.1 Proving the Knowledge of Several Discrete Logarithms

This protocol is a straightforward generalization of the protocol for proving the
knowledge of a discrete logarithm over groups of unknown order in [7]. This
allows a prover to prove to a verifier the knowledge of n discrete logarithms
x1, . . . , xn ∈ Z of elements y1, . . . , yn respectively and to the bases g1, . . . , gn

respectively. Using the notation in [9], the protocol is denoted by:

PK{(α1, . . . , αn) :
n∧

i=1

yi = gαi
i }.

A prover P knowing x1, . . . , xn ∈ Z such that yi = gxi
i for all i = 1, . . . , n

can prove to a verifier V his/her knowledge as follows.

– (Commit.) P chooses ri ∈R Z(2�i q)ε and computes ti ← gri
i for all i =

1, . . . , n. P sends (t1, . . . , tn) to V.
– (Challenge.) V chooses c ∈R Zq and sends it to P.
– (Response.) P computes, for all i = 1, . . . , n, si ← ri − cxi (in Z). P sends

(s1, . . . , sn) to V.

P verifies by checking, for all i = 1, . . . , n, if ti
?= gsi

i yc
i .

Theorem 1. If the Strong RSA assumption holds, the protocol is an HVZK
PoK protocol.

Proof. We omit the proof as it is a straightforward extension of the proof of
Lemma 1 in [7]. ��

As noted before, the protocol can be turned into a signature scheme by re-
placing the challenge by the hash of the commitment together with the message
M to be signed: c ← H((g1, y1)|| . . . ||(gn, yn)||t1|| . . . ||tn||M). In this case, the
signature is (c, s1, . . . , sn) and the verification becomes:

c
?= H((g1, y1)|| . . . ||(gn, yn)||gs1

1 yc
1|| . . . ||gsn

n yc
n||M).



388 P.P. Tsang et al.

Following [9], we denote this signature scheme by:

SPK{(α1, . . . , αn) :
n∧

i=1

yi = gαi
i }(M).

3.2 Proving the Knowledge of d Out of n Equalities of Discrete
Logarithms

This protocol is constructed using the techniques described in [11], by combining
the PoK for discrete logarithm in [7] and the secret sharing scheme due to Shamir
[23]. This allows a prover to prove to a verifier his/her knowledge of some d out
of n integers x1, . . . , xn, where xi = loggi

yi = loghi
vi for all i = 1, . . . , n. The

protocol is denoted by:

PK

⎧⎨⎩(α1, . . . , αn) :
∨

J⊆N ,|J |=d

⎛⎝∧
i∈J

yi = gαi
i ∧ vi = hαi

i

⎞⎠⎫⎬⎭ .

A prover P knowing, for all i ∈ I, xi ∈ Z such that yi = gxi
i and vi = hxi

i ,
where I is some subset of N such that |I| = d, can prove his/her knowledge to
a verifier P as follows.

– (Commit.) P does the following: For i ∈ N\I, select ci
R← Zq. For all i ∈ N ,

select ri
R← Z(2�i q)ε . Compute

ti ←
{

gri
i , i ∈ I;

gri
i yci

i , i ∈ N\I, and Ti ←
{

hri
i , i ∈ I;

hri
i vci

i , i ∈ N\I.

P sends (t1, . . . , tn, T1, . . . , Tn) to V.
– (Challenge.) V chooses c ∈R Zq and sends it to P.
– (Response.) P does the following: Compute a polynomial f of degree ≤ n−d

over Zq such that f(0) = c and f(i) = ci for all i ∈ N\I. Compute ci ← f(i)
for all i ∈ I. Set

si ←
{

ri − cixi, i ∈ I;
ri, i ∈ N\I.

P sends (f, s1, . . . , sn) to V.

P verifies by checking if (1) f is a polynomial of degree ≤ n− d over Zq, (2)

f(0) ?= c, and (3) ti
?= y

f(i)
i gsi

i and Ti
?= v

f(i)
i hsi

i , for all i = 1, . . . , n.

Theorem 2. If the Strong RSA assumption holds, the protocol is an HVZK
PoK protocol.

Proof. (Proof Sketch) To prove the theorem, it suffices to show that the protocol
is correct, sound and statistical HVZK.

– (Correctness.) Straightforward.



Separable Linkable Threshold Ring Signatures 389

– (Soundness.) It suffices to show how a witness can be extracted if given two
valid protocol conversations with the same commitment but different chal-
lenges. Denoting the two conversation transcripts by 〈 (t1, . . . , tn, T1, . . . , Tn),
(c), (f, s1, . . . , sn) 〉 and 〈(t1, . . . , tn, T1, . . . , Tn), (c′), (f ′, s′

1, . . . , s
′
n)〉, we have

c �= c′ and thus f(0) �= f ′(0). As the degrees of f and f ′ are at most
n − d, there are at least d distinct values π1, . . . , πd ∈ {1, . . . , n} such that
f(πi) �= f ′(πi) for all i = 1, . . . , d. Using arguments in [7], f(π) − f ′(π) di-
vides s′

π − sπ and therefore an integer x̂ such that yπ = gx̂π
π and vπ = hx̂π

π

can be computed as: x̂π ← (sπ − s′
π)/(f ′(π) − f(π)).

Hence a witness (x̂π1 , . . . , x̂πd
) can be computed from two such transcripts.

– (Statistical HVZK.) To simulate a transcript, a simulator S first chooses uni-
formly at random a polynomial f ′ of degree n−d over Zq. For all i = 1, . . . , n,
S picks uniformly at random s′

i ∈R Z(2�i q)ε and computes t′i ← g
s′

i
i y

f ′(i)
i . The

simulated transcript is: 〈(t′1, . . . , t′n, T ′
1, . . . , T

′
n), (f ′(0)), (f ′, s′

1, . . . , s
′
n)〉.

To prove that the simulation is statistical indistinguishable from real
protocol conservations, one should consider, for each i = 1, . . . , n, the prob-
ability distribution PSi(si) of the responses of the prover and the proba-
bility distribution PS′

i
(s′

i) according to which S chooses s′
i. The statistical

distance between the two distributions can be computed to be at most:
2(2�i)(q − 1)/(2�iq)ε ≤ 2/(2�iq)ε−1. The result follows.

��

The protocol can be turned into a signature scheme by replacing the challenge
by the hash of the commitment together with the message M to be signed:

c ← H((g1, y1, h1, v1)|| . . . ||(gn, yn, hn, yn)||t1|| . . . ||tn||T1|| . . . ||Tn||M).

In this case, the signature is (f, s1, . . . , sn) and step (3) of the verification
becomes:

c
?= H( (g1, y1, h1, v1)|| . . . ||(gn, yn, hn, yn)||

yc1
1 gs1

1 || . . . ||ycn
n gsn

n ||vc1
1 hs1

1 || . . . ||vcn
n hsn

n ||M).

We denote this signature scheme by:

SPK

⎧⎨⎩(α1, . . . , αn) :
∨

J⊆N ,|J |=d

⎛⎝∧
i∈J

yi = gαi
i ∧ vi = hαi

i

⎞⎠⎫⎬⎭ (M).

4 Security Model

We give our security model and define relevant security notions.

4.1 Syntax

A linkable threshold ring signature, (LTRS) scheme, is a tuple of five algorithms
(Key-Gen, Init, Sign, Verify and Link).



390 P.P. Tsang et al.

– (ski, pki) ← Key-Gen(1λi) is a PPT algorithm which, on input a security
parameter λi ∈ N, outputs a private/public key pair (ski, pki). We denote
by SK and PK the domains of possible secret keys and public keys, resp.
When we say that a public key corresponds to a secret key or vice versa, we
mean that the secret/public key pair is an output of Key-Gen.

– param ← Init(λ) is a PPT algorithm which, on input a security parameter λ,
outputs the publicly known system parameters param which includes λ.

– σ ← Sign(λ, param, e, n, d,Y,X , M) is a PPT algorithm which, on input the
system parameters param, an event-id e ∈ EID (where EID is the domain of
possible event-ids), a group size n ∈ N with length polynomial in the security
parameter λ, a threshold d ∈ {1, . . . , n}, a set Y of n public keys in PK, a
set X of d private keys in SK such that their corresponding public keys are
in Y, and a message M ∈ M (where M is the domain of possible messages),
produces a signature σ ∈ Σ (where Σ is the domain of possible signatures).

– 1/0 ← Verify(λ, param, e, n, d,Y, M, σ) is a deterministic algorithm which,
on input the system’s parameters param, an event-id e ∈ EID, a group
size n ∈ N with length polynomial in the security parameter λ, a threshold
d ∈ {1, . . . , n}, a set Y of n public keys in PK, a message M ∈ M and a
signature σ ∈ Σ, returns 1 or 0 for accept or reject, resp.

– 1/0 ← Link(param, e, (n1, d1,Y1, M1, σ1), (n2, d2,Y2, M2, σ2)) is an algorithm
which, on input the system’s parameters param, an event-id e ∈ EID, two
group sizes n1, n2 ∈ N with lengths polynomial in the security parameter
λ, two thresholds d1 ∈ {1, . . . , n1}, d2 ∈ {1, . . . , n2}, two sets Y1 and Y2
of public keys in PK of sizes n1 and n2 resp., two messages M1, M2 ∈ M,
and two signatures σ1, σ2 ∈ Σ such that Verify(param,e,ni,di,Yi,Mi,σi)=1
for i = 1, 2, returns 1 or 0 for linked or unlinked, resp. In case of linked, Link
additionally outputs the public key pk∗ ∈ Y1 ∩ Y2 of the “double-signer”.

Remark: Our linkability is different from that of [20]. In [20], Link only out-
puts linked or unlinked but omits the suspect identity. Our linkability can be
called accusatory linkability whereas that in [20] can be called non-accusatory
linkability.

Correctness. LTRS schemes must satisfy:

– (Verification Correctness.) Signatures signed according to specification are
accepted during verification.

– (Linking Correctness.) If two signatures are signed for the same event ac-
cording to specification, then they are linked if and only if the two signatures
share a common signer. In the case of linked, the suspect output by Link is
exactly the common signer.

4.2 Notions of Security

Security of LTRS schemes has three aspects: unforgeability, anonymity and link-
ability. Before giving their definition, we consider the following oracles which
together model the ability of the adversaries in breaking the security of the
schemes.



Separable Linkable Threshold Ring Signatures 391

– pki ← JO(⊥). The user joining oracle, on request, adds a new user to the
system. It returns the public key pk ∈ PK of the new user.

– ski ← CO(pki). The corruption oracle, on input a public key pki ∈ PK that
is a query output of JO, returns the corresponding secret key ski ∈ SK.

– σ ← SO(e, n, d,Y,V, M). The signing oracle, on input an event-id e ∈ EID,
a group size n ∈ N, a threshold d ∈ {1, . . . , n}, a set Y of n public keys
in PK, a set V ⊆ Y s.t. |V| = d and a message M ∈ M, returns a valid
signature σ signed by the set of users whose public keys are in V.

Remark: An alternative approach to specify the SO is to exclude the signer set V
from the input and have SO select it according to suitable random distribution.
We do not pursue that alternative further.

Unforgeability. Unforgeability for LTRS schemes is defined in the following
game between the Simulator S and the Adversary A in which A is given access
to oracles JO, CO and SO:

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S an event-id e ∈ EID, a group size n ∈ N, a threshold d ∈

{1, . . . , n}, a set Y of n public keys in PK, a message M ∈ M and a signature
σ ∈ Σ.

A wins the game if: (1) Verify(param, e, n, d,Y, M, σ) = 1, (2) all of the public
keys in Y are query outputs of JO, (3) at most (d − 1) of the public keys in
Y have been input to CO, and (4) σ is not a query output of SO on any input
containing M . We denote by Advunf

A (λ) the probability of A winning the game.

Definition 4 (Unforgeability). An LTRS scheme is unforgeable if for all PPT
adversary A, Advunf

A (λ) is negligible.

Linkable Anonymity. Anonymity for LTRS schemes is defined in the following
game between the Simulator S and the Adversary A in which A is given access
to oracles JO, CO and SO:

1. (Initialization Phase) S generates and gives A the system parameters param.
2. (Probe-1 Phase) A may query the oracles according to any adaptive strategy.
3. (Gauntlet Phase) A gives S an event-id e ∈ EID, a group size n ∈ N, a

threshold d ∈ {1, . . . , n}, a message M ∈ M, and a set Yg of n public keys
in PK each of which has been generated by JO and none of which has been
queried to Corruption Oracle CO or has been included in the insider set V
in any query to Signing Oracle SO.
S randomly selects a subset Vg ⊂ Yg, |V| = d, to obtain the d corresponding
secret keys by querying CO. S signs with these secret keys and gives the
signature to A.

4. (Probe-2 Phase) A queries the oracles adaptively, except that any member
public key of Yg cannot be queried to CO or included in the insider set V of
any query to SO.



392 P.P. Tsang et al.

5. (End Game) A gives S a public key p̃k ∈ Y.

A wins the game if p̃k ∈ Vg. Define

AdvAnon
A (λ) = Pr[A wins the game] − d/n.

Definition 5 (Linkable-Anonymity). An LTRS scheme is linkably-anonymous
if for any PPT adversary A, AdvAnon

A (λ) is negligible.

Remark: In the above attacker model, queries to Signing Oracle cannot have any
member of Yg appearing in the insider set V. The anonymity in [20] is also with
respect to this attacker model. We note that our anonymity attacker model is dif-
ferent from those in [3, 5, 18]. We also note that [3], p.623, essentially conjectured
that anonymity and linkability cannot coexist in their security model.

Linkability. Linkability for LTRS schemes is defined in the following game be-
tween the Simulator S and the Adversary A in which A is given access to oracles
JO, CO and SO:

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S an event-id e ∈ EID, group sizes n1, n2 ∈ N, thresholds d1 ∈

{1, . . . , n1}, d2 ∈ {1, . . . , n2}, sets Y1 and Y2 of public keys in PK of sizes
n1 and n2 resp., messages M1, M2 ∈ M and signatures σ1, σ2 ∈ Σ.

A wins the game if (1) all public keys in Y1 ∪ Y2 are query outputs of
JO, (2) Verify(param, e, ni, di,Yi, Mi, σi) = 1 for i = 1, 2, (3) CO has been
queried at most (d1 + d2 − 1) times, and (4) Link(param, e, (n1, d1,Y1, M1, σ1),
(n2, d2,Y2, M2, σ2)) = 0. We denote by AdvLink

A (λ) the probability of A winning
the game.

Definition 6 (Linkability). An LTRS scheme is linkable if for all PPT adver-
sary A, AdvLink

A (λ) is negligible.

Non-slanderability. Non-slanderability for LTRS schemes is defined in the fol-
lowing game between the Simulator S and the Adversary A in which A is given
access to oracles JO, CO and SO:

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a signature σ1 ∈ Σ and a tuple (n2, d2,Y2, M2, σ2).

A wins the strong game if (1) Verify(param, e, n2, d2, Y2, M2, σ2) = 1, (2)
Link(param, e, (n1, d1,Y1, M1, σ1), (n2, d2,Y2, M2, σ2)) = 1, and (3) none of the
public keys in V has been input to CO. A wins the weak game if the following
additional constraint holds: (4) the signature σ1 is a query output of SO. (Let
(e, n1, d1,Y1,V, M1) be the associated input tuple), We denote by AdvSNS

A (λ) (
resp. AdvWNS

A (λ) ) the probability of A winning the strong (resp. weak) game.



Separable Linkable Threshold Ring Signatures 393

Definition 7 (Non-slanderability). An LTRS scheme is strongly (resp. weakly)
non-slanderable if for all PPT adversary A, AdvSNS

A (λ) ( resp. AdvWNS
A (λ))

is negligible.

Security. Summarizing we have:

Definition 8 (Security of LTRS Schemes). An LTRS scheme is secure if it
is unforgeable, linkably-anonymous, linkable and weakly non-slanderable.

5 Our Construction

5.1 An Linkable Threshold Ring Signature Scheme

In this section, we give a concrete construction of an LTRS scheme. We then
show that such a construction is secure under the security model defined in the
previous section.

– Key-Gen. On input a security parameter �i, the algorithm randomly picks
two distinct primes pi, qi of the form pi = 2p′

i + 1 and qi = 2q′
i + 1, where

p′
i, q

′
i are both ((�i − 2)/2)-bit primes, and sets Ni ← piqi. It then picks a

random generator gi of QR(Ni) and a random xi ∈R Zp′
iq

′
i

and computes
yi ← gxi

i . It picks a strong collision-resistant hash function Hi : {0, 1}∗ →
{h|〈h〉 = QR(Ni)}. It sets the public key to pki ← (�i, Ni, gi, yi, Hi), and the
secret key to ski ← (pi, qi, xi). Finally it outputs (ski, pki).

– Init. On input security parameters � ∈ N, 1 < ε ∈ R and κ ∈ N, the algorithm
randomly picks a κ-bit prime q and a strong collision-resistant hash function
H : {0, 1}∗ → Zq. It outputs the system parameters param = (�, ε, κ, q, H).

– Sign. On input the system parameters param = (�, ε, κ, q, H), an event-id
e ∈ {0, 1}∗, a group size n ∈ N, a threshold d ∈ {1, . . . , n}, a public key
set Y = {pk1, . . . , pkn}, where each pki = (�i, Ni, gi, yi, Hi) is s.t. �i ≥ �,
a private key set X = {skπ1 , . . . , skπd

}, where each skπi = (pπi , qπi , xπi)
corresponds to pkπi

∈ Y, and a message M ∈ {0, 1}∗, Define N = {1, . . . , n}
and I = {π1, . . . , πd} ⊆ N , the algorithm does the following:

1. For all i ∈ N , compute hi,e ← Hi(param, pki, e) and the tags

ỹi,e ←
{

hxi
i,e, i ∈ I;

hai
i,e, i ∈ N\I, ai

R← Z�Ni/4�.

2. Compute a signature (f, s1, . . . , sn) for

SPK

⎧⎨⎩(α1, . . . , αn) :
∨

J⊆N ,|J |=d

⎛⎝∧
i∈J

yi = gαi
i ∧ ỹi,e = hαi

i,e

⎞⎠⎞⎠ (M).

In particular, this requires the knowledge of xπ1 , . . . , xπd
. We will refer

to this signature scheme as SPK1.
3. Compute a signature (c, s′

1, . . . , s
′
n) for



394 P.P. Tsang et al.

SPK

{
(β1, . . . , βn) :

n∧
i=1

ỹi,e = hβi

i,e

}
(M).

In particular, this requires the knowledge of xi for all i ∈ I and ai for
all i ∈ N\I. We will refer to this signature scheme as SPK2.

4. The signature is

σ ← 〈((ỹ1,e, . . . , ỹn,e), (f, s1, . . . , sn), (c, s′
1, . . . , s

′
n)〉.

Note that a signature is composed of three parts: the tags, a signature
for SPK1 and a signature for SPK2.

– Verify. On input a tuple (param, e, n, d,Y, M, σ), the algorithm parses param
into (�, ε, κ, q, H), Y into {pk1, . . . , pkn}, where pki = (�i, Ni, gi, yi, Hi), and
σ into 〈((ỹ1, . . . , ỹn), (f, s1, . . . , sn), (c, s′

1, . . . , s
′
n)〉. If any �i < �, the algo-

rithm returns with 0. Otherwise it does the following:

1. For i ∈ N , compute hi,e ← Hi(param, pki, e).
2. Verify if (f, s1, . . . , sn) is a correct signature for SPK1.
3. Verify if (c, s′

i, . . . , s
′
n) is a correct signature for SPK2.

– Link. On input a tuple (param, e, (n1, d1,Y1, M1, σ1), (n2, d2,Y2, M2, σ2)) s.t.,
for j = 1, 2, Verify(param, e, nj , dj ,Yj , Mj , σj) = 1, the algorithm first parses,
for j = 1, 2, Yj into Yj = {pk

(j)
1 , . . . , pk

(j)
nj } and σj into

〈((ỹ(j)
1,e, . . . , ỹ

(j)
n,e), (f

(j), s
(j)
1 , . . . , s(j)

n ), (c(j), s
′(j)
1 , . . . , s′(j)

n )〉.

If there exists π1 ∈ {1, . . . , n1} and π2 ∈ {1, . . . , n2} s.t. pk
(1)
π1 = pk

(2)
π2 and

ỹ(1)
π1,e = ỹ(2)

π2,e, it returns 1 and additionally pk
(1)
π1 . Otherwise it returns 0.

Correctness. Straightforward.

5.2 Security

We state the security theorems here and provide proof sketches.

Theorem 3 (Unforgeability). Our construction is unforgeable under the
Strong RSA assumption in the random oracle model.

Proof. (Proof Sketch) Similar to the proof of unforgeability in [19]. Use classi-
fication technique and rewinding to produce two signatures with different hash
outputs. The soundness from Theorem 2 implies the result.

Simulating Signing Oracle, SO: Upon input (e, n, d, Y, V, M), generate a
valid signature as follows: For each i ∈ Y\V, randomly generate ai and compute
ỹi,e = hai

i,e. For each i ∈ V, randomly generate ai and backpatch the random ora-
cle to hi,e = Hi(param, pki, e) = gai

i and compute ỹi,e = yai . Generate c0, · · · , cn

such that they interpolate a polynomial f with degree ≤ n− d and f(i) = ci for
0 ≤ i ≤ n. For each i, simulate the corresponding 3-move conversation in Step



Separable Linkable Threshold Ring Signatures 395

(2) of Sign with randomly generated responses s1, · · · , sn to produce the com-
mitments. Backpatch the random oracle so that the commitments are hashed to
c0. This completes up to Step (2) in Sign. The rest is easy: Randomly generate
challenge c, simulate the SPK in Step (3) of Sign with randomly generate re-
sponses s′

1, · · · , s′
n. this Signing Oracle simulation is also used in the proofs of

other Theorems below. ��

Theorem 4 (Linkable-anonymity). Our construction is anonymous under
the Strong RSA assumption and DDH over QR(N) assumption in the random
oracle model.

Proof. (Proof Sketch) Similar to proof of anonymity in [20]. Let QJ be an es-
timate on the number of JO queries. Denote the Gauntlet DDH Problem as
(N̂ , ĝ, ĝα, ĝβ , ĝγ) where γ = αβ with probability 1/2. In the Gauntlet Phase,
Simulator S sets up the witness extraction mechanism as follows: Randomly
select i∗ ∈ {1, · · · , QJ}. Return pk∗ ← (l̂, N̂ , ĝ, ĝα, Ĥ) in the i∗-th JO query,
backpatch Random Oracle HOi∗ to hi,e = ĝβ , generate the Gauntlet signature
to A with ỹi,e = ĝγ . If A returns pk∗ as the public key of the accused insider,
then S answers Yes to the DDH question. Otherwise, S answers Yes or No with
equal probability. Denote

P1 = Pr{αβ �≡ γ ∧ A’s answer = pk∗}, P2 = Pr{αβ ≡ γ ∧ A’s answer = pk∗},
P3 = Pr{αβ �≡ γ ∧ A’s answer �= pk∗} P4 = Pr{αβ ≡ γ ∧ A’s answer �= pk∗}.

Then Pr{A wins } = P1 + P2 ≥ d/n + 1/Q(k) for some polynomial Q(k). P1 =
d/(2n) because, when DDH Problem is No, all public keys are undistinguishable
w.r.t. each other.

Pr{S answers DDH correctly} = (P3 + P4)/2 + P2

= (P1 + P2 + P3 + P4)/2 + (P2 − P1)/2

≥ 1
2

+
1
2

1
Q(k)

��

Theorem 5 (Linkability). Our construction is linkable under the Strong RSA
assumption in the random oracle model.

Proof. (Proof Sketch) Similar to proof of linkability in [20]. If Adversary can
produce two unlinked signatures, then he is rewound twice to produce two sets
of witnesses of set-size d1 and d2 respectively. If the two sets overlap, then the
threshold signatures should have already been linked. If the two sets do not
overlap, then we would have obtained a total of d1+d2 witnesses while Adversary
only corrupted at most d1 + d2 − 1 witnesses. ��

Theorem 6 (Non-slanderability). Our construction is weakly non-slanderable
under the Strong RSA assumption in the random oracle model.



396 P.P. Tsang et al.

Proof. (Proof Sketch) The weak non-slanderability is protected by Step (3) of
Sign. Given a signature from SO, Adversary does not know the discrete logarithm
of any ỹi, and therefore cannot produce a signature containing some ỹj and prove
knowledge of logarithm of ỹj as in Sign’s Step (3). ��

Remark : Our scheme does not have strong non-slanderability: User j and User
k can agree to use the same ỹi to slander User i. User i can vindicate himself
by proving that logarithm of his public key yi does not equal to the logarithm
of ỹi. However, that can be a hassle.

Summarizing, we have:

Theorem 7 (Security). Our construction is secure under the Strong RSA As-
sumption and the DDH over QR(N) Assumption in the random oracle model.

5.3 Discussions

Separability. Users can choose on their own the group of quadratic residues
(namely the modulus) as well as the generator of the group. Hence, our con-
struction enjoys strong separability [8]. In fact, we achieved more: users are free
to choose their own security parameters (namely the length of modulus). This
advantage is vital in applications in ad-hoc environment in which devices with
greatly varied computing power are likely to use different security parameters.
Efficiency. In our construction, both the signature size and signing time are of
O(n) (n being the group size) but independent of d (the threshold). This is a
significant improvement over [20] in which both the size and time complexities
are of O(nd). However, our scheme is not non-interactive while [20] is.
Event-IDs. Event-ids should be chosen carefully to according specific applica-
tions. We give two examples here. (1) When an event-oriented linkable (thresh-
old) ring signature scheme is used to leak sequences of secrets, the whistle-blower
should choose a unique event-id when leaking the first secret and stick to using
the same in the sequel. This makes sure that the sequence of secrets cannot be
linked to other sequences. (2) When used in electronic voting, it is usually the
voting organizer (e.g. the government) who decides on an event-id. Each eligible
voter should therefore, before they cast a vote, make sure that the event-id has
not been used in any previous voting event, so as to secure the intended privacy.
Linkability in Threshold Ring Signatures. Linkability in threshold ring signatures
requires a more precise definition. In particular, there are two possible flavors:
two signatures are linked if and only if (1) they are signed by exactly the same set
of signers, or (2) they involve a common signer. We call signatures of the former
type “coalition-linkable” while those of the latter type “individual-linkable”.

In a coalition-linkable scheme, users are able to sign multiple times without
their signatures being linked, as long as they are not collaborating with exactly
the same set of signers again. However, in an individual-linkable scheme, a user
signing more than once will have the signatures linked, no matter who other
collaborating signers are. The scheme we present in this paper falls into the
later category.



Separable Linkable Threshold Ring Signatures 397

6 Conclusion

We have given in this paper the first separable linkable ring signature scheme,
which also supports an efficient thresholding option. We have also presented
the security model and reduce the security of our scheme to well-known hard-
ness assumptions. In particular, we have introduced the security notions of ac-
cusatory linkability and non-slanderability to linkable ring signatures. Applica-
tions to event-oriented ring-signing has been discussed.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In ASIACRYPT 2002, pages 415–432. Springer-Verlag, 2002.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, pages 255–
270. Springer-Verlag, 2000.

3. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
formal definitions, simplified requirements and a construction based on general
assumptions. In EUROCRYPT’03, volume 2656 of LNCS. Springer-Verlag, 2003.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM Press, 1993.

5. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: the
case of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004.
http://eprint.iacr.org/.

6. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications
to ad-hoc groups. In Crypto’02, volume 2442 of LNCS, pages 465–480. Springer-
Verlag, 2002.

7. J. Camenisch and M. Michels. A group signature scheme based on an RSA-variant.
rs RS-98-27, brics, 1998.

8. J. Camenisch and M. Michels. Separability and efficiency for generic group signa-
ture schemes. In Crypto’99, pages 413–430. Springer-Verlag, 1999.

9. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups
(extended abstract). In CRYPTO’97, pages 410–424. Springer-Verlag, 1997.

10. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT’91, volume 547
of LNCS, pages 257–265. Springer-Verlag, 1991.

11. R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO’94, pages 174–187.
Springer-Verlag, 1994.

12. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO ’89, volume
435 of LNCS, pages 307–315. Springer-Verlag, 1990.

13. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad hoc groups. In EUROCRYPT 2004, volume 3027 of LNCS, pages 609–626.
Springer-Verlag, 2004.

14. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification
and signature problems. In CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer-Verlag, 1987.

15. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO’97, pages 16–30. Springer-Verlag, 1997.



398 P.P. Tsang et al.

16. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In Eurocrypt ’98, volume 1403 of
LNCS, pages 32–46. Springer-Verlag, 1998.

17. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

18. A. Kiayias and M. Yung. Group signatures: provable security, efficient construc-
tions, and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report
2004/076, 2004. http://eprint.iacr.org/.

19. J. K. Liu, V. K. Wei, and D. S. Wong. A separable threshold ring signature scheme.
In ICISC 2003, volume 2971 of LNCS, pages 12–26. Springer-Verlag, 2003.

20. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). In ACISP’04, volume 3108 of
LNCS, pages 325–335. Springer-Verlag, 2004.

21. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EURO-
CRYPT’96, volume 1070 of LNCS, pages 387–398. Springer-Verlag, 1996.

22. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT
2001, pages 552–565. Springer-Verlag, 2001.

23. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
24. D. S. Wong, K. Fung, J. K. Liu, and V. K. Wei. On the RS-code construction of

ring signature schemes and a threshold setting of RST. In ICISC 2003, volume
2971 of LNCS, pages 34–46. Springer-Verlag, 2003.



A New Black and White Visual Cryptographic
Scheme for General Access Structures

Avishek Adhikari1, Tridib Kumar Dutta2, and Bimal Roy1

1 Applied Statistics Unit, Indian Statistical Institute,
203, B T Road, Calcutta 700 035, India

{avishek r, bimal}@isical.ac.in
2 SQC Unit, Indian Statistical Institute,
203, B T Road, Calcutta 700 035, India

tridib@isical.ac.in

Abstract. In this paper we introduce a new construction of a black and
white visual cryptographic scheme for general access structure. We prove
that our scheme gives a strong access structure. We find out the condi-
tions for which our scheme gives less pixel expansion compared to the
schemes given in Section 4.2 of [1]. We also propose a modified algorithm
giving better result from the pixel expansion’s point of view. As a partic-
ular case of general access structure, we get (k, n)-VTS with 2 ≤ k ≤ n.
The (n, n)-VTS obtained from our scheme attains the optimal pixel ex-
pansion and the relative contrast. We compare the (k, n)-VTS obtained
from the schemes mentioned in Section 4.1 and Section 4.2 of [1] with
the (k, n)-VTS obtained from our method and it has been shown that
in almost all the cases our pixel expansion is less compared to the other
two schemes.

Keywords: secret sharing scheme, visual secret sharing scheme, visual
cryptography, visual threshold scheme, general access structure.

1 Introduction

Visual cryptographic scheme, for a set P of n participants, is a cryptographic
paradigm that enables us to split a secret image into n shadow images called
shares, where each participant in P receives one share. Certain qualified sub-
sets of participants can “visually” recover the secret image with some loss of
contrast, but other forbidden sets of participants have no information about the
secret image. A “visual recovery” for a set X ⊆ P consists of photocopying the
shares given to the participants in X onto the transparencies, and then stacking
them. Since the reconstruction is done by human visual system, no computation
is involved during decoding unlike traditional cryptographic schemes where a
fair amount of computation is needed to reconstruct the plain text. This crypto-
graphic paradigm was introduced by Naor and Shamir [11]. They analyzed the
case of a k out of n Visual Threshold Schemes (VTS) in which the secret image
is visible if and only if any k transparencies are stacked together, but if fewer

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 399–413, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



400 A. Adhikari, T.K. Dutta, and B. Roy

than k transparencies are superimposed it is impossible to decode the original
image. The schemes proposed by Naor and Shamir [11] involved black and white
images. The concept of Naor and Shamir [11] has been extended in [1] and [2] to
general access structure (an access structure is a specification of all qualified and
forbidden subsets of participants), where general techniques to construct visual
cryptography schemes for any access structure has been proposed.

In this paper we have proposed a new construction of a black and white visual
cryptographic scheme for general access structure. We have used the fact that the
collection of all the solutions of a system of linear homogeneous equations over
the binary field forms a vector space over the base field. We have constructed the
basis matrix S0 whose columns are all the possible solutions of a system of linear
homogeneous equations. Another basis matrix S1 is constructed by considering
all solutions of a system of non-homogeneous linear equations.

– We have proved that our scheme gives a strong access structure.
– We have found out the conditions for which our scheme gives lower pixel

expansion compared to the schemes given in Section 4.2 of [1].
– We have also proposed a modified algorithm giving better result from the

pixel expansion’s point of view.
– As a particular case of general access structure, we get (k, n)-VTS with

2 ≤ k ≤ n.
– The (n, n)-VTS obtained from our scheme attains the optimal pixel expan-

sion and the relative contrast.
– We compare the (k, n)-VTS obtained from the schemes mentioned in Section

4.1 and Section 4.2 of [1] with the (k, n)-VTS obtained from our method
and it has been shown that in almost all the cases our pixel expansion is less
compared to the other two schemes. However, compared to [6], the proposed
adaptation to (k, n)-VTS has a larger pixel expansion.

2 Preliminaries

2.1 The Model

The model that we describe here is taken nearly verbatim from Blundo, De
Santis, and Stinson [3]. Let P = {1, . . . , n} be a set of elements called participants,
and let 2P denote the set of all subsets of P. Let ΓQual and ΓForb be subsets of
2P , where ΓQual ∩ ΓForb = ∅. We will refer to members of ΓQual as qualified sets
and the members of ΓForb as forbidden sets. The pair (ΓQual,ΓForb) is called the
access structure of the scheme.

Let us define Γ0, consisting of all minimal qualified sets, as follows :
Γ0 = {A ∈ ΓQual : A′ /∈ ΓQual,∀A′ ⊂ A}. A participant P ∈ P is an essential
participant if there exists a set X ⊆ P such that X∪{P} ∈ ΓQual but X /∈ ΓQual.

A monotone increasing access structure (monotone decreasing access struc-
ture) Γ on P is a subset Γ ⊆ 2P \ {φ} (Γ ⊆ 2P) such that if A ∈ Γ and
A ⊆ A′ ⊆ P (A′ ⊆ A ⊆ P), then A′ ∈ Γ . If ΓQual is monotone increasing, ΓForb



A New Black and White Visual Cryptographic Scheme 401

is monotone decreasing, and ΓQual ∪ ΓForb = 2P , then the access structure is
called strong or complete access structure and Γ0 is called the basis of the access
structure.

We assume that the secret image consists of a collection of black and white
pixels, each pixel being shared separately. To understand the sharing process
consider the case where the secret image consists of just a single black or white
pixel. On sharing, this pixel appears in the n shares distributed to the partici-
pants. However, in each share the pixel is subdivided into m subpixels. This m
is called the pixel expansion i.e., the number of pixels, on the transparencies
corresponding to the shares (each such pixel is called subpixel), needed to en-
code one pixel of the original image. It is important to note that the shares are
printed on transparencies, and that a “white” subpixel is actually an area where
nothing is printed, and therefore left transparent. We assume that the subpixels
are sufficiently small and close enough so that the eye averages them to some
shade of grey.

In order that the recovered image is clearly discernible, it is important
that the grey level of a black pixel be darker than that of a white pixel.
Informally, the difference in the grey levels of the two pixel types is called con-
trast. We want the contrast to be as large as possible. Three variables control
the perception of black and white regions in the recovered image: a threshold
value (t), a relative difference (α(m)), and the pixel expansion (m). The thresh-
old value is a numeric value that represents a grey level that is perceived by the
human eye as the color black. The value α(m) ·m is the contrast, which we want
to be as large as possible. We require that α(m) · m ≥ 1 to ensure that black
and white areas will be distinguishable. We use ”or” V to denote the Boolean
operation ”or” of a set of vectors with result V . The Hamming weight w(V ) is
the number of 1’s in the Boolean vector V .

2.2 Basis Matrices

To construct a visual cryptographic scheme, it is sufficient to construct the basis
matrices corresponding to the black and white pixel. In the following, we formally
define what we mean by basis matrices.

Definition 1. Let (ΓQual , ΓForb) be an access structure on a set P of n par-
ticipants. A (ΓQual , ΓForb , m)-VCS with relative difference α(m) and a set of
thresholds {tX}X∈ΓQual is realized using the n × m basis matrices S0 and S1 if
the following two conditions hold:

1. If X = {i1, i2, . . . , ip} ∈ ΓQual , then the “or” V of the rows i1, i2, . . . , ip of
S0 satisfies w(V ) ≤ tX −α(m) ·m; whereas, for S1 it results that w(V ) ≥ tX .

2. If X = {i1, i2, . . . , ip} ∈ ΓForb , the two p×m matrices obtained by restricting
S0 and S1 to rows i1, i2, . . . , ip are equal up to a column permutation.

2.3 Share Distribution Algorithm

We use the following algorithm to encode the secret image. For each pixel P in
the secret image, do the following:



402 A. Adhikari, T.K. Dutta, and B. Roy

1. Generate a random permutation π of the set {1, 2, . . . , m}.
2. If P is a black pixel, then apply π to the columns of S1; else apply π to the

columns of S0. Call the resulting matrix T .
3. For 1 ≤ i ≤ n, row i of T comprises the m subpixels of P in the ith share.

2.4 (n, n)-VTS

Brief description of the construction of the basis matrices [11]:
The basis matrix S0 is the Boolean matrix whose columns are all the Boolean

n-vectors having an even number of 1’s; whereas, S1 is the matrix whose columns
are all Boolean n-vectors having an odd number of 1’s.

Result 1: ([11]) The above scheme is an n out of n VCS with the parameters
m = 2n−1 and α(m) = 1/2n−1.
Result 2: ([11]) In any (n, n)-VTS, α(m) ≤ 1/2n−1 and m ≥ 2n−1.

2.5 General Access Structure

Presently, not many schemes are known about general access structures for VCS.
In this section we present two results that are given in [1] for general access
structure for black and white visual cryptography.

• Results of VCS Using Cumulative Arrays:
Result 3: [1] Let (ΓQual, ΓForb) be a strong access structure, and let ZM

be the family of the maximal forbidden sets in ΓForb. Then there exists a
(ΓQual, ΓForb, m)-VCS with m = 2|ZM |−1 and tX = m for any X ∈ ΓQual.

• Results of VCS from Smaller Schemes:
Result 4: (An adoption of Theorem 4.4 of [1]) Let (Γ ′

Qual, Γ
′
Forb) and (Γ ′′

Qual,
Γ ′′

Forb) be two access structures on a set of n participants P. If a participant
i ∈ P is non-essential for (Γ ′

Qual, Γ
′
Forb), we assume that i ∈ Γ ′

Forb and that
i does not receive anything as share. Analogously for (Γ ′′

Qual, Γ
′′
Forb). Suppose

there exists a (Γ ′
Qual, Γ

′
Forb, m

′)-VCS and a (Γ ′′
Qual, Γ

′′
Forb, m

′′)-VCS constructed
using basis matrices. Then there exists a (Γ ′

Qual∪Γ ′′
Qual, Γ

′
Forb∩Γ ′′

Forb, m
′ +m′′)-

VCS. If the original access structures are both strong, then so is the resulting
access structure.

Note: The construction technique employed in [1] for the above Result does not
work for general VCS, i.e., if they are not constructed from basis matrices.

Result 5: [1] Let (ΓQual, ΓForb) be a strong access structure having basis Γ0.
Then there exists a (ΓQual, ΓForb, m)-VCS where

m =
∑

X∈Γ0

2|X|−1.

In the next Section we will introduce a new black and white visual crypto-
graphic scheme for general access structure.



A New Black and White Visual Cryptographic Scheme 403

3 A New Construction for General Access Structure

Let V = {1, 2, . . . , l + k − p}, V1, V2 ⊆ V with V = V1 ∪ V2 where |V1| = l,
|V2| = k, |V1 ∩ V2| = p such that 0 ≤ p < min{l, k}. Let us consider the two
systems of linear equations over the binary field given below

f1 = 0
f2 = 0

}
· · · (I) and

f1 = 1
f2 = 1

}
· · · (II)

where ft =
∑

j∈Vt
vtj , t = 1, 2. The collection of all the solutions of the system

of equations (I) forms a vector space of dimension l + k − p− 2 over the binary
field. So there will be all together 2l+k−p−2 many solutions of (I). Let us consider
a (l + k − p)× 2l+k−p−2 Boolean matrix S0 whose columns are just all possible
solutions of (I).

The system of equations (II) can be written in the form Av = b. Since
the equations of (II) are linearly independent, rank(A)=2. Now we know that
a system of linear equations Av = b is consistent if and only if AT u = 0 ⇒
bT u = 0. Since the rows of A are independent, AT u = 0 ⇒ u = 0 ⇒ bT u = 0.
Hence, (II) is consistent.

We state the following lemma without proof.

Lemma 1. If v = (v1, v2, . . . , vl+k−p) is any particular solution of the system
of equations (II), then all the solutions of (II) can be obtained by just adding v
to each solution of (I).

Now using Lemma 1, we get all possible solutions of (II). Also, the total
number of solutions of the system of equations (I) is the same as that of the (II).
Let S1 be a (l + k − p) × 2l+k−p−2 Boolean matrix whose columns are just all
possible solutions of (II). Note that if we vary v, we will get different Boolean
matrices, but all of them are identical with S1 up to column permutation. So,
without loss of generality, we fix S0 and S1.

Now we will prove the following Lemma.

Lemma 2. Let Γ0 = {V1, V2} and Γ = {B ⊆ V : V1 ⊆ B or V2 ⊆ B}. Let
2V denote the set of all subsets of V , where V1, V2 and V are defined above.
Let A ∈ 2V \ Γ . Then S0[A] and S1[A] are identical up to column permutation,
where S0[A] (respectively S1[A]) denotes the restriction of S0 (respectively S1)
to the rows corresponding to the elements of A.

Proof : Let us define a set Ei = {A ⊆ V : |A| = i}, ∀i = 1, 2, . . . , l + k − p.

Then |Ei| =
(

l + k − p
i

)
.

Let us define two sets as follows Ci
1 = {A ⊆ V : |A| = i and either V1 ⊆

A or V2 ⊆ A} and Ci
2 = {A ⊆ V : |A| = i and neither V1 ⊆ A nor V2 ⊆ A}.

Clearly Ci
1 ∪ Ci

2 = Ei and Ci
1 ∩ Ci

2 = φ, ∀i = 1, 2, . . . , l + k − p.
Also Ci

1 ⊆ Γ , ∀i = min{l, k}, . . . , l + k − p and ∪l+k−p
i=min{l,k}C

i
1 = Γ .

First we consider El+k−p. Now |El+k−p| = 1. Let A ∈ El+k−p. Then A
contains both V1 and V2. So A ∈ Γ . Thus El+k−p ⊆ Γ .



404 A. Adhikari, T.K. Dutta, and B. Roy

Now consider El+k−p−1. We find that

|Cl+k−p−1
1 | =

(
l
l

)(
k − p

k − p − 1

)
+
(

k
k

)(
l − p

l − p − 1

)
= l + k − 2p.

So |Cl+k−p−1
2 | =

(
l + k − p

l + k − p − 1

)
− (l + k − 2p) = p.

Thus if p = 0, Cl+k−p−1
2 = φ.

Let p ≥ 1. Then there exists exactly p many elements in Cl+k−p−1
2 .

Claim 1 : There exists no B ∈ Cl+k−p−1
2 containing all the p elements in V

which are common to both V1 and V2.
For, if possible let there exist some B ∈ Cl+k−p−1

2 which contains all such
p elements. Then B must contain l + k − 1 − 2p more elements from V . Now
|V \ (V1 ∩ V2)| = l + k − 2p. So either V1 ⊆ B or V2 ⊆ B. Then B ∈ Cl+k−p−1

1 .
This contradicts the fact that Cl+k−p−1

1 ∩Cl+k−p−1
2 = φ. So there does not exist

any B ∈ Cl+k−p−1
2 containing all the common p elements of V1 and V2. This

completes the proof of Claim 1.
Now we consider the p common elements of V1 and V2. Without loss of

generality, let the common elements be given by v1 l−p+i(= v2i), i = 1, 2, . . . , p.
Since ∀ B ∈ Cl+k−p−1

2 , |B| = l + k − p − 1, every B ∈ Cl+k−p−1
2 must contain

all the elements of V except one of the p common elements of V1 and V2. Let
B1, B2, . . . , Bp be the p elements of Cl+k−p−1

2 and let v1 l−p+i (= v2i) /∈ Bi,
∀i = 1, 2, . . . , p. Then Bi = V \ {v1 l−p+i} and Bi /∈ Γ .

Claim 2 : S0[Bi] and S1[Bi] are identical up to column permutation, ∀Bi ∈
Cl+k−p−1

2 , ∀i = 1, 2, . . . , p.

To prove the claim, we see that
vi = (0, 0, . . . , 0, 1, 0, . . . , 0)

← l + k − p → is a solution of

the system of equations (II), where 1 is placed at the l − p + i th position,
∀i = 1, 2, . . . , p. So by using Lemma 1, we can construct a Boolean matrix which
will be identical with S0 except for the (l − p + i)th row. Also this Boolean
matrix is identical up to column permutation with S1. Thus S0[Bi] and S1[Bi]
are identical up to column permutation, ∀Bi ∈ Cl+k−p−1

2 , i = 1, 2, . . . , p. This
completes the proof of Claim 2.

Claim 3 : S0[B] and S1[B] are identical up to column permutation, ∀ B ∈
Cl+k−p−2

2 .
To prove the Claim, we consider El+k−p−2. From the construction of Cl+k−p−2

1 ,
it is clear that Cl+k−p−2

1 ∈ Γ . Next we consider Cl+k−p−2
2 . Then Cl+k−p−2

2 =
{B ⊆ V : |B| = l + k − p − 2 and neither V1 ⊆ B nor V2 ⊆ B}. Then for each
B ∈ Cl+k−p−2

2 , there exists at least one element say v1s ∈ V1 and there exists
at least one element v2t ∈ V2 such that v1s, v2t /∈ B. Let C be the collection
of all common elements of V1 and V2. Note that C may be empty. Now if one
of v1s or v2t is in C, the Vi = (0, 0, . . . , 0, 1, 0, . . . , 0), i = s or t is a solution of
the system of equations (II) where 1 is at the sth position if v1s ∈ C or 1 is at



A New Black and White Visual Cryptographic Scheme 405

the (l−p+ t)th position if v2t ∈ C. If both v1s, v2t ∈ C, then both Vs and Vt are
solutions of the system of equations (II). Then by using the Lemma 1, we can
say that S0 and S1 are identical up to column permutation except for the sth
or the (l− p + t)th row accordingly Vs or Vt is chosen. Now if v1s, v2t /∈ C, then
(0, 0, . . . , 0, 1, 0, 0, . . . , 0, 1, 0, . . . , 0)
← · · · l + k − p · · · → is a solution of a system of equations (II),

where 1’s are at sth position and (l − p + t)th position. Then by using the fact
of Lemma 1, we can say that S0 and S1 are identical up to column permutation
except for the sth and (l−p+ t)th rows, that is S0[B] and S1[B] are identical up
to column permutation, ∀ B ∈ Cl+k−p−2

2 . This completes the proof of Claim 3.

Claim 4 : S0[A] and S1[A] are identical up to column permutation for all A ⊆ V
such that 1 ≤ |A| < l + k − p − 2.

To prove the claim, let us consider any set A ⊆ V such that 1 ≤ |A| <
l + k − p − 2. Then there are all together three cases. The first two cases are
either V1 ⊆ A or V2 ⊆ A. In those cases A ∈ Γ . The third case is neither V1 ⊆ A
nor V2 ⊆ A. In that there must exist some B ∈ Cl+k−p−2

2 such that A ⊆ B. Since
S0[B] and S1[B] are identical up to column permutation (by Claim 3), S0[A]
and S1[A] must also be identical up to column permutation. This completes the
proof of Claim 4.

Thus considering the four claims, the lemma follows. ��

Now we will prove the following Lemma which will help to prove the main
theorem of this paper.

Lemma 3. Let (ΓQual, ΓForb) be a strong access structure on a set D = {1, 2, . . .
, p} of p participants with Γ0 = {Bi, Bj} where p ≤ n, Bi, Bj ⊆ D, |Bi∪Bj | = p,
|Bi| ≥ 2 and |Bj | ≥ 2. Then there exists a strong visual cryptographic scheme
(ΓQual, ΓForb, m) on D with m = 2|Bi∪Bj |−2 and tX = m, ∀X ∈ ΓQual.

Proof : Let Bi = {i1, i2, . . . , il} and Bj = {j1, j2, . . . , jk} where 2 ≤ l, k ≤
p − 1. For each i ∈ {i1, i2, . . . , il} we associate a variable xi and for each j ∈
{j1, j2, . . . , jk} we associate a variable xj . Also for each Bi and Bj we associate
functions fBi and fBj

defined by fBi
= xi1 + xi2 + . . . + xil

and fBj
= xj1 +

xj2 + . . . + xjk
respectively. Let us consider two systems of linear equations over

the binary field as given below
fBi

= 0
fBj

= 0

}
· · · (III) and

fBi
= 1

fBj
= 1

}
· · · (IV )

Let S0 and S1 denote the matrices corresponding to the solutions of (III) and
(IV) respectively as defined before. Then S0 and S1 are p×m Boolean matrices
where m = 2p−2, p = |Bi ∪ Bj |. Lemma follows from the following claim.

Claim : S0 and S1 form basis matrices of a strong VCS (ΓQual, ΓForb, m) for the
set D of p participants with minimal qualified set Γ0 = {Bi, Bj}, m = 2|Bi∪Bj |−2

and tX = m, ∀X ∈ ΓQual.
Let B ⊆ D be such that either Bi ⊆ B or Bj ⊆ B. To prove the claim, first we

will show that B can recover the secret image. We see that w(S0
B) ≤ 2p−2 − 1 =



406 A. Adhikari, T.K. Dutta, and B. Roy

t − m · α(m), since the p tuple (0, 0, . . . , 0) is always a solution of (III). Again,
since the number of columns of S1 is 2p−2 and w(S1

Bi
) = 2p−2, w(S1

B) = 2p−2.
Hence B can recover the secret image.

Since the given access structure is a strong access structure, ΓForb = 2D \
ΓQual. By using Lemma 2, we have that, for any A ∈ ΓForb, S0[A] and S1[A]
are identical up to column permutation. Hence the claim. ��

Observation 1 : Let P = {1, 2, . . . , p, p + 1, . . . , n}. Then S0 and S1 of Lemma
3 can be augmented by a (n − p) × m null matrix for the non-essential par-
ticipants p + 1, p + 2, . . . , n, to obtain a strong visual cryptographic scheme
(ΓQual, ΓForb, m) on P with m = 2|Bi∪Bj |−2 and tX = m, ∀X ∈ ΓQual. This
construction follows the procedure given in Section 4.2 of [1].
Now we will prove the main theorem of this paper.

Theorem 1. Let (ΓQual, ΓForb) be a strong access structure on a set P =
{1, 2, . . . , n} of n participants with Γ0 = {B1, B2, . . . , Bk} where Bi ⊆ P,∀ i =
1, 2, . . . , k. Let σ be a permutation on {1, 2, . . . , n}. Then there exists a strong
visual cryptographic scheme (ΓQual, ΓForb, m) with m = Mσ and tX = Mσ,
∀X ∈ ΓQual where Mσ is given as follows:

Mσ =

{∑l
i=1 2|Bσ(2i−1)∪Bσ(2i)|−2 if k = 2l, l ≥ 1∑l
i=1 2|Bσ(2i−1)∪Bσ(2i)|−2 + 2|Bσ(2l+1)|−1 if k = 2l + 1, l ≥ 0.

Proof : First let k = 2l, l ≥ 1.
Let us define Γ0i = {Bσ(2i−1), Bσ(2i)},∀ i = 1, 2, . . . , l. Then using Observa-

tion 1, we can construct a strong VCS (Γ i
Qual, Γ

i
Forb, mi) with minimal qualified

set Γ0i by constructing two basis matrices S0
i and S1

i whose columns are just all
possible solutions of the following two systems of linearly independent equations
over the binary field respectively concatenated with zero vectors for non-essential
participants:

fBσ(2i−1) = 0
fBσ(2i) = 0

}
· · · (V ) and

fBσ(2i−1) = 1
fBσ(2i) = 1

}
· · · (V I)

The strong VCS (Γ i
Qual, Γ

i
Forb, mi) has the pixel expansion mi which is given

by mi = 2|Bσ(2i−1)∪Bσ(2i)|−2 and tXi = mi, ∀Xi ∈ Γ i
Qual, ∀i = 1, 2, . . . l. By using

Result 4, we can construct a strong VCS (ΓQual, ΓForm, m) with m = Mσ and
tX = Mσ, ∀X ∈ ΓQual, where Mσ is defined as in the statement of the above
theorem.

Let k be odd, that is, let k = 2l + 1, l ≥ 0.
If l = 0, then we have Γ0 = {B1}. Let |B1| = p. Then we consider two systems

of linear equations over the binary field given as follows:

fB1 = 0 · · · (V II) and fB1 = 1 · · · (V III)

Consider two Boolean matrices S0 and S1 of order n × 2p−1 whose columns
are just all possible solutions of (VII) and (VIII) respectively concatenated with
zero vectors for non-essential participants as stated in Observation 1. Now in S0

there exists exactly one column containing all zeros and in S1, there does not



A New Black and White Visual Cryptographic Scheme 407

exist any column containing all zeros. Also for any A ⊆ B1 with |A| = p− 1, we
have A = B1 \ {v} for some v ∈ B1. Then the p-tuple (0, 0, . . . , 0, 1, 0, . . . , 0) is a
solution of (VIII), where 1 is at the vth position. Hence by the similar argument
as before, S0[A] and S1[A] are identical up to column permutation. Hence even if
k = 1, we get a strong VCS with Γ0 = {B1}, m = 2p−1 and tX = m, ∀X ∈ ΓQual.

Let k = 2l + 1, l ≥ 1. We define Γ0i = {Bσ(2i−1), Bσ(2i)}, ∀i = 1, 2, . . . , l and
Γ0 l+1 = {Bσ(2l+1)}. As before each of Γ0i forms a strong VCS, ∀i = 1, 2, . . . , l+1
on P. By using Result 4, we can construct a strong VCS (ΓQual, ΓForm, m) with
m = Mσ and tX = Mσ, ∀X ∈ ΓQual, where Mσ is defined as in the statement
of the above theorem. Hence the result. ��

We have computed various steps mentioned in the above theorem through
the Example 2 of Appendix.

Note: The value of the pixel expansion m depends on σ. In visual cryptography,
one of the aims is to minimize the value of m. So we can choose σ such that Mσ

is minimized.

Notations : Let mcu (using cumulative array), mStin (using smaller schemes)
and mour denote respectively the pixel expansions corresponding to the methods
given in Subsection 2.5 and Section 3 respectively.

In the next theorem we will find the conditions for which our scheme gives
less pixel expansion than the scheme given in Result 5.

Theorem 2. Let (ΓQual, ΓForb) be a strong access structure on a set P =
{1, 2, . . . , b1 + b2 − p} of b1 + b2 − p participants with Γ0 = {B1, B2}, where
|B1| = b1, |B2| = b2 and |B1 ∩ B2| = p. Then the strong VCS constructed from
the scheme given in Theorem 1 gives less pixel expansion than the scheme given
in Result 5 if

p =
{

b − 1, for b1 = b2 = b
b1 − 1, for b2 > b1.

Proof : According to the method given in Theorem 1, the pixel expansion
is mour = 2b1+b2−p−2. According to the method given in Result 5, the pixel
expansion is mStin = 2b1−1 + 2b2−1.

Let us we consider the following two cases :
Case 1: Let b1 = b2 = b. Then 22b−p−2 < 2b−1 + 2b−1

if and only if 22b−p−2 < 2b

if and only if p > b − 2.
Since B1 �= B2 and p ≥ b1 − 1, p = b− 1. So if we find that |B1 ∩B2| = b− 1,

then our method must have less pixel expansion compared to the method given
in Result 5.
Case 2: Let b1 �= b2. Without loss of generality, let b2 > b1. Then
2b1+b2−p−2 < 2b1−1 + 2b2−1

if and only if 2b1+b2−p−1 < 2b1(1 + 2b2−b1)
if and only if 2b2−p−1 < 1 + 2b2−b1

if and only if 2b2−p−1 ≤ 2b2−b1 if and only if b2 − p − 1 ≤ b2 − b1
if and only if p ≥ b1 − 1.



408 A. Adhikari, T.K. Dutta, and B. Roy

Thus B1 �= B2 and p ≥ b1−1 implies p = b1−1. So we find that if p = b1−1,
our method has less pixel expansion than the method given in Result 5. Hence
the result. ��

3.1 Algorithm for Less Pixel Expansion

Let (ΓQual, ΓForb) be a strong access structure on a set P = {1, 2, . . . , n} of n
participants with Γ0 = {B1, B2, . . . , Bk} where Bi ⊆ P,∀ i = 1, 2, . . . , k. Let
|Bi| = bi and |Bi ∩ Bj | = pij . We now consider the following algorithm.

– find σ ∈ Sk, the symmetric group of order k, that minimizes Mσ.
– find i ∈ {1, 2, . . . , �k/2�} for which the following condition is satisfied

pσ(2i−1)σ(2i) =
{

b − 1, if bσ(2i−1) = bσ(2i) = b
bσ(2i−1) − 1, if bσ(2i) > bσ(2i−1)

· · · (A)

For those i’s consider two systems of equations over the binary field,
fBσ(2i−1) = 0
fBσ(2i) = 0

}
and

fBσ(2i−1) = 1
fBσ(2i) = 1

}
as described in Lemma 3.

– for those i’s not satisfying the above condition, instead of making a pair of
system of equations

fBσ(2i−1) = 0
fBσ(2i) = 0

}
and

fBσ(2i−1) = 1
fBσ(2i) = 1

}
,

we consider the two sets of participants Bσ(2i−1) and Bσ(2i) separately and
consider two separate system of equations

fBσ(2i−1) = 0
fBσ(2i−1) = 1

}
and

fBσ(2i) = 0
fBσ(2i) = 1

}
for the two sets of participants Bσ(2i−1) and Bσ(2i) respectively.

Note that if there exists some i, i = 1, 2, . . . , �k/2�, which satisfies the above
condition (A), the pixel expansion mmod of the modified scheme must satisfy
mmod < mStin. Also note that mmod ≤ mour.

We will illustrate the above algorithm through the following Example.

Example 1.

Let (ΓQual, ΓForb) be an access structure on a set of 11 participants with Γ0 =
{B1 = {1, 2, 3}, B2 = {2, 3, 4}, B3 = {5, 6, 7, 8}, B4 = {8, 9, 10, 11}}. Then by
taking σ to be the identity permutation on {1, 2, 3, 4}, we get mour = 4+32 = 36.
Also mStin = 22 + 22 + 23 + 23 = 24. Now we apply our modified algorithm. We
find that B1, B2 satisfy the condition (A), whereas B3 and B4 do not satisfy
the condition (A). So we take Γ01 = {B1, B2}, Γ02 = {B3} and Γ03 = {B4}.
Then mmod = 4 + 8 + 8 = 20. Thus we find that in this example mmod is less
compared to mStin and mour.



A New Black and White Visual Cryptographic Scheme 409

4 Construction of a (k, n)-VTS from General Access
Structure

Let (ΓQual, ΓForb) be a strong access structure on a set P = {1, 2, . . . , n} of n
participants. Then we can obtain a (k, n) threshold scheme with 2 ≤ k ≤ n as a
particular case of general access structure by taking Γ0 = {A ⊆ P : |A| = k}.

In Section 2.5, two methods for the construction of general access structures
for visual cryptographic scheme are given. As a particular case of that general ac-
cess structures we can construct (k, n)-VTS schemes. The first technique is based
on cumulative arrays and the (k, n)-VTS constructed from that method has the

pixel expansion mca = 2

⎛
⎝ n

k − 1

⎞
⎠−1

. Again by using the technique described
in Result 5, a strong (k, n)-VTS can also be constructed with pixel expansion

mStin =
(

n
k

)
· 2k−1.

We will now give a method to construct a (k, n)-VTS from our proposed general
access structure given in Section 3. To construct it we need the following lemma.

Lemma 4. Let P = {1, 2, . . . , n}. Let us consider all possible k element subsets

B1, B2, . . . , Bl of P, where l =
(

n
k

)
. If l is even, then there exists a permutation

σ on {1, 2, . . . , l} such that |Bσ(2i−1)∩Bσ(2i)| = k−1, for all i = 1, 2, . . . , l/2. If l
is odd then also there exists a permutation σ on {1, 2, . . . , l} such that |Bσ(2i−1)∩
Bσ(2i)| = k − 1, for all i = 1, 2, . . . , �l/2�.

Proof : The proof follows directly from [5].
In the next theorem, we will find the relative contrast and the pixel expansion

of the scheme obtained as a particular case of our proposed scheme for general
access structure.

Theorem 3. Let (ΓQual, ΓForb) be an access structure on a set P = {1, 2, . . . , n}
of n participants with Γ0 = {A ⊆ P : |A| = k}, 2 ≤ k ≤ n. Then there exists a
strong (k, n)-VTS with

mour =
{

l · 2k−2, if l = (n
k ) is even

(l + 1) · 2k−2, if l = (n
k ) is odd

and relative contrast α(m) = 1
mour

.

Proof : Let l be even. Then by Lemma 4 and Theorem 1, it follows that mour =
l
2 · 2k−1 = l · 2k−2. Next, let l be odd. Then again by Lemma 4 and Theorem 1, it
follows that mour = l−1

2 ·2k−1+2k−1 = (l+1)2k−2. Lastly, from the construction of
the basis matrix of the (k, n)-VTS, it follows that α(m) = 1

mour
. Hence the result.

Observation 2: The (n, n)-VTS, obtained as a particular case of our proposed
general access structure, has the pixel expansion 2n−1 and relative contrast
1/2n−1. In [11], Naor and Shamir proved that the optimal pixel expansion and



410 A. Adhikari, T.K. Dutta, and B. Roy

the optimal relative contrast for any (n, n)-VTS are 2n−1 and 1/2n−1 respec-
tively. Hence our (n, n)-VTS attains the optimal pixel expansion and optimal
relative contrast.

4.1 Comparison Between mour and mca for Threshold Schemes

We see that for k = n, mour = 2n−1 = mca.

Let k = 2 and n > 2. Also, let l =
(

n
k

)
be even. Then mour =

(
n
2

)
. Also

mca = 2n−1. Now ∀ n > 2, 2n−1 >

(
n
2

)
and hence mca > mour ∀ n > 2 with l

even.
Next let l be odd and k = 2, n > 2. Now if n = 3 and k = 2, we have mour = 4

and mca = 4. So in that case mour = mca. Let n > 3. Then mour =
(

n
2

)
+ 1 <

2n−1 = mca, for all odd n > 3.
Let 2 < k < n. First let l be odd. Then to show mca > mour, it is sufficient

to show

2

⎛
⎝ n

k − 1

⎞
⎠−1

> (l + 1)2k−2

that is to show 2

⎛
⎝ n

k − 1

⎞
⎠−k+1

> l + 1

that is to show
(

n
k − 1

)
− k +1 > n, since 2n > l +1, ∀ k satisfying 2 < k < n.

that is to show
(

n
k − 1

)
> n + k − 1.

Now the minimum value of
(

n
k − 1

)
is n(n−1)

2 and the maximum value of

n + k− 1 is 2(n− 1). Now for n > 4, n(n−1)
2 > 2(n− 1). Thus for 2 < k < n and

l be odd,
(

n
k − 1

)
> n + k− 1 and hence mca > mour. The similar result holds

for l to be even with 2 < k < n. Hence

mca

⎧⎨⎩= mour for n = k ≥ 2 or k = 2 and n = 3
> mour for k = 2, n > 2 and l be even or k = 2, n > 3 and l be odd

or 2 < k < n.

4.2 Comparison Between mour and mStin for Threshold Schemes

For n = k ≥ 2, we have mour = mStin. Let 2 ≤ k < n and l be even. Then
mour = l · 2k−2 < l · 2k−1 = mStin.

Let 2 ≤ k < n and l be odd. Then
mStin = l · 2k−1 = l · 2k−2 + l · 2k−2 > l · 2k−2 + 2k−2 (since l > 1, ∀k, 2 ≤ k <
n)= mour. So we have

mStin

{
= mour for k = n ≥ 2
> mour for 2 ≤ k < n.



A New Black and White Visual Cryptographic Scheme 411

Note : (k, n)-VTS obtained by [6] has a much smaller pixel expansions except
when k = n, than those obtained in the current adaptation, e.g., for n = 10,
k = 9 the pixel expansion in [6] is 434 while the same is 1280 (present paper).
However it may be noted in [6] general access structure was not constructed.

5 Advantages of the Proposed Method

– In Theorem 2, we have proved that under certain conditions our scheme
gives less pixel expansion than the scheme given in Section 4.2 of [1].

– As a particular case of general access structure, we can construct a (k, n)-
VTS from our proposed scheme. It is shown in Subsections 4.1 and 4.2 that
in almost all the cases our (k, n)-VTS gives less pixel expansion compared
to the pixel expansion of the (k, n)-VTSs obtained from the schemes given
in the Section 2.5.

– The (n, n)-VTS obtained as a particular case of the general access structure
proposed by us attains the optimal pixel expansion and relative contrast.

References

1. G. Ateniese, C. Blundo, A. De Santis, and D.R. Stinson, Visual Cryptography for
General Access Structures Information and Computation, vol.129, pp.86-106, 1996.

2. G. Ateniese, C. Blundo, A. De Santis, and D.R. Stinson, Constructions and Bounds
for Visual Cryptography, in “23rd International Colloquim on Automata, Lan-
guages and Programming” (ICALP ’96), F.M. auf der Heide and B. Monien Eds.,
Vol. 1099 of “Lecture Notes in Computer Science”, Springer-Verlag, Berlin, pp.
416-428,1996.

3. C. Blundo, A.De Santis, and D.R. Stinson, On the Contrast in Visual Cryptography
Schemes, J. Cryptology, vol.12, no.4, pp.261-289, 1999.

4. C. Blundo, A.De Santis and M. Naor, Visual Cryptography for grey Level Images,
Inf. Process. Lett., Vol. 75, Issue. 6, pp.255-259, 2001.

5. J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the binary
reflected Gray code, Communications of the ACM, 19, Issue 9, pp. 517-521, 1976.

6. S. Droste, New Results on Visual Cryptography, Advance in Cryptography-
CRYPTO’96, Lecture Notes in Computer Science, 1109, pp. 401-415, Springer-
Verlag, 1996.

7. H. Koga and H. Yamamoto, Proposal of a Lattice-Based Visual Secret Sharing
Scheme for Color and Gray-Scale Images, IEICE Trans. Fundamentals, Vol. E81-
A, No. 6 June 1998.

8. H. Koga and T. Ishihara, New Constructions of the Lattice-Based Visual Secret
Sharing Scheme Using Mixture of Colors, IEICE Trans. Fundamentals, Vol. E85-
A, No. 1 January 2002.

9. H. Koga, M. Iwamoto and H. Yamamoto, An Analytic Construction of the Visual
Secret Scheme for Color Images, IEICE Trans. Fundamentals, Vol. E84-A, No.1
January 2001.

10. L. A. MacPherson, Grey Level Visual Cryptography for General Access Structures,
Master’s Thesis, University of Waterloo, 2002.



412 A. Adhikari, T.K. Dutta, and B. Roy

11. M. Naor and A. Shamir, Visual Cryptography, Advance in Cryptography, Euro-
crypt’94, Lecture Notes in Computer Science 950, pp. 1-12, Springer-Verlag, 1994.

12. V. Rijmen and B. Preneel, Efficient Colour Visual Encryption or “Shared Colors
of Benetton”, presented at EUROCRYPT ’96 Rump Session.

Appendix

Example 2. (To hilight computations of Theorem 1.)

Let us consider a strong access structure on a set P = {1, 2, 3, 4, 5} of 5 partici-
pants with Γ0 = {B1 = {1, 2, 3}, B2 = {1, 2, 4}, B3 = {1, 2, 5}, B4 = {1, 3, 4}, B5
= {1, 3, 5}, B6 = {1, 4, 5}, B7 = {2, 3, 5}, B8 = {2, 4, 5}, B9 = {3, 4, 5}}. Let
Γ0i = {Bσ(2i−1), Bσ(2i)}, ∀i = 1, 2, 3, 4 and Γ05 = {Bσ(9)} where σ ∈ S9, the
symmetric group of order 9. Let us take σ to be the identity permutation.

For Γ01 we consider the following two systems of equations over the binary
field:

v1 + v2 + v3 = 0
v1 + v2 + v4 = 0

}
· · · (IX) and

v1 + v2 + v3 = 1
v1 + v2 + v4 = 1

}
· · · (X).

Then the following two Boolean matrices S0
1 and S1

1 form the basis matrices
for a strong VCS with Γ01 = {B1, B2} :

S0
1 =

⎡⎢⎢⎢⎢⎣
0 0 1 1
0 1 0 1
0 1 1 0
0 1 1 0
0 0 0 0

⎤⎥⎥⎥⎥⎦ and S1
1 =

⎡⎢⎢⎢⎢⎣
0 0 1 1
0 1 0 1
1 0 0 1
1 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎦ . Similar result hold ∀i = 2, 3, 4, 5.

Then by using the construction as described in Result 4, we get the basis
matrices for the strong VCS with Γ0 as follows

S0 =

⎡⎢⎢⎢⎢⎢⎢⎣
← S0

1 → ← S0
2 → ← S0

3 → ← S0
4 → ← S0

5 →
0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1
0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

S1 =

⎡⎢⎢⎢⎢⎢⎢⎣
← S1

1 → ← S1
2 → ← S1

3 → ← S1
4 → ← S1

5 →
0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1
1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here the pixel expansion is 24.



A New Black and White Visual Cryptographic Scheme 413

5.1 Example of a General Access Structure

Here we have implemented a general access structure on a set P = {1, 2, 3} of 3
participants with minimal qualified set Γ0 = {{1, 2}, {1, 3}}. Here we have used

the basis matrices S0 =

⎡⎣0 1
0 1
0 1

⎤⎦ and S1 =

⎡⎣0 1
1 0
1 0

⎤⎦ .

Fig. 1. The Secret Image

Fig. 2. Share 1 : No information about the secret image

Fig. 3. Share 2 : No information about the secret image

Fig. 4. Share 3 : No information about the secret image

Fig. 5. Superimposed image : (Share 1 + Share 2)

Fig. 6. Superimposed image : (Share 1 + Share 3)

Fig. 7. Superimposed image : (Share 2 + Share 3) : No information about the secret
image

Fig. 8. Superimposed image : (Share 1 + Share 2 + Share 3)



Identification Algorithms for Sequential Traitor
Tracing

Marcel Fernandez and Miguel Soriano�

Department of Telematics Engineering, Universitat Politècnica de Catalunya,
C/ Jordi Girona 1 i 3, Campus Nord, Mod C3, UPC,

08034 Barcelona, Spain
{marcelf, soriano}@mat.upc.es

Abstract. Sequential traitor tracing schemes [10, 11] are generally used
to deter piracy in multimedia content delivery scenarios. This is accom-
plished by embedding the codewords of a code with traceability prop-
erties into the content, prior to its delivery. The focus of this paper is
on tracing algorithms for sequential traitor tracing schemes, where soft-
decision list decoding techniques are applied in order to improve the
identification process in the original sequential traitor tracing schemes,
where where a brute force approach is used.

1 Introduction

The term traitor tracing was first introduced in [3], and broadly speaking consists
in a set of mechanisms that protect a digital multimedia content distributor
against piracy acts committed by dishonest authorized users. As an application
example, we can consider pay-TV systems, where each authorized user is given
a set of keys that allows her to decrypt the content. These keys are usually
contained in a decoder box. In a collusion attack, a coalition of dishonest users
(traitors) get together, and by combining some of their keys, they construct a
pirate decoder that tries to hide their identities. If the pirate decoder is found, a
traitor tracing scheme allows the distributor to identify at least one of the guilty
users, using the keys inside the decoder.

Dynamic traitor tracing [4, 1] provides traceability capabilities in case that
the content is immediately rebroadcasted after it is decrypted. In [10, 11] it is
shown that dynamic traitor tracing is vulnerable against a delayed rebroadcast
attack, where the colluders rebroadcast the multimedia content after a given
delay. Moreover, the authors discuss a new traceability scheme, that they called
sequential traitor tracing, that is secure against this later attack and give con-
structions based on error correcting codes.

Related work in tracing schemes can be found in [2, 9].

� This work has been supported in part by the Spanish Research Council (CICYT)
Project TIC2002-00818 (DISQET) and by the IST-FP6 Project 506926 (UBISEC).

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 414–429, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Identification Algorithms for Sequential Traitor Tracing 415

In a sequential traitor tracing scheme, the content is divided into segments.
Let W = {w1, w2, . . . , wM} be the set of users and let Q = {1, 2, . . . , q} be the
mark alphabet. Using Q together with a q-ary watermarking scheme, q versions of
each segment are obtained. For each segment, one of the versions of the segment
is associated with a particular user according to an M × n array called a mark
allocation table T . More precisely, the entry in T (i, j) is the version of segment
j that is allocated to user wi. Therefore, the jth column of the mark allocation
table is used by the distributor to assign segment versions to users in the jth
time interval.

A coalition of dishonest users U ⊂ W committs piracy by choosing one
of their versions and rebroadcasting it. The distributor (tracer) intercepts the
rebroadcasted content, and for each segment extracts the mark and appends it
to a sequence z, called the feedback sequence, in the following way: z is initially
an empty sequence (z0()). In segment j the distributor appends the extracted
mark zj to the sequence zj−1 to construct the sequence zj = (z1, z2, . . . , zj). For
each segment position j, we define the set

Vj(U) = {zj |zj ∈ T (i, j) : wi ∈ U}

A c-feedback sequence is a feedback sequence z = (z1, . . . , zn) that is formed
by a coalition U of size at most c. In this case, we have that zj ∈ Vj(U) for
j = 1, . . . , n. Traitors are identified by looking at the feedback sequence a suf-
ficient number of segments. Whenever a traitor is traced, he is immediately
removed from the system. The distributor continues monitorizing the rebroad-
casted sequence and disconnects all the subsequent identifiable traitors. After the
observation of n segments, all traitors are traced and the algorithm converges.

A sequential traitor tracing scheme, c-TA scheme, consists of a mark alloca-
tion table T and a tracing algorithm A, such that:

1. T = (tij) is an M × n array with entries from Q.
2. A is a mapping A : Q∗ → 2U with the property that for any c-feedback

sequence z, there exists a sequence of integers 0 < d1 < d2 < · · · < dk ≤ n,
(k ≤ c) such that

A(zj) =
{

Uj , ∅ �= Uj ⊆ U, j = d1, d2, . . . , dk and
⋃k

l=1 Ul = U
∅, otherwise

The quantity dk is called the convergence length of the tracing process, and
is the maximum number of steps needed in the algorithm to identify up to c
colluders.

1.1 Our Contribution

In this paper we discuss the construction of tracing algorithms for sequential c-
TA schemes. The tracing algorithms in the original work [10, 11] of Safavi-Naini
and Wang, consist in a going through the feedback sequence and appropriately
incrementing a counter associated with every authorized user, which is basically



416 M. Fernandez and M. Soriano

a brute force approach. The algorithms we present use of as its underlying routine
powerful algebraic soft-decision list decoding mechanisms. Whenever a traitor is
found, we evaluate its contribution to the feedback sequence up to that point.
The information we extract from this evaluation gives us a hint about who
the remaining traitors are, and is introduced back into the the tracing process
through the soft-decision techniques.

Moreover, in [11] it is noted, that there is a trade of between convergence
length and the alphabet size of the sequential c-TA scheme. In this sense, the
recently presented Martirosyan-van Trung codes [15], are optimal for sequential
c-TA schemes. We show that our approach also applies to this family of codes.

The paper is organized as follows: In Section 2 we give an overview of the
coding theory and traceability concepts used in the rest of the paper. Section 3
presents two algorithms that trace traitors in sequential traitor tracing schemes
schemes based in Algebraic-Geometric codes. In Section 4 we show traitors can
be traced in the family of recursive Martirosyan-van Trung codes. Finally we
give our conclusions in Section 5.

2 Overview of Coding Theory and Traceability Concepts

2.1 Algebraic-Geometric Codes

Let C be a set of vectors of a vector space, IFn
q , then C is called a code. The

field IFq is called the code alphabet. The Hamming distance d(a,b) between two
words a,b ∈ IFn

q is the number of positions where a and b differ. The minimum
distance of C, denoted by d, is defined as the smallest distance between two
different codewords. A code C with length n, size |C| = M , minimum distance
d and alphabet IFq is denoted as an (n, M, d)q code. For notation convenience,
sometimes we will omit the distance and we will refer to C as an (n, M)q code.

A code C is a linear code if it forms a subspace of IFn
q . A code with length n,

dimension k and minimum distance d is denoted as a [n, k, d]-code.
Now we define the family of Algebraic-geometric codes (AG codes, also known

as geometric Goppa codes). First we introduce some notation:

– Let X be an absolutely irreducible curve over IFq of genus g.
– P1, . . . , Pn are IFq-rational points of X .
– D = P1 + · · ·+ Pn.
– G is a divisor of X , of degree deg(G) < n, such that supp(G)∩ supp(D) = ∅.
– L(G) denotes the linear space of G.

Using the Riemann Theorem we have that the dimension dim(L(G)), of L(G)
over IFq is finite. Moreover, we also have that dim(L(G)) ≥ deg(G) + 1− g.

The divisors D and G define an AG code, CL(D, G), as follows:

CL(D, G) := {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊆ IFn
q



Identification Algorithms for Sequential Traitor Tracing 417

The parameters of this code are given in the following theorem:

Theorem 1. [14] CL(D, G) is an AG [n,k,d ]-code with d ≥ d∗ = n − deg(G)
and k = dim(L(G)) ≥ deg(G) + 1 − g. The integer d∗ is called the designed
distance of the code.

Decoding AG Codes. The Guruswami-Sudan soft-decision list decod-
ing algorithm. In a communications system the task of the decoder is to esti-
mate the sent codeword from the received word. In list decoding [5], the decoder
outputs a list of all codewords within distance e ≥ �d−1

2 � of the received word,
thus offering a potential way to recover from errors beyond the error correction
bound of the code.

In soft-decision decoding, the decoding process takes advantage of “side in-
formation” generated by the receiver and instead of using the received word
symbols, the decoder uses probabilistic reliability information about these re-
ceived symbols.

In [5, 6] a powerful soft-decision list decoding algorithm for AG codes is given.
The algorithm takes as its input a “matrix” of real weights ri,γ , with 1 ≤ i ≤ n
and γ ∈ IFq, and decodes up to the q-ary Johnson bound [6] on list decoding
radius, which will we sufficient for our purposes. We do not describe the full
algorithm here, but simply state the results we need in the form of a theorem.

Theorem 2. [6] Let C be a q-ary AG-code of blocklength n and designed min-
imum distance d = n − deg(G), and let ε > 0 be an arbitrary constant. For
1 ≤ i ≤ n and γ ∈ IFq, let ri,γ be a non-negative real. Then there exists
a deterministic algorithm with runtime poly(n, q, 1/ε) that, when given as in-
put the weights ri,γ for 1 ≤ i ≤ n and γ ∈ IFq, finds a list of all codewords
c = (c1, . . . , cn) of C that satisfy

n∑
i=1

ri,ci ≥

√√√√(n − d)
n∑

i=1

∑
γ∈IFq

r2
i,γ + ε max ri,γ (1)

Henceforth we call this algorithm the GS soft-decision algorithm.

2.2 c-Traceability Codes

We use the terminology in [13] to describe traceability codes.
Let U ⊆ C be any subset of codewords such that |U | ≤ c. The set of descen-

dants of U , denoted desc(U), is defined as

desc(U) = {v ∈ IFn
q : vi ∈ {ai : a ∈ U}, 1 ≤ i ≤ n}.

For a code C and an integer c ≥ 2, let Ui ⊆ C, i = 1, 2, . . . , t be all the subsets
of C such that |Ui| ≤ c. A code C is a c-IPP (identifiable parent property) code,
if for every v ∈ desc(C), we have that⋂

{i:v∈desc(Ui)}
Ui �= ∅.



418 M. Fernandez and M. Soriano

Now we define an important subclass of IPP codes called c-traceability (c-
TA) codes. For x,y ∈ IFn

q we can define the set of matching positions between x
and y as μ(x,y) = {i : xi = yi}. Let C be a code, then C is a c-TA code if for
any v ∈ desc(U) for some U with |U | ≤ c, there is at least one codeword u ∈ U
such that |μ(v,u)| > |μ(v,w)| for any w ∈ C\U .

Theorem 3 ([13],[7]). Let C be a (n, M, d)q error correcting code, if d > n(1−
1/c2) then C is a c-traceability code(c-TA).

Proof. For a proof of the theorem, see for example [12]

2.3 Asymptotically Good c-TA Codes. The Martirosyan-Van
Trung Recursive Construction

We now present an “asymptotically good” family of TA codes due to van Trung
and Martirosyan [15]. Their construction is based on IPP code concatenation.

A concatenated code is the combination of an inner [ni, ki, di] qi-ary code,
Cinn, (qi ≥ 2) with an outter [no, ko, do] code, Cout over the field F

q
ki
i

. The
combination consists in a mapping φ, from the elements of F

q
ki
i

to the codewords
of the inner code Cinn φ : F

q
ki
i

→ Cinn that results in a qi-ary code of length
nino and dimension kiko.

Theorem 4. [15] Let c ≥ 2 be an integer. Let n0 > c2 be an integer and let
s0 be an integer with the prime factorization s0 = pe1

1 · · · pek

k such that n0 ≤ pei
i

for all i = 1, . . . , k. Then, for all h ≥ 0 there exists an (nh, Mh)s0 c-IPP code,

where M0 = s
	 n0

c2



0 , n∗
0 = n

	 n0
c2



0 . and

nh = nh−1 · n∗
h−1, Mh = M

	
n∗

h−1
c2



h−1 , n∗

h−1 = n∗
h−2

	
n∗

h−2
c2


,

The codes in Theorem 4 have the best known asymptotic behavior, which is
stated in the following theorem.

Theorem 5. [15] For any integer c ≥ 2 and any integer s having the prime
factorization s = pe1

1 · · · pek

k with c2 < pei
i for all i = 1, . . . , k, there exists an

infinite class of (n, M)q c-IPP codes for which n is O((c2)log
∗(M) log(M)).

As it is discussed in [15], the results in Theorem 4 and Theorem 5 can be
applied to TA-codes, if the IPP codes used in the recursion are replaced by
TA-codes.

2.4 Constructions of c-TA Schemes Using Error Correcting Codes

In [10, 11] it is shown that sequential traitor tracing schemes can be constructed
using q-ary error correcting codes.

Theorem 6. [10] Let C be an (n, M, d)q error correcting code. If d > n− n

c2 +
1
c

then C is a sequential c-traceability scheme which converges in d = c(n− d + 1)
steps.



Identification Algorithms for Sequential Traitor Tracing 419

The following corollary will allow us to use the terms c-TA scheme and c-TA
code indistinctly.

Corollary 1. [10] Mark allocation table of a sequential c-TA scheme is a c-TA
code.

The lemma below, gives a condition to identify traitors that created a given
c-feedback sequence.

Lemma 1. [11] Let C be an (n, M, d)q code, let zj = (z1, z2, . . . , zj), j ≥ c(n−
d) + 1 be a c-feedback sequence produced by U ⊆ C, |U | ≤ c, and let μ(zj ,u)
denote the number of agreements between zj and the codeword u. If μ(zj ,u) =
c(n − d) + 1, then u ∈ U .

3 Identification of Traitors in c-TA Schemes Based in
AG Codes

We begin the discussion of our tracing algorithms by providing an alternate
view of the improvement of the GS algorithm, for the q-ary symmetric erasure
channel, given by Koetter and Vardy in [8]. This improvement will turn out to
be a key aspect in our tracing proposal.

3.1 Optimal Performance of the GS Algorithm in a q-Ary
Symmetric Erasure Channel

The simplest form of soft-decision decoding is called errors-and-erasures decod-
ing. An erasure is an indication that the value of a received symbol is in doubt.
In this case, when dealing with a q-ary transmission, the decoder has (q + 1)
output alternatives: the q symbols from IFq, γ1, γ2, . . . , γq and {∗}, where the
symbol {∗} denotes an erasure.

In [8], Koetter and Vardy show how to improve the performance of the GS
soft-decision algorithm, for the q-ary symmetric erasure channel.

We take γ1, γ2, . . . , γq as the ordering of the elements of IFq. Suppose that
codeword u is transmitted and word v is received. For 1 ≤ a ≤ n and γb ∈ IFq,
we define:

ra,b =

⎧⎨⎩1/q if va = {∗}
1 − δ if va = γb

δ/(q − 1) otherwise

If v contains (n − m) erasures and (m − l) errors, then we have that:

n∑
i=1

ri,ci
= l(1−δ)+

(m − l)δ
q − 1

+
n − m

q
;

n∑
i=1

∑
γ∈IFq

r2
i,ci

= m(1−δ)2+
mδ2

q − 1
+

n − m

q



420 M. Fernandez and M. Soriano

Using (1) we have that

l(1 − δ) + (m − l)
δ

q − 1
+

n − m

q√
m(1 − δ)2 + m

δ2

q − 1
+

n − m

q

≥
√

n − d + ε′ (2)

where ε′ is a tolerance parameter as small as we seek.
The left hand of (2), is maximized for

δ = 1 − l

m
. (3)

Using this value in (2), we have that

l2

m
+

(m − l)2

m(q − 1)
+

n − m

q
≥ (n − d) + ε′′ (4)

This means that if upon receiving a word v, (n − m) symbols are erased,
then for every value of l that satisfies (4) the soft-decoding algorithm will output
codeword u. Therefore, the algorithm can handle (n − m) erasures and (m − l)
errors.

3.2 Algorithms for Traitor Identification in Sequential c-TA
Schemes Based in AG Codes

For a sequential c-TA scheme, the goal of a tracing algorithm is to identify all
traitors for a given feedback sequence. If the c-TA scheme is constructed using
an error correcting (n, M, d)q code C, then each authorized user is uniquely
associated with a codeword. Therefore we will frequently use the terms user and
traitor to denote codewords.

In this section we discuss tracing algorithms for sequential c-TA codes in
which the underlying code is an AG code. In this scenario, a given user u ∈ C
is a traitor if the number of agreements between u and the feedback sequence is
at least c(n − d) + 1 as was stated in Lemma 1.

When a user is tagged as a traitor he is immediately disconnected from the
system, and thus the number of colluders is reduced. At this point, since there
are less than c colluders, the tracing condition can be restated. This situation is
expressed, in terms of c-TA codes, as a corollary of Lemma 3 in [11].

Corollary 2. Let C be a c-traceability (n, M, d)q code. Let z be a c-feedback
sequence. Suppose that p already identified traitors (p < c) jointly match less
than n − (c − p)(n − d) positions of z, then any codeword that agrees with z in
at least (c − p)(n − d) + 1 of the unmatched positions is also a traitor.

We first give an intuitive description of the algorithms we present below.
Due to the structure of sequential traitor tracing schemes, a feedback sequence



Identification Algorithms for Sequential Traitor Tracing 421

entirely consists in symbols extracted of segments that belong to the colluding
traitors. In other words, the symbol in any position of the feedback sequence
matches one of the symbols in the segments of one of the traitors, and so the
collusion “covers” the whole feedback sequence. The tracing process consists in
finding users that contribute with a certain number of segments to the feedback
sequence. In this case, these users are tagged as traitors and disconnected from
the system.

When a traitor is disconnected from the system, his symbol contribution to
the feedback sequence are of no use in finding the rest of traitors, and therefore
this contribution can be removed from further consideration in the tracing pro-
cess. A symbol is removed from consideration by erasing it. In other words, upon
identifying a traitor, we are able to reduce the number of symbols that we have
to deal with, and therefore, we know more about the “look” of the remaining
non-identified traitors. The rest of the users that we will consider as traitors can
have any symbol in the erased position, but must match the feedback sequence
in the non-erased symbols.

The following algorithms make use of the function GS tracing1(z, p), where
the argument z is a c-feedback sequence of length j ≤ n, and the argument
p is an integer that represents the number of already identified traitors that
are generating the feedback sequence. The function GS tracing1(z, p) returns
a list containing the codewords of all the provably identifiable traitors that are
generating z.

GS tracing1(z, p) {
// local variables: l, s, δ

1. For 1 ≤ a ≤ n and γb ∈ IFq, initialize the n × q weights ra,γb
as follows:

ra,γb
:=

⎧⎨⎩1 − δ if za = γb

1/q if j < a ≤ n or za erased
δ/(q − 1) otherwise

(5)

2. Set s := number of erased positions in z.
3. Compute the value of l closest to [(c− p)(n− d) + 1] that taking m = n− s

satisfies (4).
4. Set δ = 1 − l

n−s .
5. Plug in this value of δ in (5) and run the GS soft-decision algorithm.
6. From the output list, return all codewords v1, . . . ,vt, that agree with Fj

in at least [(c − p)(n − d) + 1] of the non-erased positions.
// (Note that t is the number of traitors identified).

}

We observe that The GS tracing1(z, p) function initializes a n × q matrix.
If the input feedback sequence z is of length j < n, then we extend the feedback
sequence z to a sequence of length n by appending (n− j) erasures. This is the
safest thing to do since we don’t know anything about the upcoming segments.



422 M. Fernandez and M. Soriano

The above function is used as a routine in the following algorithm that traces
all provably identifiable traitors in a sequential c-TA scheme.

Algorithm 1
Variables:

p number of identified traitors.
L List containing the identified traitors.
zj = (z1, . . . , zj) c-feedback sequence of length j.
L Traitors in the output list of the GS algorithm.
s Number of unprocessed segments.
i Number of extracted segments.
um mth user’s codeword.

Initialization:
i := 1, p := 0; L := ∅; L := ∅; s := 0; z0 = ().

Iteration:

// Wait until tracing is possible
while [s ≤ (c − p)(n − d)] {

Extract zi; Append zi to zi−1;
s := s + 1; i := i + 1;

}
// Assertion: (c − p)(n − d) + 1 unmatched segments
L := GS tracing1(zi, p);
while (L == ∅) {

Extract zi; Append zi to zi−1;
i := i + 1;
L := GS tracing1(zi, p);

}
// Assertion: L �= ∅
Disconnect all users in L.
L := L ∪ L

for every (um ∈ L)
Erase the segments of zi in μ(um, zi);

Termination:

Set: s := number of non-erased segments in zi;
p := |L|;

if [(p == c) or (i == n)] quit // All traitors have been disconnected.
else Goto Iteration

The most expensive operation in Algorithm 1 is GS tracing1(z, p), and
depending on the extracted segments (i.e. traitor strategy), it can be executed



Identification Algorithms for Sequential Traitor Tracing 423

several times before it returns a non-empty output. The following algorithm only
executes GS tracing1(z, p), whenever we are sure that a traitor can be found.
Next lemma gives a condition about when a parent can be positively identified.

Lemma 2. Suppose a sequential c-TA scheme based on a c-TA (n, M, d)q code.
Let U be a traitor coalition of size c, and suppose that p traitors have already
been identified. Then the tracer needs at least (c− p)2(n− d) + 1 segments from
the coalition in order to identify at least one of the (c − p) remaining traitors.

Proof. From [10] (Lemma 3) we have that for a coalition of size c, a traitor
can contribute with c(n − d) segments and still be untraceable. This is because
two codewords agree in at most n − d symbols. Therefore, for c traitors, the
minimum length of a feedback sequence required to identify at least one traitor
is c2(n − d) + 1. Using the previous reasoning, if p traitors have already been
identified, then the coalition is of size (c − p) and can produce (c − p)2(n − d)
segments, before any of the remaining traitors is identifiable.

Now from Lemma 2 it is clear that, in the case that p traitors are already
identified, then whenever we have (c − p)2(n − d) + 1 unmatched segments in
a feedback sequence z, a traitor can be positively identified, and therefore it is
in this precise moment that the GS tracing1 algorithm will have a non-empty
output.

The following algorithm uses the same variables and they are initialized ex-
actly as in Algorithm 1, so we omit the declaration and initialization steps.

Algorithm 2
Iteration

while [s ≤ (c − p)2(n − d)] {
Extract zi; Append zi to zi−1;
s := s + 1; i := i + 1;

}
// Assertion: (c − p)2(n − d) + 1 unmatched segments
L := GS tracing1(zi);
// Assertion: L �= ∅
Disconnect all users in L.
L := L ∪ L

for every (um ∈ L)
Erase the segments of zi in μ(um, zi);

Termination

Set: s := number of non-erased segments in zi;
p := |L|;

if [(p == c) or (i == n)] quit // All traitors have been disconnected.
else Goto Iteration



424 M. Fernandez and M. Soriano

3.3 Correctness of the Algorithms

To prove the correctness of the algorithm, we only need to show that the func-
tion GS tracing1(z, p) returns a list containing all of the provably identifiable
traitors that are generating z.

Since we are using error correcting codes, we relate the construction of a
feedback sequence with the transmission of a codeword. In this case, we can say
that the “errors in the transmission” are the number of positions in which a
traitor and the feedback sequence differ. Using the notation of Section 3.1, we
denote by l the number of “correct symbols”, by s the number of erased symbols
and by m the number of non-erased symbols. In other words, m = n − s, and
l is the number of non-erased positions in which the feedback sequence and a
traitor agree.

Suppose that there are (c − p) unidentified traitors. We first suppose that
the number of non-erased symbols is m ≤ (c − p)[(c − p)(n − d) + 1]. Since
in this case, a traitor is a codeword that agrees with the feedback sequence in
l ≥ (c − p)(n − d) + 1 of the non-erased symbols, for every traitor we have that
l2/m ≥ (n − d) + 1/(c − p). It follows that (4) is satisfied, and in consequence,
all positive parents in this step can be identified.

Now suppose that the number of non-erased symbols is m > (c − p)[(c −
p)(n − d) + 1]. In this case there exists a traitor, such that, l ≥ m/(c − p). For
this particular traitor we have that

l2

m
≥ m

(c − p)2
>

(c − p)[(c − p)(n − d) + 1]
(c − p)2

> n − d

Again it follows that (4) is satisfied, and therefore this traitor is identified.
Following the above reasoning, it is clear that eventually, all traitors will be

traced back.

3.4 Discussion

We want to observe that Algorithm 2, is optimal in the sense that in a collusion
attack all traitors will contribute to the feedback sequence with the same amount
of segments. If this is the case, it is clear that initially we will have to wait for
(c − p)2(n − d) segments before we can identify a traitor. However, we have to
keep in mind that traitors are malicious users and therefore some of them can try
to cheat the others by contributing with fewer segments. In this the situation,
the appropriate algorithm is the one that executes the GS tracing1 function
at segment intervals between what Algorithm 1 and Algorithm 2 do.

4 Identifying Traitors in the Martirosyan-Van Trung
Code

As noted in [10, 11] (Theorem 8), for a shorter convergence length a larger code
alphabet size is required. In order to overcome this constraint, the authors in [10,



Identification Algorithms for Sequential Traitor Tracing 425

11] suggest the use of code concatenation. In this section we show that when
Martirosyan-van Trung codes (that achieve the best known asymptotic behavior)
are used in sequential c-TA schemes, tracing algorithms that use soft-decision list
decoding techniques can also be applied allowing to trace all provably identifiable
traitors.

If we recall the code construction from Theorem 4, we started with codes:

C0 : (n0, M0)s0 c-IPP code with M0 = s
	 n0

c2



0 , and

C∗
1 : (n∗

0, M1)M0 c-IPP code with n∗
0 = n

	 n0
c2



0 and M1 = M

	 n0
c2



0 .

Denoting code concatenation with the symbol ||, we have the following se-
quence of codes:

C1 = C0||C∗
1 ; C2 = C1||C∗

2 ; . . . ; Ch = Ch−1||C∗
h.

where the Cj are the inner codes, the C∗
k are the outter codes, and each C∗

k is
an (n∗

k−1, Mk)Mk−1 c-TA code.
Due to the recursive nature of the code, the tracing process will be done in

two stages. In the first stage we will need to decode the code C0, this will be
accomplished with the GS tracing1 function.

In the second stage of the tracing algorithm we will decode the code Ch by
first decoding codes C∗

1 , . . . , C∗
h−1. To decode code C∗

i , we will use the function
GS tracing2. This function has the particularity that instead of accepting a
codeword at its input, it accepts a sequence of lists of alphabet symbols. These
lists can be processed by using soft-decision decoding techniques, and this is were
our advantage comes from, being able to deal with more that one symbol for each
position overcomes the limitations of using hard-decision decoding algorithms for
tracing in a c-TA code.

The following notation will be useful. We generalize feedback sequences to
the case that in each position we can have more than one symbol. That is, for a
c-TA code (n∗

i−1, Mi)Mi−1 C∗
i , Z denotes a feedback sequence, of length at most

n∗
i−1, of lists of symbols from an alphabet Mi−1.

Given a c-TA (n∗
i−1, Mi)Mi−1 C∗

i code, and a feedback sequence of lists of
symbols Z, generated by at most c − p codewords {u1, . . . ,uc−p}, the function
GS tracing2 returns a list containing all of the provably identifiable codewords
(in the sense given by Corollary 2) that can generate the sequence.

The GS tracing2 function again uses the GS algorithm as its searching
routine. Intuitively the tracing process is as follows: Given a sequence of lists
Z = (list1, . . . , listi), for a given list, the input weights of the GS algorithm are
set in the most natural manner. If a symbol is in the list, its weight will be the
inverse of the list size and the weight of the symbols not belonging to the list
will be zero. With this weight assignment, we execute the GS algorithm. From
the output list, we use Corollary 2 to extract all the codewords that provably
generated the sequence. Now, we use these extracted codewords to update the
lists in Z. If a symbol in listi is also in the ith position of any of the extracted
codewords, then this symbol is removed from the list. Since the size of the lists
changes, we set the input weights of the GS algorithm according to the new sizes
(if the size of the list is zero then we consider all alphabet symbols equiprobable)



426 M. Fernandez and M. Soriano

and repeat the whole process until we find all provably identifiable codewords
that generated Z.
GS tracing2(Z, p):
Input:

– Code C∗
i parameters (n∗

i−1, Mi, Mi−1);
– Z = S list1|| · · · ||S listl, 1 ≤ l ≤ n∗

i−1 and S listl = {s1, . . . , s|S listl|},
st ∈ Mi−1.
// Mi−1 is the alphabet of the associated code.

Output: A list O list of codewords of C∗
i that generated z.

1. Set iter := 0, citer := c − p.
2. Initialize the n∗

i−1 × Mi−1 weights ra,γb
for 1 ≤ a ≤ n∗

i−1, ∀γb ∈ Mi−1 as
follows:

ra,γb
:=

⎧⎨⎩
1

|S lista| if ∃ sa
t = γb // 1 ≤ t ≤ |S lista|

1/Mi−1 if S lista := {∅} or if l < a ≤ n∗
i−1

0 otherwise
(6)

3. With the weights ra,γb
run the GS algorithm. From the output list take all

codewords uj , such that uj
f ∈ S listf for at least (citer(n− d) + 1) values of

f , and add them to O list.
4. Set iter := iter + 1, citer := citer−1 − j and

S listf := S listf − {sf
g | sf

g = uf for some u ∈ O list} ∀1 ≤ f ≤ l.
5. If j = 0 or citer = 0 output O list and quit, else go to step 2.

We make use of the function GS tracing2 the following algorithm that traces
all provably identifiable traitors in a c-feedback sequence over a c-traceability
Martirosyan-van Trung code.

MvT tracing(z, p):
Input:

– Parameters (nh, Mh, q) of Ch a c-traceability Martirosyan-van Trung code;
– z: c-feedback sequence generated by at most c codewords of Ch.

Output: A list Out P list1 of all codewords (traitors) that generated z.

1. For cont = 1 to
∏h−1

k=0 n∗
k.

– Take symbols zcont = (z(cont−1)n0+1, . . . , z(cont)n0)

– Out PList
(0)
cont:=GS tracing1(zcont, p)

2. Set j := 1.

3. For cont′ := 1 to
∏h−1

k=j n∗
k.



Identification Algorithms for Sequential Traitor Tracing 427

– With the lists Out PList
(j−1)
(cont′−1)n∗

j−1+1, . . . , Out PList
(j−1)
(cont′)n∗

j−1
,

use the mapping φh−j : Mj−1 → Cj−1

to obtain the lists of symbols SL
(j)
(cont′−1)n∗

j−1+1, . . . , SL
(j)
(cont′)n∗

j−1
,

where SLl = {h1, . . . , h|SLl|}, hf ∈ Mj−1.

– Z := SL
(j)
(cont′−1)n∗

j−1+1|| · · · ||SL
(j)
(cont′)n∗

j−1

– Out PList
(j)
cont′ := GS tracing2(Z, p)

4. Set j := j + 1.

5. If j > h output Out PList1 (there is only one “surviving” list)
else go to Step 3.

Note that since for the code concatenation Ch = Ch−1||C∗
h, the size of codes

Ch and C∗
h is the same, we output the parents as codewords of the code C∗

h.
The MvT tracing(z, p) routine now can be used instead of the function

GS tracing1 in Algorithm 1 and Algorithm 2, of Section 3.2, in order to
disconnect all traitors in a sequential c-TA scheme.

Note, that the previous algorithms also apply to the case in which the traitors
can wait to rebroadcast the content until the broadcast has been completed.
Therefore, the algorithms we have presented also apply to c-TA codes when
they are used in the traitor tracing schemes in [3].

4.1 Analysis and Correctness of the Algorithm

For c-IPP codes the runtime complexity of the tracing algorithm is in general
O
((

M
c

))
, whereas for c-traceability codes this complexity is in general O(M),

where M is the size of the code. This is where the advantage of c-traceability
codes over c-IPP codes comes from. In the van Trung-Martirosyan construction
the code C0 and all C∗

i codes are c-traceability codes, this implies that there
exists a tracing algorithm with running time complexity O(M). We achieve the
running time poly(log M) promised in [15], by using the GS algorithm that runs
in time polynomial.

To prove the correctness of the algorithm, we only need to show that the
function GS tracing2(Z, p) returns a list containing all of the provably iden-
tifiable traitors that are generating Z. We consider the worst case situation, in
which all traitors are contributing with the minimum amount of information
required for their identification. If there are c−p unidentified traitors, this worst
case situation clearly consists in having (c− p)(n− d) + 1 lists of size c− p and
n − (c − p)(n − d) + 1 empty lists.

We set the n∗
i−1 × Mi−1 weights ra,γb

according to (2), therefore

n∑
i=1

∑
γ∈IFq

r2
i,γ =

(c − p)(n − d) + 1
c − p

+
n − [(c − p)(n − d) + 1]

Mi−1



428 M. Fernandez and M. Soriano

Since a traitor u contributes at least with (c − p)(n − d) + 1 symbols, then
for u,

n∑
i=1

ri,ui
=

(c − p)(n − d) + 1
c − p

+
n − [(c − p)(n − d) + 1]

Mi−1

We have that∑n
i=1 ri,ui√∑n

i=1
∑

γ∈IFq
r2
i,γ

=

√
(n − d) +

1
c − p

+
n − [(c − p)(n − d) + 1]

Mi−1

It follows that (1) is satisfied and therefore with the GS algorithm we are
able to trace all C∗

i codes.

5 Conclusions

As pointed out in [12] traceability schemes are a worth addition to a system
provided its associated algorithms add sufficiently little cost. The focus of this
paper is on the efficient identification of traitors in sequential traitor schemes
based on c-TA. We show how by carefully using soft-decision decoding techniques
we can achieve, in a more efficient manner, the same performance that can be
obtained using a brute force approach. Moreover, the algorithms we present when
applied the Martirosyan-van Trung code construction achieves the running time
complexity promised in [15].

References

1. O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic traitor tracing. SIAM J.
Computing, 30(6):1802–1828, 2001.

2. D. Boneh and M. Franklin. An efficient public key traitor tracing scheme. Advances
in Cryptology-Crypto 1999, LNCS, 1666:338–353, 1999.

3. B. Chor, A. Fiat, and M. Naor. Tracing traitors. Advances in Cryptology-Crypto’94,
LNCS, 839:480–491, 1994.

4. A. Fiat and T. Tassa. Dynamic traitor tracing. Advances in Cryptology-Crypto
1999, LNCS, 1666:354–371, 1999.

5. V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999.

6. Venkatesan Guruswami. List Decoding of Error-Correcting Codes. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, September 2001.

7. H. D. L. Hollmann, J. H. van Lint, J. P. Linnartz, and L. M. G. M. Tolhuizen. On
codes with the Identifiable Parent Property. J. Combinatorial Theory, 82(2):121–
133, May 1998.

8. R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon codes.
ISIT’00, 2000.



Identification Algorithms for Sequential Traitor Tracing 429

9. K. Kurosawa and Y. Desmedt. Optimal traitor tracing and asymetric schemes.
Advances in Cryptology-Eurocrypt 1998, LNCS, 1438:145–157, 1998.

10. R. Safavi-Naini and Y. Wang. Sequential traitor tracing. Advances in Cryptology-
Crypto 2000, LNCS, 1880:316–332, 2000.

11. R. Safavi-Naini and Y. Wang. Sequential traitor tracing. IEEE Trans. Inform.
Theory, 49(5):1319–1326, May 2003.

12. A. Silverberg, J. Staddon, and J. Walker. Efficient traitor tracing algorithms using
list decoding. Advances in Cryptology - ASIACRYPT 2001, 2248:175 ff., 2001.

13. J. N. Staddon, D. R. Stinson, and R. Wei. Combinatorial properties of frameproof
and traceability codes. IEEE Trans. Inform. Theory, 47(3):1042–1049, 2001.

14. H. Stichtenoth. Algebraic Function Fields and Codes. Berlin: Springer-Verlag,
1993.

15. T. V. Trung and S. Martirosyan. New constructions for ipp codes. Proc. IEEE
International Symposium on Information Theory, ISIT ’03, page 255, 2003.



Author Index

Adhikari, Avishek 399
Aditya, Riza 61
Au, Man Ho 384
Avoine, Gildas 260

Bao, Feng 48, 73
Batten, Lynn Margaret 84
Berger, Thierry 218
Boyd, Colin 1, 17, 61
Braeken, An 120

Chan, Tony K. 384
Chang, Donghoon 328
Chen, Xiaofeng 371

Dalai, Deepak Kumar 92
Dawson, Ed 61
Dutta, Tridib Kumar 399

Feng, Dengguo 73
Fernandez, Marcel 414

Gadiyar, H. Gopalkrishna 305
Galindo, David 245
González Nieto, Juan Manuel 17
Gupta, Kishan Chand 92

Halevi, Shai 315
Harari, Sami 107
Herranz, Javier 356
Hitchcock, Yvonne 17
Hong, Seokhie, 191 328

Kim, Guil 175
Kim, Jongsung 175
Kim, Kwangjo 371
Ko, Youngdai 191
Konidala, Divyan M. 371

Lee, Byoungcheon 61
Lee, Changhoon 191
Lee, Sangjin 175, 191, 328
Lee, Wonil 328
Levy-dit-Vehel, Françoise 275
Lim, Jongin 175
Liu, Joseph K. 384
Loidreau, Pierre 218

Maini, KM Sangeeta 305
Maitra, Subhamoy 92

Mart́ın, Sebastià 245
McAven, Luke 148
McGrew, David A. 343
Monnerat, Jean 260
Montreuil, Audrey 33

Nakahara, Jorge Jr. 162, 206
Nikov, Ventzislav 120
Nikova, Svetla 120

Padma, R. 305
Patarin, Jacques 33
Peng, Kun, 61
Perret, Ludovic 275
Peyrin, Thomas 260
Poinsot, Laurent 107
Preneel, Bart 120

Roy, Bimal 399

Sáez, Germán 356
Safavi-Naini, Reihaneh 148
Sahai, Amit 14
Santana de Freitas, Daniel 206
Sarkar, Palash 230
Sato, Hisayoshi 290
Schepers, Daniel 290
Song, Junghwan 175
Soriano, Miguel 414
Sung, Jaechul 191, 328
Sung, Soohak 328

Takagi, Tsuyoshi 245, 290
Tsang, Patrick P. 384

Viega, John 343
Villar, Jorge L. 245
Vora, Poorvi L. 136

Wang, Guilin 48
Wei, Victor K. 384
Wong, Duncan S. 384
Wu, Hongjun 73

Yung, Moti 148

Zhang, Bin 73
Zhang, Fangguo 371
Zhou, Jianying 48


	Frontmatter
	Invited Talks
	Design of Secure Key Establishment Protocols: Successes, Failures and Prospects
	Secure Protocols for Complex Tasks in Complex Environments

	Cryptographic Protocols
	Tripartite Key Exchange in the Canetti-Krawczyk Proof Model
	The Marriage Proposals Problem: Fair and Efficient Solution for Two-Party Computations

	Applications
	On the Security of a Certified E-Mail Scheme
	Multiplicative Homomorphic E-Voting

	Stream Ciphers
	Chosen Ciphertext Attack on a New Class of Self-Synchronizing Stream Ciphers
	Algebraic Attacks over {\itshape GF}({\itshape q})

	Cryptographic Boolean Functions
	Results on Algebraic Immunity for Cryptographically Significant Boolean Functions
	Generalized Boolean Bent Functions
	On Boolean Functions with Generalized Cryptographic Properties

	Foundations
	Information Theory and the Security of Binary Data Perturbation
	Symmetric Authentication Codes with Secrecy and Unconditionally Secure Authenticated Encryption

	Block Ciphers
	Faster Variants of the MESH Block Ciphers
	Related-Key Attacks on Reduced Rounds of SHACAL-2
	Related-Key Attacks on DDP Based Ciphers: CIKS-128 and CIKS-128H
	Cryptanalysis of Ake98

	Public Key Encryption
	Designing an Efficient and Secure Public-Key Cryptosystem Based on Reducible Rank Codes
	{\sf HEAD}: Hybrid Encryption with Delegated Decryption Capability
	A Provably Secure Elliptic Curve Scheme with Fast Encryption

	Efficient Representations
	Advances in Alternative Non-adjacent Form Representations

	Public Key Cryptanalysis
	Attacks on Public Key Cryptosystems Based on Free Partially Commutative Monoids and Groups
	Exact Analysis of Montgomery Multiplication
	Cryptography, Connections, Cocycles and Crystals: A p-Adic Exploration of the Discrete Logarithm Problem

	Modes of Operation
	EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data
	Impossibility of Construction of OWHF and UOWHF from PGV Model Based on Block Cipher Secure Against ACPCA
	The Security and Performance of the Galois/Counter Mode (GCM) of Operation

	Signatures
	Revisiting Fully Distributed Proxy Signature Schemes
	New ID-Based Threshold Signature Scheme from Bilinear Pairings
	Separable Linkable Threshold Ring Signatures

	Traitor Tracing and Visual Cryptography
	A New Black and White Visual Cryptographic Scheme for General Access Structures
	Identification Algorithms for Sequential Traitor Tracing

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




